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In this paper, we derive expressions for equivalent Cauchy and Piola stress tensors that can be applied to discrete solids and are exact
for the case of homogeneous deformation. The main principles used for this derivation are material frame formulation, long wave approxi-
mation and decomposition of particle motion into continuum and thermal parts. Equivalent Cauchy and Piola stress tensors for discrete
solids are expressed in terms of averaged interparticle distances and forces. No assumptions about interparticle forces are used in the
derivation, thereby ensuring our expressions are valid irrespective of the choice of interatomic potential used to model the discrete solid.
The derived expressions are used for calculation of the local Cauchy stress in several test problems. The results are compared with
prediction of the classical continuum definition (force per unit area) as well as existing discrete formulations (Hardy, Lucy, and Heinz—
Paul-Binder stress tensors). It is shown that in the case of homogeneous deformations and finite temperatures the proposed expression
leads to exactly the same values of stresses as classical continuum definition. Hardy and Lucy stress tensors give the same result only if the
stress is averaged over a sufficiently large volume. Thus, given the lack of sensitivity to averaging volume size, the derived expressions can
be used as benchmarks for calculation of stresses in discrete solids.
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1. Introduction

Many phenomena in materials science and engineering
at different length scales can be considered from both dis-
crete [ 1-3] and continuum [4, 5] points of view. In particu-
lar, joint application of discrete and continuum techniques
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is important for investigation of novel nanomaterials [6, 7],
such as graphene [8, 9]. However, given the differences
between discrete and continuum descriptions of matter,
comparison and coupling [10] of the results obtained using
these two approaches is difficult. The comparison requires
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the estimation of equivalent continuum fields, such as the
stress tensor, for discrete systems. Several approaches for
calculation of continuum fields from discrete systems have
been proposed in the literature. One of the first expressions
for a stress tensor derived for a system of particles was de-
rived by Clausius [11]. In equilibrium, this virial stress is
equivalent to an average Cauchy stress in some finite do-
main containing particles. Calculation of highly localized
pointwise stresses is a more challenging problem. Statisti-
cal physics, and a particular averaging kernel — the Dirac
delta, was employed by Irving and Kirkwood [12] to calcu-
late stresses that are consistent with the macroscopic bal-
ance laws. Though the obtained expression for the stress
tensor has great importance from theoretical point of view,
it does not result in a continuous field. Additional modifi-
cations are required in order to calculate local stresses us-
ing Irving—Kirkwood approach. In particular, Irving—Kirk-
wood expression has been adjusted for calculation of local
stresses and used in molecular dynamics simulations in the
paper [13].

Other approaches for estimating a local continuum field
include the method [14], which uses Fourier transforma-
tions, and the one by Hardy [15-19], which uses kernels
with finite support suitable for computer simulations. With
regard to Hardy’s approach, the dependence of stress on
the form of localization functions and the radius of local-
ization volume has been investigated in the paper [18], and
the generalization of Hardy’s approach for calculation of
stress in the material formulation has been carried out [19].
A simpler formalism proposed by Lucy [20] has been used
by Hoover [21] for calculation of stresses in shock waves.
This approach avoids integration of the kernel along the
bond and is therefore computationally more efficient.

The Lucy and Hardy formalisms are based on the spa-
tial frame formulation, i.e. continuum properties are com-
puted at the points fixed in space. These and other spatial
frame formulations are commonly used in fluid dynamics.
In solid mechanics theories, such as thermoelasticity, plas-
ticity, and fracture mechanics, the material frame formula-
tion is more widespread. In the material frame formulation,
stresses are calculated at material points. This approach is
more efficient for dealing with problems featuring complexi-
ties such as free surfaces, interfaces, cracks, and inclusions.
Accurate formulation of equivalent continuum parameters
for discrete systems in the material frame is important, for
example, for development of hybrid discrete-continuum
methods for solution of solid mechanics problems [19, 22].

The choice between spatial and material frame formu-
lations strongly influences the expressions for equivalent
continuum properties of discrete systems. This difference
has been first emphasized by Hoover [2]. It has been shown
that the virial theorem for solids has two different formula-
tions. In the material frame formulation, the virial stress
has no kinetic part while the potential part depends on in-
terparticle forces and distances that are averaged separately.

In the spatial frame formulation, the expression for the virial
stress contains both kinetic and potential parts.

In the present paper, we generalize the expression for
stress tensor in the material frame formulation obtained by
Hoover [2]. The long wave approximation [23-27] is used
for transition from discrete description to equivalent con-
tinuum. It is shown that the expression derived by Hoover
[2], with minor modifications, can be used for calculation
oflocal stresses in static and dynamic problems. In the case
of homogeneous deformations and finite temperatures, this
expression leads to exactly the same values of stresses as
classical definition used in continuum mechanics (force per
unit area). In addition, comparison with commonly used
equivalent stress tensors is carried out for several examples
with uniform and nonuniform stress fields. The advantages
of the derived expression for the stress tensor are demon-
strated.

