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Abstract We consider heat transfer in an infinite two-dimensional square harmonic scalar lattice lying in a
viscous environment and subjected to a heat source. The basic equations for the particles of the lattice are
stated in the form of a system of stochastic ordinary differential equations. We perform a continualization
procedure and derive an infinite system of linear partial differential equations for covariance variables. The
most important results of the paper are the deterministic differential–difference equation describing non-
stationary heat propagation in the lattice and the analytical formula in the integral form for its steady-state
solution describing kinetic temperature distribution caused by a point heat source of a constant intensity. The
comparison between numerical solution of stochastic equations and obtained analytical solution demonstrates
a very good agreement everywhere except for the main diagonals of the lattice (with respect to the point source
position), where the analytical solution is singular.

Keywords Ballistic heat transfer · 2D harmonic scalar lattice · Kinetic temperature

1 Introduction

At the macroscale, Fourier’s law of heat conduction is widely and successfully used to describe heat trans-
fer processes. However, recent experimental observations demonstrate that Fourier’s law is violated at the
microscale and nanoscale, in particular, in low-dimensional nanostructures [1–6], where the ballistic heat
transfer is realized. The anomalous heat transfer also may be related to the spontaneous emergence of long-
range correlations; the latter is typical for momentum-conserving systems [7,8]. The simplest theoretical
approach to describe the ballistic heat propagation is to use harmonic lattice models. In some cases, such
models allow one to obtain the analytical description of thermomechanical processes in solids [9–15]. In the
literature, the problems concerning heat transfer in harmonic lattices are mostly considered in the stationary
formulation [7,16–29], and the non-stationary heat propagation is discussed in [10,30–36].

In previous studies [37–39], a new approach was suggested which allows one to solve analytically non-
stationary thermal problems for an infinite one-dimensional harmonic crystal—an infinite ordered chain of
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Fig. 1 Schematic of the lattice subjected to a point heat source: The particle, where the point heat source is applied, is shown by
the red color; two orthogonal rows of the lattice that contain the heat source are shown by the blue color; the main diagonals of
the lattice (with respect to the point heat source position) are shown by the green color (color figure online)

identical material particles, interacting via linear (harmonic) forces. In particular, a heat transfer equation
was obtained that differs from the extended heat transfer equations suggested earlier [40–43]; however, it is
in an excellent agreement with molecular dynamics simulations and previous analytical estimates [31]. The
properties of the solutions describing heat transfer in a one-dimensional harmonic crystal were discussed in
[44–46]. Later this approach was generalized [37,38,47–51] to a number of systems, namely, to an infinite
one-dimensional crystal on an elastic substrate [47], to an infinite one-dimensional diatomic harmonic crystal
[52], to a finite one-dimensional crystal [51], and to two- and three-dimensional infinite harmonic lattices
[48–50]. In most of the above-mentioned papers [37,38,44,47–51], only isolated systems were considered.

In recent paper [53], an infinite one-dimensional harmonic crystal that can exchange energy with its
surroundings was considered. It was assumed that the crystal lies in a viscous environment (a gas or a liquid,
e.g., the air) which causes an additional dissipative term in the equations of stochastic dynamics for the
particles. Additionally, sources of heat supply were taken into account as an additional noise term in equations
of motions. Unsteady heat conduction regimes as well as the steady-state kinetic temperature distribution
caused by a point heat source of a constant intensity were investigated.

In the present paper, we generalize to the two-dimensional case the results obtained in paper [53]. We use
the model of an infinite two-dimensional harmonic square scalar1 lattice performing transverse oscillations.
The schematic of the system is shown in Fig. 1. The aim of the paper is to develop an equation describing
non-stationary heat propagation in the lattice and use this equation to obtain analytical formulas describing
the steady-state kinetic temperature distribution caused by a point heat source of a constant intensity. The
differences in methodology between the present paper and [53] are:

– When deriving the differential–difference equation describing non-stationary propagation in the lattice, we
avoid to use identities of the calculus of finite differences and instead inverse the corresponding finite differ-
ence operators, when necessary, in the Fourier domain. This significantly simplifies the formal procedure.

1 This means that the displacements are scalar quantities [50,54–57].
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Accordingly, we do not introduce into consideration the quantities, which we call “non-local temperatures”
in [53] (Section 4) and deal with covariance variables only.

– Since the two-dimensional case is more complicated, the steady-state solution for the kinetic temperature
is obtained as a solution of the stationary equations for covariances of the particle velocities (in [53], the
steady-state solution was found as a limiting case for the corresponding unsteady solution).

– The investigation of unsteady heat conduction regimes is beyond the scope of this paper.

