"Nonlinear deformation of solids in particular rubber" in February 2016 for students of the master course "Mathematical Modelling of Mechanical Systems"

Procedures:

The assessment consists of two parts:

(1) Example problems will be disseminated after every 2 h worth of lectures. The solution to the problems will be presented by students during the next meeting. Depending on the number of students each student will present his/her solutions at least twice or more in a small oral presentation (max. 10 min. of chalk & blackboard and/or power-point). In order to facilitate learning the students may form small learning groups. Members of each learning group may assist the presenting student while he/she is answering questions on his/her presentation. For the presentation and for the performance during answers the student group will be given marks ranging between 40 (passed) to 100 (most excellent).

(2) At the end of the course a 1-2 h individual written test will be performed. The student will earn marks between 40 (passed) to 100 (most excellent).

The marks of (1) and (2) will be added and form the final mark on a 50-50% average between both parts.

Recommended literature:

- I. Müller, P. Strehlow. Rubber and rubber balloons: paradigms of thermodynamics. Vol. 637. Springer Science & Business Media, 2004, (djvu will be provided)
- [2] I. Müller, Thermodynamics, Interaction of Mechanics and Mathematics Series. Pitman, Boston 338 (1985): 20. (djvu will be provided)
- [2] I. Müller, W. Weiss, Müller, I., & Weiss, W. (2006). Entropy and energy: A universal competition. Springer Science & Business Media. (djvu will be provided)
- [4] C. Truesdell, W. Noll. The non-linear field theories of mechanics. Springer Berlin Heidelberg, 2004, (djvu will be provided)

Other literature will be presented during the course if required.

Schedule:

Contact hour	Topic
1: Monday 15/02/2016	Introductory remarks, stability of rubber
10:00-11:00	balloons, kinetic theory of rubber;
2 : 11:00-12:00	kinetic theory of rubber, cont.; notion of
	entropy induced pressure
3 : 12:00-13:00	cont.
4 : 13:00-14:00	Student's problem session
5: Tuesday 16/02/2016	Elements of nonlinear elasticity
10:00-11:00	
6 : 11:00-12:00	cont.
7 : 12:00-13:00	cont.
8 : 13:00-14:00	Student's problem session
9: Wednesday 17/02/2016	Biaxial stretching of a rubber membrane
10:00-11:00	
10 : 11:00-12:00	cont.
11 : 12:00-13:00	cont.
12 : 13:00-14:00	Student's problem session
13: Thursday 18/02/2016	Stability of a single rubber balloon
10:00-11:00	
13 : 11:00-12:00	cont.
14: Friday 19/02/2016	cont.
10:00-11:00	
15 : 11:00-12:00	Student's problem session
16 : 12:00-13:00	Stepwise inflation of a balloon
17 : 13:00-14:00	cont.
18: Saturday 20/02/2016	Student's problem session
10:00-11:00	
19 : 11:00-12:00	Stability of two rubber balloons
20 : 12:00-13:00	cont.
21 : 13:00-14:00	Student's problem session
22: Wednesday 24/02/2016	Multi-balloon stability: A mechanical
10:00-11:00	model of a phase transition
23 : 11:00-12:00	cont.
24 : 13:00-14:00	cont.
25: Thursday 25/02/2016	Final written exam
10:00-11:00	
26 : 11:00-12:00	cont.