2. Hypotheses

Let us consider a discrete system consisting of particles
arranged in an infinite ideal crystal lattice. Herein, only crys-
tals with simple structure are investigated (i.c. crystals that
are invariant to translation on any vector connecting lattice
nodes).

We use two main principles for transition from discrete
system to an equivalent continuum: (i) a decomposition of
particle motions into slow continuum and fast thermal modes
[25-27] and, (ii) the long wave approximation [23, 24].
First let us focus on the particle motion decomposition, as
this approach has been intensely examined by many re-
searchers in recent years. In the literature, it is effected us-
ing different types of averaging such as: spatial averaging,
time averaging, averaging over phase space or over fre-
quency spectrum, etc. In [28] it was noted that unique de-
composition is impossible because rules for a choice of av-
eraging parameters like averaging time, representative vol-
ume, etc. do not exist. The only restriction for these param-
eters is that they should depend on time and spatial scales
of the problem being solved, and some work to quantify
these scales has been done in [29].

Let us denote average ( /') and oscillating (thermal) f
components of physical quantity fas:

f=N+f &) O]
Different expressions for the averaging operator {-) are pro-
posed in the literature.

For the case of a one-dimensional chain of N particles,
the following operator was defined for the velocity v [25]:

1 12 ninf2

[ ¥ wmdr. 2

TA (=T)2 k=n—A/2

(V)

Here (v), denotes the averaged value of physical quantity
v over a spatial region centered at n and comprised of the A
particles surrounding # (inclusive of n), and over a tempo-
ral domain of size 7T that surrounds the current time .
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As an alternative approach, the direct and inverse Fou-
rier transformations were used for decomposition (1) in [28].
The Fourier transformation of v is given by:

Foo

V(v):(V)(v)+\7(v):ﬁ [ veidr, (3)
where
V() = V(V),V <V, T = 0,v <V, @)
V)= 0,vz=vy, V)= V(Vv),v=v .

Here v, is the cut-off frequency, which is on the order of
THz [23] and depends on the material. The quantities {v)
and v are obtained through the inverse Fourier transfor-
mation:
1T 1 T
(V)y=——= [ Ve™dv, V=—= [ Ve
v2n _{o V2n _{o
The approaches developed by Hardy [16—19] and Lucy
[20, 21] employ the kernel density estimation; in particu-
lar, the velocity is given by

Y mvw(x—1;)

_ k
<V>(Xat)_ Ek:mkw(X—rk) .

Here v, , my, r, are the velocity, mass and position of par-
ticle k; x is the coordinate of the spatial point, where the
velocity is calculated; and w is the localization/kernel func-
tion that determines the weights in this weighted average.
Applying decomposition (1), the thermal component of the
velocity for particle n is

V,(x,0) = v, (1) =(v)(X, 1) @)
and is associated with both the particle » itself and the spa-
tial point x. This type of decomposition (as well as all those
discussed) is not unique. It strongly depends on the choice
of localization function. In particular, if localization vol-
ume surrounds a single atom, then the thermal component
of the velocity is equal to zero.

Since a unique averaging operator does not exist, a for-
mulation for estimating continuum fields should not be de-
pendent on the specific choice of the operator, nor should
the results depend qualitatively on this choice. In the fol-
lowing derivations, properties of the particular averaging
methods are not used unless otherwise stated.

Another principle used in the present paper (indepen-
dent of the decomposition) for transition from a discrete
system to an equivalent continuum is the long wave ap-
proximation [23, 24]. The approximation assumes that if
an average component of any physical quantity is slowly
changing in space over distances of order of the interatomic
spacing, then the average component can be considered as
a continuum function of a space variable and can be ex-
panded into power series with respect to the interatomic
distance. Moreover, the resulting series should converge
rapidly. Development and use of this approach is examined
in further detail in the next section.

My, (5)

(6)

3. The approach based on the long wave
approximation

3.1. Kinematics

We consider two states of a discrete solid and its equiva-
lent continuum: the reference configuration and the current
configuration. It is assumed that the mapping between these
configurations exists. This assumption is usual for solid
mechanics theories based on the material frame formula-
tion. For the sake of simplicity let us take the undeformed
configuration of the crystal lattice as the reference. Using a
local numbering convention, similar to one established in
papers [26, 27], we focus on a reference particle “0” and
mark all of its neighbors by the index o. The vector that
connects 0 with o in the reference configuration is a,. By
the definition, vectors a, have the following property

A(—a) = A0a- (®)
Note that no thermal motion is associated with the refer-
ence configuration, i.e. 4,, =0. Ina current configuration
vector connecting particle 0 to its neighbor o is denoted
Ay,

def "

Mgy = Ag—Ag=(Age) + A, )]
where A, A, are radius-vectors of particles 0 and o.. The
use of lower-case letters to denote reference configuration
and upper-case letters to denote current configuration was
done in [26, 27], and we maintain this notational style here
for consistency.