The paper is organized as follows. In Sect. 2, we consider the formulation of the problem. In Sect. 2.1,
some general notation is introduced. In Sect. 2.2, we state the basic equations for the lattice particles in the
form of a system of stochastic differential equations. In Sect. 2.3, we introduce and deal with infinite set of
covariance variables. These are the mutual covariances of all the particle velocities and all the displacements
for all pairs of particles. We use the Itô lemma to derive (see [53], Appendix A) an infinite deterministic system
of ordinary differential equations which follows from the equations of stochastic dynamics. This system can
be transformed into an infinite system of differential–difference equations involving only the covariances for
the particle velocities. In Sect. 3, we introduce a vectorial continuous spatial variable and write the finite
difference operators involved in the equation for covariances as compositions of finite difference operators and
operators of differentiation. In Sect. 4, we perform an asymptotic uncoupling of the equation for covariances.
Provided that the introduced continuous spatial variable can characterize the behavior of the lattice, one can
distinguish between slowmotions,which are related to the heat propagation, and vanishing fastmotions [37,47–
50,58], which are not considered in the paper. Slow motions can be described by a coupled infinite system
of second-order hyperbolic partial differential equations for the continualized covariances of velocities. The
kinetic temperature is introduced as a quantity proportional to the variance of the particle velocities. In Sect. 5,
we obtain an analytical expression in the integral form for the steady-state solution describing the kinetic
temperature distribution caused by a point source of a constant intensity (the corresponding calculations can
be found in Appendices A and B). In Sect. 6, we present the results of the numerical solution of the initial
value problem for the system of stochastic differential equations and compare themwith the obtained analytical
solution. In Conclusion (Sect. 7), we discuss the basic results of the paper.

2 Mathematical formulation

2.1 Notation

In the paper, we use the following general notation:

t is the time;
H(·) is the Heaviside function;
δ(·) is the Dirac delta function in a two-dimensional space;

δ1(·) is the Dirac delta function in a one-dimensional space;
〈·〉 is the expected value for a random quantity;

δp;q is the Kronecker delta (δp;q = 1 if p = q , and δp;q = 0 otherwise);
Z is the set of all integers;
R is the set of all real numbers.

2.2 Stochastic lattice dynamics

Consider the following infinite system of stochastic ordinary differential equations [59,60]:

dvi, j = Fi, j dt + bi, j dWi, j , dui, j = vi, j dt, (2.1)

where

Fi, j = ω2
0Li, j ui, j − ηvi, j , (2.2)

dWi, j = ρi, j
√
dt, (2.3)

ω0
def= √

C/m, (2.4)
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Here i, j ∈ Z are arbitrary integers which describes the position of a particle in the square lattice; the stochastic
processes ui, j (t) and vi, j (t) are the displacement and the particle velocity, respectively; Fi, j is the force on
the particle; Wi, j is uncorrelated Wiener processes [59,60]; bi, j (t) is the intensity of the random external
excitation; η is the specific viscosity for the environment; C is the bond stiffness; m is the mass of a particle;
Li, j is the linear finite difference operator describing an infinite two-dimensional stretched square scalar lattice
with nearest-neighbor interactions performing out-of-plane vibrations:

Li ui, j = ui+1, j − 2ui, j + ui−1, j , (2.5)

Li, j ui, j = Li ui, j + L j ui, j . (2.6)

The normal random variables ρi, j are such that

〈ρi, j 〉 = 0, 〈ρi, jρk,l〉 = δi;kδ j;l (2.7)

and they are assumed to be independent of ui and vi . The initial conditions are zero: for all i , j

ui, j (0) = 0, vi, j (0) = 0. (2.8)

In the case bi, j ≡ b, Eq. (2.1) are the Langevin equations [61,62] for a two-dimensional harmonic stretched
square lattice surrounded by a viscous environment (e.g., a gas or a liquid). Assuming that bi, j may depend on
i, j , we introduce a natural generalization of the Langevin equation which allows one to describe the possibility
of an external heat excitation (e.g., laser excitation) [53]. This external excitation is assumed to be localized
in space:

bi, j ≡ 0 if max{i, j} > R (2.9)

for some R > 0, and much more intensive than the stochastic influence caused by a nonzero temperature of the
environment. Therefore, we neglect in (2.1) the stochastic term, which variance does not depend on i and j ,
that models the influence from the environment.2 Note that zero initial conditions (2.8) and requirement (2.9)
guarantee that there are no sources at the infinity, and thus, we do not need additional boundary conditions at
the infinity.

2.3 The dynamics of covariances

According to (2.2), Fi, j is linear functions of ui, j , vi, j . Taking this fact into account together with (2.7) and
(2.8), we see that for all t

〈ui, j 〉 = 0, 〈vi, j 〉 = 0. (2.10)

Following [53,63], consider the infinite sets of covariance variables3

ξp,q;r,s
def= 〈u p,q ur,s〉, νp,q;r,s

def= 〈u p,q vr,s〉, κp,q;r,s
def= 〈vp,q vr,s〉, (2.11)

and the quantities

βp,q;r,s
def= δp;rδq;s bp,qbr,s . (2.12)

In the last formula, we take into account the second formula of (2.7). Thus, the variables ξp,q;r,s , νp,q;r,s ,
κp,q;r,s are defined for any pair of lattice particles. For simplicity, in what follows we drop all the subscripts,

i.e., ξ
def= ξp,q;r,s etc. By definition, we also put ξ� def= ξr,s;p,q etc. Now we differentiate variables (2.11) with

2 To consider the full problem with a nonzero temperature of the environment, we need to take into account the processes
of thermal equilibration (the fast motions) being coupled with the heat propagation. The preliminary calculations show that the
presence of the viscous environment makes the problem to be much more complicated in comparison with the conservative case
considered, e.g., in [50]. At the same time, in the framework of this general problem, the processes of heat transfer can be easily
separated, and due to linearity of the general problem, they described by exactly the same equations as ones formulated in this
paper.