Let us consider kinematics of the discrete system in the
long wave approximation. It is assumed that average va-
lues of particle positions are identical to positions of corres-
ponding points of continuum media. Positions for points of
equivalent continuum in the reference and current configu-
rations are denoted as r and R respectively. Thus, the posi-
tion of particle 0 is represented by the vector r, in the re-
ference configuration of the equivalent continuum, and is
represented by the vector R(xr;) =(A,) inthe current con-
figuration. Note that R(r;) is a mapping that implicitly
depends on time as well as the reference position r,. Here,
we have dropped this dependence on time for brevity. The
average position of particle 0’s neighbor o is determined
by vector R(r, +a,,). Then vectors A, and a,, con-
necting the particles are related by the following formula

(Age) =(Ag) —(Ag) =
=R(r, +2,,) -R(ry) ~a,, - VR(r,), (10)

where V9 /or is the spatial gradient operator in the ref-
erence configuration [5].

This expression is the Taylor series expansion of the
equivalent continuum position for particle o relative to the
position for particle 0, truncated to first order. One can see
that expression (10) is similar to the formula used in con-
tinuum mechanics that connects material vectors dr and dR.
In the literature formula (10) is usually called Cauchy—Born
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rule (see, e.g., [30]). If particle positions are known, then
formula (10) can be used for calculation of deformation
gradient VR(r,) for equivalent continuum:

-1
%R(ro)z[%)awawj -%:aOa(AOa). (11)

Note that in the long wave approximation the function R(r)
is assumed to be slowly changing on the distance of order
of |a,|. Therefore defining the function R(r) at particle
positions is sufficient for calculation of gradients.

Using Eq. (10) one can derive relations between vec-
tors (A, 8¢, and measures of deformation used in non-
linear theory of elasticity [5]. For example, the fol}lgf—

wing identity is satisfied for Cauchy—Green measure G =
def o °
=(VR)-(VR)":
(Ao ) *= a9, -G -2, (12)
Thus, the long wave approximation allows us to connect

deformations of the discrete system and the equivalent con-
tinuum.

3.2. Equivalent stress tensor

Consider dynamics of infinite perfect crystal of simple
structure. Let us assume that the total force K, acting on
the reference particle 0 is represented in the form:

FO :%:FOOC({AO(X}O(EA)' (13)

Here K, is the force acting on the reference particle due
to its neighbor o, {A,}.ea 1 the set of all vectors A,
from particle 0 to its neighbor o lying within the set A. It is
assumed that the decomposition (13) is carried out in such
a way that the forces F, satisfy Newton’s third law with
respect to the neighbor a.. The example of decomposition
(13) in the case of three-body forces is considered in
Sect. 4.2.

Note that decomposition (13) used in the present paper,
as well as many other papers dealing with calculation of
stresses [15, 19] for systems with multibody interactions is
not the only possibility. Alternative ways of decomposing
atomic forces and constructing a corresponding expression
for the stress tensor are derived in [31]. The application of
this approach is demonstrated in next section using simple
example with three-body forces.

Now let us derive the equation of motion for the equiva-
lent continuum using the equation of motion for the reference
particle and the decomposition of motions:

m<V0>. = EFOOC({AOO(}OCEA)’
R (14)
mi’O = %:FOOC({AO(X}OCEA)’

where m is the mass of particle 0. The first equation in (14)
describes slow motion of the system that corresponds to
average value of particles velocity (v,). The motion (v,)

can be considered as the motion of a continuum media. The
second equation describes the thermal oscillation charac-

terized by thermal component of displacement v,,. One can
see that both (F,,) and K, depend on the total particle-
neighbor distances, A, ={Ag,)+ Ay, and thus couple
two equations in Eq. (14).

We assume that average interparticle forces can be ap-
proximated by continuum functions f_(r), i.e.

ftx(rO) = <F00c>’ f—(x(ro) = <F0(—(x) > (15)
Evidently this assumption is satisfied exactly in the case of
homogeneous deformations, since in this case f, are con-
stant. The functions f_ (r) satisfy Newton’s third law:

f,(ry)=—f_,(ry+ay,),

f_ (ry)=—f,(ry—ay,). (16)
By their physical meaning, the functions f,, (r,) are similar
to traction vectors at material point r, in directions a.
Using the introduced functions f, (r), one obtains

(Fy,, + FO(_a)) =f,(r))+f_, ()=
:ftx(rO)_f(x(rO _aO(x) = 'Vfoc(ro) =

=V-(ay,f, (). a7
Given that the functions f, are slowly changing between
atoms and, hence, higher order terms in the expansion can
be neglected via the long wave approximation. Let us carry
out the following transformations in the equation of motion
of particle 0:

mv, = % F,, = %} Fy_q) = 1/2%; (Foo + Fo_gy)- (18)

Substituting formula (17) into averaged equation (18) and
dividing both parts by elementary cell volume in the refer-
ence configuration ¥, one obtains

(1
%<v0> :V-[z—n%:awfa(ro) , (19)

Let us compare formula (19) with the equation of motion
for continuum in Piola’s form [5]:

p.¥=V-P, (20)
where P is the Piola stress tensor, p, = m/V, isadensity in
the reference configuration. Comparing equations (19) and
(20) one can deduce that Piola stress tensor at the point r;
has the form

P(r0)2§2300c<F00c>’ (21)

where the identity (15) was used. Strictly speaking the for-
mula (21) determines the stress tensor to within a field of
zero divergence. This tensor field corresponds to some equi-
librium stress in the crystal. Note that the only assumption
made during the derivation is represented by formula (17).
In the case of homogenous deformation of the crystal for-
mula (17) is satisfied exactly. Thus in this case the expres-
sion (21) for Piola stress tensor is also exact. Note that the
expression for Piola stress tensor is used, in particular, for
investigation of stability of crystals [32]. In this case it is
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more convenient for analytical derivations than the Cauchy
stress tensor.

Let us carry our the same derivations in a current con-
figuration using the following transformations:

f_(Ry) =~ (Ry +(Ag_o))) =

=—f,(Ry)+{Ay) VI, (Ry), (22)

where V £29/0R is a nabla operator in the current configu-
ration. In formula (22) it was used that in the long wave
approximation (A _,) = —(A)- In the case of homog-
enous deformation of the crystal (22) is exact. Using for-
mula (22) one can rewrite (17) in the current configuration:

(Foo + Fy_ay) =1, (Rg) +1_, (Ry) =

= (Age) VI, (Ry). (23)
Substituting expression (23) into equation (18) and divid-
ing both parts by the volume of elementary cell in the cur-
rent configuration } one obtains

. 1
§<vo> = Z(Aw) Vi, (R)) =

1 1
:V‘(§§<A0a>faJ_§v'(§<A0a>)fa' (24)

The argument R, of functions f, is omitted in the right
side of the given equation for brevity. The second term in
the right side is equal to zero, since

Lo e o fZ@ry e -
v.(ﬁmw)— TG V(V(VR) J%a 0, (25)

L N ——
=0

where Eq. (10) and Piola’s identity were used (see, for ex-
ample, [5]). Then the equation of motion (24) has the fol-
lowing form

. 1
§<v0> :V-(W%:(AOQ)QX(RO)]. 26)

The requirement of equivalence of discrete and continuum
systems leads to expressions for the Cauchy stress tensor

T(R,) = %;mwxw @7)

and density p =m/V in the current configuration. The ex-
pressions (21), (27) for the Piola and Cauchy stress tensors
satisfy the following well-known relation

T=V,(VR)T-P/V
(see, for example, [5]).

Note that the expression for the stress tensor (27) does
not explicitly depend on particle velocities. Also, unlike
usual expression for virial stress tensor, in formula (27) the
forces and vectors connecting particles are averaged sepa-
rately. However for solids it does not lead to any contradic-
tions. In [2] it is shown that for solids there are two equiva-
lent formulations of virial theorem. According to the theo-
rem the stress tensor can be represented either using
(A Fo,) and kinetic part or using (A, ) (F,,). In the
latter case there is no kinetic part. The expression for vo-
lume-averaged stress calculated using formula (27) coin-

cides with the expression from [2]. The derivation in [2] is
based on the assumption (A,,) =0, valid only in the case
of statics. The derivation given in the present paper shows
that expression (27) has much wider range of applicability.
It satisfies the law of momentum balance (26) for equiva-
lent continuum and therefore can be used for calculation of
local stresses in both static and dynamic problems.

In the next paragraph, we will demonstrate that in the
case of homogenous deformations and finite temperature,
formula (27) becomes exact (see Figs. 1, 2). Note that the
only assumption about the interparticle forces used in the
present paragraph is given by formula (13).