3 We use commas to separate the subscripts related to one particle and semicolon to separate the subscripts related to different
particles.
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respect to time taking into account the equations of motion (2.1). This yields the following closed system of
differential equations for the covariances (see [53], Appendix A):

∂tξ = ν + ν�,

∂tν + ην = ω2
0Lr,s ξ + κ,

∂tκ + 2ηκ = ω2
0Lp,qν + ω2

0Lr,sν
� + β,

(2.13)

where ∂t is the operator of differentiation with respect to time; Lp,q and Lr,s are the linear difference operators
defined by (2.6) that act on ξp,q;r,s , νp,q;r,s , κp,q;r,s , βp,q;r,s with respect to the first pair of subscripts p, q and
the second one r, s, respectively. Now we introduce the symmetric and antisymmetric difference operators

2LS def= Lp,q + Lr,s, 2LA def= Lp,q − Lr,s, (2.14)

and the symmetric and antisymmetric parts of the variable ν:

2νS
def= ν + ν�, 2νA

def= ν − ν�. (2.15)

Note that ξ and κ are symmetric variables. Now equations (2.13) can be rewritten as follows:

∂tξ = 2νS, (∂t + 2η)κ = 2ω2
0LSνS + 2ω2

0LAνA + β, (2.16)

(∂t + η)νA = −ω2
0LAξ, (∂t + η)νS = ω2

0LSξ + κ. (2.17)

This system of equations can be reduced (see [53]) to one equation of the fourth order in time for covariances
of the particle velocities κ:

(
(∂t + η)2(∂2t + 2η∂t − 4ω2

0LS) + 4(ω2
0LA)2

)
κ = (∂t + η)(∂2t + η∂t − 2ω2

0LS)β. (2.18)

In what follows, we deal with Eq. (2.18). This equation can describe a wide class of systems. For example, in
the simplest particular case Li, j ui, j = −ui, j , it can be used to obtain the classical results [60,64] concerning
time evolution of the variance of the velocity for a single stochastic oscillator with additive noise.

According to Eqs. (2.8) and (2.11), we supplement Eq. (2.18) with zero initial conditions. We state these
conditions in the following form, which is conventional for distributions (or generalized functions) [65]:

κ
∣∣
t<0 ≡ 0. (2.19)

To take into account nonzero classical initial conditions, one needs to add the corresponding singular terms
(in the form of a linear combination of δ(t) and its derivatives) to the right-hand sides of the corresponding
equations [65].

Let us note that Eq. (2.18) is a deterministic equation. What is also important is that (2.18) is a closed
equation. Thus, the thermal processes do not depend on any property of the cumulative distribution functions
for the displacements and the particle velocities other than the covariance variables used above.

3 Continualization of the finite difference operators

Following [38,53,63], we introduce the discrete spatial variables

k
def= p + r, l

def= q + s (3.1)

and the discrete correlational variables

m
def= r − p, n

def= s − q. (3.2)

instead of discrete variables p, q , r , s. We can also formally introduce the continuous vectorial spatial variable

x def= a

2
(ki + lj), (3.3)
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wherea is the lattice constant (the distance between neighboring particles along a row) and i and j are orthogonal
unit vectors (the directions of the principal axes of the lattice, see Fig. 1). In what follows, we represent x also
in the following form:

x def= x1i + x2j, (3.4)

where x1, x2 are the spatial coordinates in the lattice.
To perform the continualization, we assume that the lattice constant is a small quantity and introduce a

dimensionless formal small parameter ε in the following way:

a = εā, (3.5)

where ā = O(1). To preserve the speed of sound in the lattice

c
def= aω0 (3.6)

as a quantity of order O(1), we additionally assume that

ω0 = ε−1ω̄0, (3.7)

where ω̄0 = O(1). Thus, c = āω̄0 = O(1). The basic assumption that allows one to perform the continualiza-
tion is that any quantity ζp,q;r,s defined by (2.11) or (2.12) can be calculated as a value of a smooth function
ζ̂m,n(x) of the continuous spatial slowly varying coordinate x = 1

2εā(ki + lj) and the discrete correlational
variables m and n:

ζ̂m,n(x) = ζp,q;r,s . (3.8)

In accordance with Eqs. (3.1) and (3.2), one has

Lp,qζp,q;r,s = ζ̂m−1,n
(
x + a

2 i
) + ζ̂m+1,n

(
x − a

2 i
)

+ ζ̂m,n−1
(
x + a

2 j
) + ζ̂m,n+1

(
x − a

2 j
) − 4ζ̂m,n(x),

Lr,sζp,q;r,s = ζ̂m+1,n
(
x + a

2 i
) + ζ̂m−1,n

(
x − a

2 i
)

+ ζ̂m,n+1
(
x + a

2 j
) + ζ̂m,n−1

(
x − a

2 j
) − 4ζ̂m,n(x).

(3.9)

Applying the Taylor theorem to these formulas yields

Lp,qζp,q;r,s = Lm,n ζ̂m,n + a
2 ∂x1(ζ̂m−1,n − ζ̂m+1,n)

+ a
2 ∂x2(ζ̂m,n−1 − ζ̂m,n+1) + o(ε2),

Lr,sζp,q;r,s = Lm,n ζ̂m,n + a
2 ∂x1(ζ̂m+1,n − ζ̂m−1,n)

+ a
2 ∂x2(ζ̂m,n+1 − ζ̂m,n−1) + o(ε2).

(3.10)

An alternative way of continualization can be realized by letting the number of particles diverge, rather than
invoking an increasingly small separation [66]. Despite the algorithmic difference, these approaches apparently
lead to the same result, although application of the first approach to an infinite system seems to be more
straightforward.