4. Comparison of different expressions for
Cauchy stress tensor

Letus compare the expression for stress tensor (27) with
analogous expressions used in the literature. In the follow-
ing examples the operator (-) in formula (27) corresponds
to time averaging. The expression for the Cauchy stress ten-
sor at spatial point x and time ¢ using the Hardy formalism
[16] is

1 -
Ty(x,0)= EEZAU'FU'BU' (x)= > m Vv wm(x—A,;),
i j i

By (x) = .I[W(Aj _)‘Aif —x)dA, o
0

where A; =A;—A;; A, is the position of particle / and
v, is the thermal velocity as defined in Eq. (7).

Another approach developed by Lucy [20] is used in
[21]. The following expression for Cauchy stress tensor at
spatial point x and time 7 is proposed:

T (X, 1) = 2(%ZAUFU —-mVv, v, )W(X—Ai), (29)
i\ 4]

where thermal velocities v, are calculated using formulas
(6), (7). The given approach avoids integration over bond
length. In the present work, the localization function pro-
posed by Lucy [20] is used with both expressions (28) and
(29):

3
5 r r
| 1+3— | 1-—|, r<R,,
wr) = nRg( RJ( RC] TR 60
0,r>R,

where R, is arange of localization function. This function
has two smooth derivatives everywhere and therefore is
appropriate for calculation of continuum fields. Note that
in contrast to formula (27), expressions (28) and (29) ex-
plicitly depend on particle velocities.

Using molecular dynamics simulations, let us examine
the consistency of the expressions just described with con-
tinuum mechanics. In all the examples considered below
particles interact via the spline potential [33]. Correspon-
ding interatomic force F; acting on particle i due to par-
ticle j has the form
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8 14
12¢ a a
F.=—9%%k(4)|| — | -| — A, 31
g a2 ( l/) LAI/] (Al/) y ( )
I,OSAi/-Sb,
A7 -b
k(4)=1|1-| 57— <4y <agy.,
Aout -b
0, Ai/.Zacut,

where b =(13/7) Voq , a is an equilibrium distance, €, is a
bond energy. The force (31) coincides with Lennard-Jones
force for 4; <b and smoothly goes to zero as 4; goes to

Aoyt -

4.1. Example 1: Cold pressure in a crystal

First, consider a two-dimensional triangular lattice sys-
tem compressed volumetrically by 9.75 % (bonds are com-
pressed by 5 %). Let us calculate the pressure at points where
the particles are located using formulas (27)—(29). In the
given calculations the cut-off radius is equal to 1.5a. The
pressure corresponding to formula (27) is calculated ana-
lytically:

D 6MA>((a\* (a) %

ps  Vd [AJ (AJ T
where 4 = 0.95a; d = 2 is a dimensionality; M = 6 is a
coordination number; p, = €, / a” is usual Lennard-Jones
scaling. The resulting value is p/p_ = 11.29033. Molecu-
lar dynamics simulations are carried out in order to calcu-
late pressure using formulas (28), (29), and classical con-
tinuum definition. In the latter case, the average normal
component of the force acting on one layer of particles per
unit length is calculated. The resulting value coincides with
prediction of formula (32). Pressures calculated using the
Hardy (28) and Lucy (29) stress tensors converge to the
same value with increasing range of the localization func-
tion R.. Trapezoidal rule with 50 points per bond length is
used for calculation of integrals in Hardy’s expression (28).
The dependence of relative error in pressure on R, is shown
in Fig. 1. Note that for R, >1.9a the difference between
the Lucy and Hardy stresses is less then one percent and is
decreasing with R_.

One can see from Fig. 1 that in contrast to formula (27),
formulas (28) and (29) overestimate the pressure, at least
for R, <2a. Atthesame time, formula (27) gives the exact
value of pressure.

5-d

4% (32)

4.2. Example 2: Shear of a square lattice with three-body
forces at finite temperature

Let us demonstrate the possibility of using formula (27)
for calculation of stresses in systems with multibody inter-
actions. Consider the simplest problem with three-body in-
teractions, notably pure shear of perfect square lattice at

finite temperature. In this problem the different definitions
of stress can be compared analytically. Let particles inter-
act via angular springs connecting two neighboring bonds.
The average length of all bonds are equal to 4. Only near-
est neighbors are taken into account. Average positions of
the particle number 0 and its neighbors are shown in Fig. 3.
Assume that potential energy of the spring connecting
bonds A, and Ay, is given by the following expressions
Upio =Ugia(4y15 Ay An)s Ay =Agy —Agy. (33)
In order to calculate stresses using classical definition (force
per unit area) let us introduce interparticle forces F; using
the following definition [15, 19, 34]
i~ Wea €ij> € = ﬁ’ (4)
04; A
where U, is the total potential energy of the lattice. Forces
F; defined by formula (34) are central and satisfy the rela-
tions F; = Y F;, F; =—F;, where F; is the total force ac-
ting on par{icle i. Using formula (33) and definition (34)
one can calculate the forces Ky, Fj,, Fi )

oU, Up(2)
F, :—2[¢+— €op»

oy | oAy
Uy 33)
S, S

1(=2)

The remaining forces in the system are calculated using
symmetry of the problem and the third Newton’s law. Let
us calculate the stress vector t; acting on crystal cross-
section with normal n orthogonal to vector e, (see Fig. 3).
According to classical continuum mechanics definition, the
stress vector in two dimensions is equal to the force acting

on the cross-section per unit length. Then t; has the fol-
lowing form

1
ty = Z(FIO +F, +F1(_2)), (36)

(]

a This work

e
o

-a-Hardy stress

-o-Lucy stress

(P —pa)pe
S

00l BT aoeetpy o

Fig. 1. Relative error in pressure calculated using Lucy and Hardy
definitions for cold, two-dimensional crystal as a function of lo-
calization radius R;. Here p / p, = 11.29033 is a pressure cal-
culated using classical continuum mechanics definition (force per
unit length). Triangles corresponds to pressure calculated using
formula (27)
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where A is the nearest-neighbor distance. Now let us use
formula (27). Using symmetry of the problem one can re-
write formula (27) as follows:

= %«Aoo (Foy)+(Aga) (Fo)+

+(A3) (Fo3) +(Ags) (Fou))s (37)
where the identity (A;) (Fy;) :<Ao(_i)> <Fo(_i)>, i=1,
2,3, 4 is used. Substituting the relations (A ;) =(A,, +
+A02>, <Ao4> = <A02 - A01>, <Fo3> = _<F1(_2)>, <Fo4> =
=(F,,) into formula (37), one obtains the expression for
the stress tensor:

1
T= —;<A01><F10 +F, +F1(_2)> -

1
—;(Az())(on +FE, + Fz(_1)>. (38)

Then the stress vector acting on the cross-section with nor-
mal n orthogonal to vector ey, (see Fig. 3) is calculated
using the Cauchy formulat=n - T. As a result

n-(A)
t=n-1=——C(F +F,+F_,)=t,. (39

Here the expression V =—4n-(A,,) for the volume of the
elementary cell was used. From formula (39) it follows that
the stress vector calculated using formula (27) exactly co-
incides with classical continuum definition (36).
Alternative approach for calculation of the stress vec-
tor in systems with multibody interactions is suggested in
[31]. It is stated that every angular spring causes three forces
with zero sum. For example, for the spring connecting par-
ticles 0, 1 and 2:
Uy 12
0A,
Herei=0, 1, 2. The forces Fimz, i=0, 1,2 contribute to the
potential part of the stress vector only if the corresponding
angular spring is dissected by the cross section. The sign of

F812+F1012+F§12 :0, FiOIZg_ (40)

J? a This work
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i -a-Hardy stress

--Lucy stress
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Fig. 2. Relative error in local thermal pressure calculated using
formulae (27)—(29) as a function of localization radius R_. Here
Dq is the pressure calculated using classical continuum mecha-
nics definition (force per unit length)

contribution depends on position of the particle 7 with re-
spect to the cross section. Then the potential part of the
stress vector is equal to sum of contributions from all crossed
angular springs. In the present example it has the form:

1 01(-2 012
t%(;t(B:Z<F1012+F1( -Fy? -

-Fy Y -R7-FLY). (1)
Here it is used that angular springs connecting particles 0,
1,2 and 0, 1, -2 cause the same average forces as angular
springs connecting particles 0, 1, —4 and 0, 1, 3.
The forces in formula (41) are as follows:

U, U,
F(?IZ — 012 ey + 012 .
oy, 0y
Fl012 :_anu e + aU012 €
aA()l 04,
Fé)lZ —_ anu e, — aU012 e,
8A02 04, @2)
01(-2) _ aUOl(—z) aU01(—2)
Ky = €t €0(-2)>
aA()l a140(—2)
oUqy Uy
Flol(—z) _ 01(=2) e 01(-2) el
aAOl aAl(—z)

pin _ Wy W
2 = o, UC Y 1-2):
(=2) 1(-2)
Substituting (42) into formula (41) and using formulas (35)
for the forces Fy(, Fy,, Fj_;, one obtains:

1
thks = Z<F10 +F, +F) =ty (43)

Thus the potential part of the stress vector calculated using
the Heinz—Paul-Binder formalism exactly coincides with
the classical definition (36). In [31] it is suggested that the
stress vector should additionally have kinetic part. The
present example shows that at least for solids the kinetic
part should not be added.

The expression for the stress tensor (27) gives the exact
value of the stress vector. Therefore it can be used for cal-
culation of stresses in systems with multibody interactions.