Now we perform the continualization of the operators LS, LA. Using (3.10), we obtain

LS = Lm,n + O(ε2), (3.11)

LA = − a
2 Dm∂x1 − a

2 Dn∂x2 + O(ε2). (3.12)

where

Dn fn = fn+1 − fn−1. (3.13)
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4 Slow motions

Taking into account assumption (3.7), Eq. (2.18) can be rewritten in the following form:
(

(∂t + η)2
(
ε2(∂2t + 2η∂t ) − 4ω̄2

0LS) + 4
ω̄4
0

ε2
(LA)2

)
κ

= (∂t + η)
(
ε2(∂2t + η∂t ) − 2ω̄2

0LS)β. (4.1)

Equation (4.1) is a differential equation whose highest derivative with respect to t is multiplied by a small
parameter. Therefore, one can expect the existence of two types of solutions, namely solutions slowly varying
in time and fast varying in time [67,68]. The presence of fast and slow motions is a standard property of
statistical systems. Fast motions are oscillations of temperature caused by equilibration of kinetic and potential
energies. Slow motions are related to macroscopic heat propagation.

Considering slow motions, we assume that

ε2(∂2t + 2η∂t )κ � ω̄2
0LSκ, ε2(∂2t + η∂t )β � ω̄2

0LSβ. (4.2)

Vanishing solutions [37,47–50] that characterize fast motions, which do not satisfy (4.2), are not considered
in this paper.

Now, taking into account Eqs. (3.11) and (3.12), we drop the higher-order terms and rewrite equation (4.1)
in the form of an equation for slow motions:

(
(∂t + η)2Lm n − c2

4

(
Dm∂x1 + Dn∂x2

)2)
κ̂m,n = 1

2
(∂t + η)Lm,nβ̂m,n, (4.3)

where quantity β̂m,n(x) is introduced in accordance with Eq. (3.8). Note that according to (2.12), β̂m,n = 0 if
m 	= 0 or n 	= 0, thus

β̂m,n = β̂0,0(x)δm;0δn;0. (4.4)

We identify the following quantities depending on the continuous variable x

T ≡ θ0,0(x, t)
def= mk−1

B κ̂0,0(x, t), (4.5)

χ(x, t) def= 1
2mk−1

B β̂0,0(x, t). (4.6)

as the kinetic temperature and the heat supply intensity, respectively. Here kB is the Boltzmann constant. We
also introduce the following notation:

θm,n(x, t)
def= mk−1

B κ̂m,n(x, t). (4.7)

Now Eq. (4.3) can be rewritten as the following infinite system of PDE describing non-stationary heat propa-
gation in the lattice: 4

(
(∂t + η)2Lm,n − c2

4

(
Dm∂x1 + Dn∂x2

)2)
θm,n = (∂tχ + ηχ)Lm,nδm;0δn;0. (4.8)

The initial conditions that corresponds to Eq. (2.19) are

θm,n(x, t)
∣∣
t<0 ≡ 0. (4.9)

In the particular case where η = 0, χ ∝ δ(t), system (4.8) was obtained and investigated in [50]. In the
latter case, the derivation of the corresponding system of PDE is much simpler, since it can be based on
consideration of system of ordinary differential equations with random initial conditions instead of system of
stochastic equations (2.1).

Note that Eq. (4.8) for slow motions involve only the product c = ω0a and do not involve the quantities
ω0 and a separately, so they do not involve ε. Provided that the initial conditions also do not involve ε, the
solution of the corresponding initial value problem and all its derivatives are quantities of order O(1). The rate
of vanishing for fast motions depends on ε: the smaller ε, the higher the rate. Thus, for sufficiently small ε,
exact solutions of Eq. (2.18) quickly transform into slow motions.

4 These equations have a little bit different structure than the corresponding equations obtained in previous paper ([53],
Eq. (4.3)), since the quantities θm,n(x, t) (mn 	= 0) differ from the quantities, which we call “non-local temperatures” in [53]
(see Eq. (4.7)).
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5 The steady-state solution of equation for slow motions

In what follows, we look for the steady-state solution of initial value problem for system of partial differential
equations (4.8) where the heat supply is given in the form of a point source of a constant intensity. Accordingly,
we take

χ = χ̄0H(t)δ(x), (5.1)

where χ̄0 = const. Looking for the steady-state solution, we substitute 1(t) instead of H(t) into Eq. (5.1),
replace initial conditions (4.9) by the following boundary condition at infinity

θm,n → 0 for x → ∞, (5.2)

and drop out the terms involving the time derivatives in (4.8). This yields the following equation
(
η2Lm,n − c2

4

(
Dm∂x1 + Dn∂x2

)2)
θm,n = ηχ̄0δ(x)Lm,nδm;0δn;0. (5.3)

Now we apply the discrete Fourier transform with respect to the variables m, n to Eq. (5.3):

θF (p1, p2, x, t) =
∞∑

m,n=−∞
θm,n(x) exp(−imp1 − inp2), (5.4)

where subscript F is the symbol of the discrete-time Fourier transform and p1, p2 are the discrete-time Fourier
transform parameters. Using the shift property for the discrete-time Fourier transform, one gets

(Lm nθm,n
)
F = −4

(
sin2

p1
2

+ sin2
p2
2

)
θF , (5.5)

(
Dmθm,n

)
F = 2i sin p1θF ,

(
Dnθm,n

)
F = 2i sin p2θF , (5.6)