4.3. Example 3: Thermal pressure in a crystal

Consider calculation of local Cauchy stress in two-di-
mensional crystal at a finite temperature. Assume that ini-
4 P 2

I :
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/
’
/
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/ ’ /
/ / n /
1
/ /’ \ II
O Or—0
— 1
1 7 /).J() ' 7

1

/

-3 // /_2 II /—4
O O —O
Fig. 3. Shear of the square lattice. Averaged positions of the par-
ticle number 0 and its nearest neighbors




56 Kysokun B.A., Kpusyos A.M., Jones R.E., Zimmerman J.A. / @usuueckas mezomexanuxa 17 4 (2014) 49-58

tial configuration of the lattice is undeformed. Periodic
boundary conditions in both directions are used. Initial ve-
locities of particles are chosen so that the sample has the
following temperature: kg7’ /g, =0.05, where kg is the
Boltzmann constant. Temperature is calculated as the mean
kinetic energy of thermal motion [2]. Consequently, the
pressure is due to thermal expansion only. The pressure is
calculated using formulas (27), (28), (29). Lucy and Hardy
expressions (28) and (29) are additionally time averaged
over 2-10* Ty, where 7; is the period corresponding to the
Einstein frequency. In the case of formula (27), time aver-
aging is carried out using operator {-). In all three cases
standard error of the mean is approximately 0.2 %. As in
the previous example, the Lucy and Hardy stresses are cal-
culated for 1< R /a <3. The results are compared with
classical continuum mechanics definition of stress (force
per unit length), which is used as a benchmark. The devia-
tions from the benchmark are shown in Fig. 2. One can see
from Fig. 2 that the error of the Lucy and Hardy stresses is
decreasing with increasing R,. The error for R, >3a is
less than 1 %. Additionally let us note that the Lucy and
Hardy stresses are indistinguishable for R, >2.1a. At the
same time, the pressure obtained using definition (27) co-
incides with the classical continuum definition within the
standard error. Thus at homogeneous deformations and fi-
nite temperature, the Eq. (27) can be used as a benchmark.

4.4. Example 4: Stresses around a pair of dislocations

Let us consider the case of an inhomogeneous stress
distribution and compare the results with the prediction of
linear elasticity theory. Consider the stress field generated
by a pair of edge dislocations as modeled by a two-dimen-
sional crystal lattice with pair interactions. An analogous
problem in three dimensions is considered in [17]. It is well-
known that triangular lattice is isotropic in the case of small
deformations. Thus, one can compare the stress field in-
duced in the triangular lattice with analogous stress field in
two-dimensional isotropic linear elastic continuum. First,
let us derive expressions for stresses using well-known re-
sults for three-dimensional continuum under plane strain
conditions [35].

Consider an infinite three-dimensional continuum un-
der the plane strain conditions containing single disloca-
tion. Assume that x axis is directed along the Burgers vec-
tor and dislocation line coincides with z axis. Then the nor-
mal stresses have the form [35]:

_ bG. y3xP+yY)
2n(l-v,) (x2+3°)*
o oo bGPy
vy 27T(1—V*) (XZ +y2)2 ’
where G,, v, are the shear modulus and Poisson’s ratio of

the continuum, b is the modulus of the Burgers vector.
Stresses in a two dimensional continuum with a dislocation

XX

(44)

can be obtained replacing G, with the shear modulus of a
two dimensional continuum G and v, by v/(v+1), where
v is the Poisson’s ratio for a two dimensional continuum.
For a triangular lattice with spline interactions,

v=1/3, G=18{3p,. (45)

Let us exploit the principle of superposition to deter-
mine the complete stress field for a system of two disloca-
tions with equal and opposite Burgers vectors separated in
space. This field is

T (%, ) = T (3, 3, D) + T (X=X, = yg» =),

vay(-x’ J’) = Tyy(-x’ Y, b)+ Tyy(-x_ Xo> YV~ Yo»— b)’
where the first dislocation is at the coordinate system ori-
gin and the second dislocation has coordinates {x,, y,}.

Now let us compare analytical stresses (46) with results
of molecular dynamics simulations. In the given example
the cut-off radius is equal to 1.75a. The dislocations are
created using the following procedure. Rectangular sample
containing 40000 particles is considered; 24 particles are
removed as it is shown in Fig. 4 (see [36]).