(
(Dm∂x1 + Dn∂x2)θm,n

)
F = 2i (sin p1i + sin p2j) · ∇θF , (5.7)

(δm;0δn;0)F = 1, (5.8)

where

∇ = ∂x1 i + ∂x2 j, (5.9)

and dot stands for the scalar product. Multiplying the both sides of transformed equation (5.3) on
(Lm n

)−1
F

results in5 the following equation:

η2θF − (C · ∇)2θF = ηχ̄0δ(x) (5.10)

wherein

C = C0(sin p1i + sin p2j), (5.11)

C0 = c

2
√
sin2 p1

2 + sin2 p2
2

. (5.12)

Vector C coincides with [50] the group velocity in the lattice under condition of zero dissipation η = 0.
Thus, Eq. (5.10) describes the steady-state distribution for the Fourier images of the quantities θm,n defined

by Eq. (4.7) (in particular, the kinetic temperature T ≡ θ0,0), caused by a point heat source of a constant
intensity. According to conditions (5.2), Eq. (5.10) should be supplemented with the following boundary
condition:

θF → 0 for x → ∞. (5.13)

5 In previous paper [53], we inverse the corresponding difference operator directly in space domain (using the identities of the
calculus of finite differences), not in the Fourier domain.
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Equation (5.10) can be rewritten as

η2θF − (C · C)(C̆ · ∇)2θF = χ̄0ηδ(x). (5.14)

Here and in what follows,

ă = a
|a| (5.15)

for any nonzero vector a,

ă⊥ = (i × j) × ă (5.16)

for any unit vector ă, × is the cross product. Delta function in the right-hand side of (5.14) can be represented
as

δ(x) = δ1(x1) δ1(x2) = δ1(x · n̆) δ1(x · n̆⊥), (5.17)

where n̆ is an arbitrary unit vector such that

n̆ · (i × j) = 0. (5.18)

We introduce angular variable α = arctan x2
x1

such that

x = |x|(cosα i + sin α j). (5.19)

Due to symmetry, without loss of generality we can assume that (see Fig. 1)

0 ≤ α ≤ π/4. (5.20)

The solution of (5.14) satisfying (5.13) is

θF = χ̄0

2|C| exp
(

− η

|C| |x · C̆|
)

δ1(x · C̆⊥) = χ̄0

2|x| exp
(

− η

|C| |x · C̆|
)

δ1(x̆⊥ · C). (5.21)

Here we have used Eq. (5.17) wherein n̆ = C̆, and the following formulas:

δ1(Ay) = 1

|A|δ1(y), A ∈ R, A 	= 0; (5.22)

x · C̆⊥ = 0 ⇐⇒ x̆⊥ · C = 0. (5.23)

Applying the inverse Fourier transform, one get the expression for the kinetic temperature T = θ0,0:

T = 1

4π2

∫∫ π

−π

θF exp(imp1 + inp2) dy

∣∣∣∣
m=n=0

= 1

4π2

χ̄0

2|x|
∫∫ π

−π

exp
(

− η

|C(p1, p2)| |x · C̆|
)

δ1
(
x̆⊥ · C(p1, p2)

)
dp1 dp2. (5.24)

Since the integrand in the right-hand side of Eq. (5.24) contains the Dirac delta function δ1 in
one-dimensional space, formula (5.24) can be rewritten in a simpler form involving a single integral
(see Appendix A):

T = T1 + T2 ≡ χ̄0

4π2|x1|
2∑

j=1

∫ π

0

exp

(
−η

∣∣∣∣
x1

sin p1 C0

(
p1,p

( j)
2

)
∣∣∣∣

)

C0
(
p1, p

( j)
2

)√
1 − tan2 α sin2 p1

dp1, (5.25)

where C0
(
p1, p

( j)
2

)
( j = 1, 2) are defined by Eqs. (A.13) and (A.14). If necessary, the far-field asymptotics

of solution (5.25) can be calculated by means of the Laplace method [69].
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5.1 The case α = 0

In the case α = 0, i.e., for two orthogonal rows of the lattice that contain the heat source located at x = 0 (see
Fig. 1), it is possible to obtain the solution in a simpler form. This is done in Appendix B. The final result is
T = T1 + T2, where T1 and T2 are defined by Eqs. (B.7) and (B.9), respectively.

5.2 The case α = π/4

Consider the particular case α = π/4, i.e., the main diagonals of the lattice with respect to a point heat source
position (see Fig. 1). One has

1
√
1 − tan2 α sin2 p1

∣∣∣∣∣
α= π

4

= 1

| cos p1| −−−−−→
p1→± π

2

+∞, (5.26)

C0
(
p1, p

( j)
2

)∣∣∣
α= π

4 , p1=± π
2

= 1

2
( j = 1, 2). (5.27)

Thus, the integrands in the right-hand side of (5.25) have non-integrable singularities at p1 = ±π/2, and
therefore, T = +∞. In the presence of the dissipation, this seems to be a quite unexpected result, which is
discussed in Sect. 6.