Interatomic distances in the initial configuration are set
to be equal 0.9954 in order to collapse the set of vacancies
shown in Fig. 4. Additionally the crystal is compressed by
0.25 % in x direction in order to favor formation of disloca-
tions with Burgers vectors in the same direction. Periodic
boundary conditions are used during the formation of dis-
location. Finally boundaries are released and crystal is
equilibrated at zero temperature. The process of formation
of the dislocations is shown in Fig. 4. Coordinates of the
second dislocation are x, =12a, y, = 1243a. The abso-
lute values of the Burgers vector for both dislocations is
equal to a. The distribution of stresses along axis y at x =0
(see Fig. 4) is calculated using formulae (27)—(29). Local-
ization radius R, =2.1ais used in formulae (28), (29). The
given value corresponds to minimum error in pressure in
the case of homogeneous deformations (see Fig. 1). In the
case of formula (27) stresses are calculated at atomic posi-
tions. Stresses in between atoms are obtained using linear
interpolation. For the sake of simplicity it is assumed that
V =V, =3d / 2. The resulting distributions of stresses
T Ty, alongy axis are shown in Fig. 5.

One can see from the figure that in contrast to the con-
tinuum solution, the results of molecular dynamics simula-
tion do not contain singularity at y = 0. Obviously the sin-
gularity is a mathematical consequence of the assumptions
of linear elasticity. The stresses calculated using formula
(27) proposed in the present paper are closer to the predic-
tion of elasticity theory (44), (46). Formulae (28) and (29)
give analogous results only for [y| > 5a. The average differ-
ence between the Lucy and Hardy stresses is less than 1 %.
Better agreement between formula (27) and continuum
theory is caused by the fact that, in contrast to the Hardy
and Lucy formulas, formula (27) does not contain spatial
averaging.

(40)
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Fig. 4. Formation of the pair of dislocations. Only atoms near the dislocations are shown

Finally, let us note that comparison of stress distribu-
tions obtained using formulas (27)—(29) for |y| < 5a is not
so straightforward. On the one hand, the difference between
stresses at some points in this interval is relatively high. On
the other hand, given the limitations of linear elasticity, we
would need to appeal to a more complex model of the con-
tinuum (e.g [37]) to determine which formulation is more
accurate. Such an analysis was performed for the Hardy
stress in [17] in three dimensions.

5. Results and discussions

An approach for the calculation of equivalent continuum
parameters for discrete solids in the material frame formu-
lation was presented. Two main principles were used for
the transformation: the decomposition of particle motions
into continuum and thermal parts, and the long wave ap-
proximation [23, 24]. The relation between kinematics of
discrete system and kinematics of equivalent continuum was
established. Equivalent Cauchy—Green measure of defor-
mation for discrete system was introduced. The transition
from a single particle equation of motion to equation of
motion for equivalent continuum was carried out using the
long wave approximation. No assumptions about interpar-
ticle forces were used. Expressions connecting the Cauchy
and Piola stress tensors with averaged interparticle forces
and distances were derived for the case of multibody inter-

Linear
elastisity
4 This work

o Hardy stress

Q
;9 o Lucy stress

0 5 10
yia

actions. In the case of pair interactions the volume-aver-
aged expression for the stress tensor exactly coincides with
expression derived by Hoover [2].

Four test problems with homogeneous and nonhomo-
geneous stress fields and finite thermal motion were con-
sidered. In the case of pair interactions the expression for
Cauchy stress tensor (27) was compared with the Hardy
[16] and Lucy [20, 21] expression. Additionally, it was
shown that in all considered examples the difference be-
tween the Hardy and Lucy stresses is of order of 1 %, no-
ting that the Lucy expressions is more efficient from the
computational point of view. The calculation of stresses in
systems with multibody interactions was demonstrated us-
ing the simple example, notably pure shear of square lattice
at finite thermal motion. The stress vector was calculated
analytically using formula (27) and Heinz—Paul-Binder ap-
proach [31]. The stress vector calculated using formula (27)
coincide with classical continuum definition and the poten-
tial part of the Heinz—Paul-Binder stress vector.

It was shown that in the case of homogenous deforma-
tions and finite temperatures the stresses calculated by defi-
nition (27) exactly coincide with classical continuum stresses
(force per unit length). The Hardy (28) and Lucy (29) ex-
pressions give the same result only if the averaging over a
sufficiently large volume is used. In the case of non-homo-
geneous deformations the stress calculated using formula

b
4
A
2 e
Aa
in Q
=20 o Linear
(= J— . .
- ag elastisity
2 oo 8 4 This work
A
* o Hardy stress
—4 o Lucy stress
-10 -5 0 5 10

yla

Fig. 5. The dependence of T,, (a) and 1, (b) ony atx = 0. The lack of symmetry is caused by the presence of the second dislocation



58 Kysokun B.A., Kpusyos A.M., Jones R.E., Zimmerman J.A. / @usuueckas mezomexanuxa 17 4 (2014) 49-58

(27) is closer to prediction of elasticity theory. Better agree-
ment is caused by the fact that, in contract to the Hardy and
Lucy expressions, formula (27) does not contain spatial ave-
raging.
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