5.3 The solution for a row x2/a = j

Consider now the distribution of the kinetic temperature over a row of the lattice x2/a = j ∈ Z. Provided that
assumption (5.20) is true, the analytic expression for the stationary distribution of the kinetic temperature T
is (5.25), where

tan α = |x2|
|x1| , |x2| < |x1|. (5.28)

For α > π/4, due to symmetry with respect to the main diagonal, one has

T = χ̄0

4π2|x2|
2∑

j=1

∫ π

0

exp

(
−η

∣∣∣∣
x2

sin p1 C0

(
p1,p

( j)
2

)
∣∣∣∣

)

C0
(
p1, p

( j)
2

)√
1 − tan2 α sin2 p1

dp1, (5.29)

where

tan α = |x1|
|x2| , |x1| < |x2|. (5.30)

6 Numerics

In this section, we present the results of the numerical solution of the system of stochastic differential equations
(2.1)–(2.3) with initial conditions (2.8). It is useful to rewrite Eqs. (2.1)–(2.3) in the dimensionless form

dṽi, j = (Li, j ũi, j − ηṽi, j ) dt̃ + b̃i, jρi, j
√
dt̃,

dũi, j = ṽi, j dt̃,
(6.1)

where

ũ
def= u

a
, ṽ

def= v

c
, t̃

def= ω0t, b̃
def= b

c
√

ω0
, η̃

def= η

ω0
. (6.2)
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We consider the square lattice of (2N + 1)2 particles with the following boundary conditions

u−N ,i = u−N+1,i , uN ,i = uN−1,i ,

v−N ,i = v−N+1,i , vN ,i = vN−1,i ,

ui,−N = ui,−N+1, ui,N = ui,N−1,

vi,−N = vi,−N+1, vi,N = vi,N−1,

(6.3)

where i = −N , N . Actually, the specific form of this boundary conditions is not very important in our
calculations, since we take large enough N such that the wave reflections from the boundaries do not occur.6

To obtain a numerical solution in the case of the point source of the heat supply located at i = 0, j = 0, we
assume that b̃i, jρi, j = δi;0δ j;0b̃ρi, j and use the scheme

Δṽki, j = (Li, j ũ
k
i, j − ηṽki, j )Δt̃ + b̃δi;0δ j;0ρk

i, j

√
Δt̃,

Δũki, j = ṽk+1
i, j Δt̃,

ṽk+1
i, j = ṽki, j + Δṽki, j ,

ũk+1
i, j = ũki, j + Δũki, j ,

(6.4)

where i, j = −N , N . Here the symbolswith superscript k denote the corresponding quantities at t̃ = t̃ k
def= kΔt̃ :

ũki, j = ũi, j (t̃ k), ṽki, j = ṽi, j (t̃ k); ρk are normal random numbers that satisfy (2.7) generated for all t̃ k . Without

loss of generality, we can take b̃ = 1. Due to symmetry of the problem, we can perform the calculations only
for 1/8 of the whole lattice (i = 0, N , j = 0, i).

We perform a series of r = 1 . . . R realizations of these calculations (with various independent ρk
(r)) and

get the corresponding particle velocities ṽk(r)i, j . In accordance with (4.5), in order to obtain the dimensionless
kinetic temperature

T̃ = T kB
mc2

, (6.5)

we should average the doubled dimensionless kinetic energies:

T̃ k
i, j = 1

R

R∑

r=1

(ṽk(r)i, j )
2. (6.6)

Numerical results (6.6) for the kinetic temperature can be comparedwith the analytical steady-state solution
(5.25), expressed in the dimensionless form wherein a = 1, c = 1, x1 = i , x2 = j , and

χ̄0 = b̃2

2
. (6.7)

Note that the factor 1/2 in the right-hand sides of the last formula appears according to Eq. (4.6).
The comparison between analytical and numerical results is presented in Figs. 2, 3, 4, 5, and 6. All

calculations were performed for the following values of the problem parameters: η̃ = 0.1, N = 100, t̃ = 100,
R = 100,000. The time step is Δt̃ = 0.025. To perform the numerical calculations, we use SciPy software
[70].

In Fig. 2, one can see the general view of a central zone of the kinetic temperature distribution pattern
in the lattice. One can observe that most of the heat propagates along the main diagonals of the lattice (with
respect to a point source position). This result is in a qualitative agreement with results obtained earlier in
studies [54,55], where energy transport in lattices is discussed in the deterministic case, and also with results
of [50].

In Fig. 3, we compare the steady-state analytical solution in the form of Eqs. (B.7) and (B.9) for the row
x2 = 0 (the blue solid line) and the numerical solution (the red crosses).

6 In [50], it is shown that for the non-dissipative system the continual non-stationary solution caused by a point pulse source
is nonzero only in the circle with radius ct . It may be shown that the analogous result is true also for the dissipative system.
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Fig. 2 The central zone of the kinetic temperature distribution pattern in a square two-dimensional lattice, caused by a constant
point source (the value at the central point T̃0,0 � 0.79 is shown by the white color) (color figure online)

Fig. 3 Comparing the steady-state analytical solution in the form of Eqs. (B.7) and (B.9) for the row x2 = 0 (the blue solid line)
and the numerical solution (the red crosses) (color figure online)
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Fig. 4 Comparing the steady-state analytical solution in the form of Eqs. (5.25) and (5.29) for the row x2 = 7 (the blue solid
line) and the numerical solution (the red crosses) (color figure online)

Fig. 5 Comparing the steady-state analytical solution in the form of Eqs. (5.25) and (5.29) for the central zone of row x2 = 7
(the blue solid line) and the numerical solution (the red crosses) (color figure online)

In Fig. 4, we compare the steady-state analytical solution in the form of Eqs. (5.25) and (5.29) for the row
x2 = 7 (the blue solid line) and the numerical solution (the red crosses). The corresponding view of a central
zone of the kinetic temperature distribution is given in Fig. 5. One can see that numerical value at the point
|x1| = 7 of the lattice at the main diagonal is finite, whereas the analytic continuum solution is singular at this
point.
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Fig. 6 Comparing the steady-state analytical solution in the form of Eqs. (5.25) and (5.29) for the central zone of row x2 = 1
(the blue solid line) and the numerical solution (the red crosses) (color figure online)

Finally, in Fig. 6 we compare the steady-state analytical solution in the form of Eqs. (5.25) and (5.29) for
the row x2 = 1 (the blue solid line) and the numerical solution (the red crosses) in a central zone near the
source.

One can see that in all cases, the analytical and numerical solutions are in a very good agreement everywhere
except the main diagonals of the lattice |x1| = |x2| (see Figs. 3, 4, 5, 6). The continuous analytical solution
predicts singularities in the stationary solution at the main diagonals (see Sect. 5.2). Usually, such a result
means that a corresponding non-stationary solution grows with time, and a steady-state solution at singular
points does not exist. However, the numerical calculations based on the original infinite system of stochastic
ODE contradict with such a hypothesis and predict that despite most of the heat propagates along the main
diagonals of the lattice (see Fig. 2), the kinetic temperature at the main diagonals apparently converges to
finite values (see Fig. 7, where plots of the numerical solution for the kinetic temperature at several fixed
positions versus the time are given). In particular, this is true for the point x1 = x2 = 0 where the heat source is
located (see Fig. 7). Note that in one-dimensional case considered in [53] we also observe the singularity in the
continuous solution at the point where heat source is applied, whereas the numerics predicts the finite value of
the kinetic temperature at that point.7 In our opinion, such paradoxical result is caused by the continualization
procedure (in particular, by the choice of heat supply intensity in singular form (5.1)), and it definitely needs an
additional investigation. Note that in the conservative non-stochastic case the singularities at main diagonals
were discovered in [54,55,71], where they are associated with non-smoothness of the dispersion relation.

7 Conclusion

In the paper, we started with Eq. (2.1) for stochastic dynamics of a two-dimensional harmonic square scalar
lattice in a viscous environment. We introduced in the standard way the kinetic temperature in the lattice
as a quantity proportional to the variance of the particle velocities. The most important results of the paper
are differential–difference equation (4.8) describing non-stationary heat propagation in the lattice and the
analytical formula in integral form (5.25) describing the steady-state kinetic temperature distribution in the
lattice caused by a point heat source of a constant intensity.

7 This is not discussed in [53].
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Fig. 7 Plots of the numerical solution for the kinetic temperature at several fixed positions versus the time (the plots are drawn
with time step 1.0)

The comparison between numerical solution of Eq. (2.1) and analytic steady-state solution (5.25) of
differential–difference equation (4.8) demonstrates a very good agreement everywhere except the main diag-
onals of the lattice with respect to the point source position (see Figs. 3, 4, 5, 6). The continuous analytical
solution predicts singularities in the stationary solution at the main diagonals (see Sect. 5.2), whereas the
numerical solution predicts that despite most of the heat propagates along the main diagonals of the lattice (see
Fig. 2), the kinetic temperature at the main diagonals apparently converges to finite values (see Fig. 7). In our



S. N. Gavrilov, A. M. Krivtsov

opinion, such a paradoxical result can be caused by the continualization procedure (in particular, by the choice
of heat supply intensity in singular form (5.1)). Another possible oversimplification in physical modeling that
makes the main diagonals to be preferable directions for heat propagation, apparently, is the choice of the
potential of interaction involving for a given particle only four neighbors [as it is stated by Eqs. (2.5) and
(2.6)]. This situation needs an additional investigation.

We expect that the results obtained in the paper can be used to describe the heat transfer in low-dimensional
nanostructures and ultra-pure materials [1,2,72]. The subject of our future work is to generalize the theoretical
results to the case of the graphene lattice and to verify the results by means of experiments with the laser
heating of graphene [73,74].

Acknowledgements The authors are grateful to V.A. Kuzkin, A.S. Murachev, and E.V. Shishkina for useful and stimulating
discussions.

A Calculation of the steady-state solution in the integral form

To calculate the right-hand side of Eq. (5.24), one needs to use the formula (see [75])
∫

I
δ1

(
f (y)

)
dy =

∑

j

1

| f ′(y j )| , (A.1)

where y j are the roots of f (y) lying inside the interval I .
One has

x⊥ = |x|(cosα j − sin α i), (A.2)

x̆⊥ · C = C0(cosα sin p2 − sin α sin p1), (A.3)

x̆⊥ · C = 0 ⇐⇒ cosα sin p2 − sin α sin p1 = 0 ⇐⇒ sin p2
sin p1

= tan α

⇐⇒ p2 = p( j,k)
2 , j = 1, 2; k ∈ Z; (A.4)

where

p(1,k)
2 ≡ arcsin(tan α sin p1) + 2πk,

p(2,k)
2 ≡ π − arcsin(tan α sin p1) + 2πk,

(A.5)

such that p( j,k)
2 ∈ [−π, π]. The typical structure of roots p( j,k)

2 in the case 0 < α < π/4 is presented in Fig. 8.
For p1 	= 0 there exist exactly two roots lying in the interval [−π, π]. The first one corresponds to the choice
j = 1, k = 0, and the second one corresponds to the choice j = 2, k = 0 for p1 > 0 and j = 2, k = −1
for p1 < 0. Thus, for 0 < α < π/4 we put

p(1)
2 ≡ arcsin(tan α sin p1),

p(2)
2 ≡ ±π − arcsin(tan α sin p1), ±p1 > 0.

(A.6)

Applying now formula (A.1), one gets

δ1(x̆⊥ · C) =
2∑

j=1

δ1
(
p2 − p( j)

2

)

C0| cosα| ∣∣ cos p( j)
2

∣∣
, (A.7)

T =
∑

j

Tj ≡ χ̄0

8π2|x| | cosα|
2∑

j=1

∫ π

−π

1

C0
∣∣ cos p( j)

2

∣∣
exp

(

−η |x · C̆|
∣∣C

∣∣

)

dp1. (A.8)

According to (A.5), one has:

cos arcsin p =
√
1 − p2, (A.9)

| cos p( j)
2 | =

√
1 − tan2 α sin2 p1, j = 1, 2. (A.10)
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Fig. 8 Structure of roots p( j,k)
2 defined by (A.5) such that p( j,k)

2 ∈ [−π, π] in the case 0 < α < π/2 (here α = arctan 1
2 )

Using (5.12), and taking into account identities

sin2
p

2
= 1 − cos p

2
, (A.11)

cos2 α = 1

1 + tan2 α
, (A.12)

one obtains

C0
(
p1, p

(1)
2

) = c

2
√
sin2 p1

2 + 1−cos arcsin(tan α sin p1)
2

= c

2

√

sin2 p1
2 + 1−

√
1−tan2 α sin2 p1

2

, (A.13)

C0
(
p1, p

(2)
2

) = c

2
√
sin2 p1

2 + 1+cos arcsin(tan α sin p1)
2

= c

2

√

sin2 p1
2 + 1+

√
1−tan2 α sin2 p1

2

. (A.14)

According to (3.4), (5.11), one gets

C
(
p1, p

( j)
2

) = C0
(
p1, p

( j)
2

)
sin p1(i + tan α j), (A.15)

∣∣∣C
(
p1, p

( j)
2

)∣∣∣ = C0
(
p1, p

( j)
2

)| sin p1|
√
1 + tan2 α, (A.16)

C̆
(
p1, p

( j)
2

) = sign p1√
1 + tan2 α

(i + tan α j), (A.17)
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x = x1(i + tan α j), (A.18)

x · C̆(
p1, p

( j)
2

) = x1 sign p1
√
1 + tan2 α, (A.19)

∣∣∣x · C̆(
p1, p

( j)
2

)∣∣∣
∣∣∣C

(
p1, p

( j)
2

)∣∣∣
=

∣∣∣∣∣
x1

sin p1 C0
(
p1, p

( j)
2

)

∣∣∣∣∣
, (A.20)

|x| =
√
x21 + x22 = |x1|

√
1 + tan2 α, (A.21)

|x| | cosα| = |x1|, (A.22)

where j = 1, 2. Finally, substituting these expressions in Eq. (A.8) and simplifying of expression obtained,
results in the formula for the solution in the solution in the integral form:

T = T1 + T2 = χ̄0

4π2|x1|
2∑

j=1

∫ π

0

exp

(
−η

∣∣∣∣
x1

sin p1 C0

(
p1,p

( j)
2

)
∣∣∣∣

)

C0
(
p1, p

( j)
2

)√
1 − tan2 α sin2 p1

dp1, (A.23)

B Calculation of the steady-state solution in the particular case α = 0

In the case under consideration, due to (A.5) one has

p(1,0)
2 = 0,

p(2,0)
2 = π, p(2,−1)

2 = −π.
(B.1)

Since in the case p = p2 the roots lie at the boundaries of the interval [−π, π], we take the corresponding
contributions multiplied by 1/2. Since these contributions are equal to each other, we can put

p(1)
2 = 0,

p(2)
2 = π

(B.2)

and use the formulas obtained above. According to Eqs. (A.13) and (A.14), one gets

C0
(
p1, p

(1)
2

) = c

2| sin p1
2 | , (B.3)

C0
(
p1, p

(2)
2

) = c

2
√
sin2 p1

2 + 1
, (B.4)

Thus,

T1 = χ̄0

4π2|x1|
∫ π

0

2

c

∣∣∣sin
p1
2

∣∣∣ exp

(

− η|x1|
c
∣∣cos p1

2

∣∣

)

dp1 = χ̄0

π2|x1|c
∫ π/2

0
sin y exp

(
− η|x1|
c cos y

)
dy. (B.5)

Let γ = 1
cos y . One has

dγ = sin y

cos2 y
dy = γ 2 sin y dy, (B.6)

and, therefore,

T1 = χ̄0

π2|x1|c
∫ ∞

1
γ −2 exp

(
−η|x1|γ

c

)
dγ = χ̄0

π2|x1|c
(
exp

(
−η|x1|

c

)
− η|x1|

c
E1

(
η|x1|
c

))
, (B.7)

where

E1(z) =
∫ ∞

1

exp(−γ z)

γ
dγ, Re(z) > 0 (B.8)
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is the exponential integral [76]. For T2, one gets the solution in the integral form

T2 = χ̄0

2π2|x1|c
∫ π

0

√
sin2

p1
2

+ 1 exp

⎛

⎝−
2η|x1|

√
sin2 p1

2 + 1

c sin p1

⎞

⎠ dp1. (B.9)
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