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Acoustic transparency of the chain-chain interface
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We study propagation of wave packets through the interface between two dissimilar harmonic chains with
on-site potentials (e.g., chains lying on elastic foundations). An expression for the transmission coefficient,
relating energies of the incident and transmitted wave packets is derived using two different approaches. Without
elastic foundation, the transmission coefficient monotonically decreases with increasing wave frequency. We
show that by adding elastic foundations, one can qualitatively change this dependence and make it nonmonotonic
or even increasing. Moreover, in some cases, the interface is totally transparent (the transmission coefficient is
equal to unity at some frequency) if at least one of the chains has the elastic foundation. Presented results
may serve for manipulation of the transmission coefficient and corresponding interfacial thermal resistance in
low-dimensional nanosystems.
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I. INTRODUCTION

Modeling of propagation of waves through the interface
between two media with different properties is a long stand-
ing problem. Pioneering solutions of this problem have been
obtained by Rayleigh for acoustic waves [1]. Since acoustic
waves are dispersionless, the transmission coefficient, relating
energies of incident and transmitted waves, depends on the
ratio of acoustic impedances (product of density and sound
speed) only. In systems with dispersion, the transmission
coefficient also depends on frequency of the waves. This de-
pendence can be efficiently demonstrated and analyzed using
simple discrete models, which are always dispersive.

Current interest to analysis of wave propagation in discrete
systems is caused, in particular, by active investigation of
heat transfer in low-dimensional systems at nanoscale [2–6].
Peculiarities of heat transfer in nanoscale systems, such as
quasiballistic [6,7] and anomalous [2–4] regimes of heat trans-
fer, presence of several temperatures [8–10], heat waves [11],
peculiar behavior of entropy [12], thermal echo [13], ballistic
resonance [7] etc., make them perfect candidates for devel-
opment of new devices for manipulation of thermal energy
(e.g., thermal diodes [14,15]). One of the barriers to the use of
unique thermal properties of nanosystems is the Kapitsa inter-
facial resistance [16], which is directly related to reflection of
waves, carrying thermal energy, from the interface. We refer to
the review [17] for analysis of recent progress in investigation
of the Kapitsa resistance. Keeping the Kapitsa resistance in
mind, we will focus on the simpler problem of propagation of
wave packets through the interface between two chains.

Propagation of waves through the interface between two
chains has been studied in many works [18–29]. Calculation
of the transmission coefficient is usually based on the ansatz
approach (see, e.g., [18]), in which the solution in the form of
three semi-infinite waves (incident, transmitted, and reflected)
is considered. It is assumed that the waves have the same
frequency. Substitution of the ansatzs into equations of motion

for particles at the interface allows to find a relation between
amplitudes of the three waves. Given that the amplitudes of
the incident and transmitted waves are known, the average
energy fluxes and corresponding transmission coefficient are
calculated. In papers [18,19], the transmission coefficient for
a chain with different masses and stiffness is calculated. Inter-
face between diatomic chains is considered in papers [20,21].
Influence of the spring connecting two chains and masses
of particles at the interface on the transmission coefficient
are analyzed in papers [22,23]. The effect of structure of the
interfacial layer between two chains on the transmission is
discussed in papers [24–26]. Propagation of waves through
different point defects in chains is considered, e.g., in paper
[27]. It is shown, in particular, that under some conditions the
waves propagate through the defect without reflection.

The motivation for the present paper is twofold. First, we
focus on the effect of on-site potential (elastic foundation)
on propagation of waves through the interface between two
chains. To the best of our knowledge, this effect has not been
studied systematically. The effect is particularly important
for low-dimensional nanoscale systems (carbyne, nanowires,
graphene, etc.), which are usually located at a substrate that
can be modeled by an elastic foundation. We show that the
elastic foundation qualitatively changes the frequency depen-
dence of the transmission coefficient. In particular, under
some conditions the interface becomes totally transparent
(transmission coefficient is equal to unity at some frequency).
This effect is further referred to as the acoustic transparency.
It is realized if both stiffness of elastic foundations and par-
ticle masses are different. Second, we make a contribution
to development of the energy dynamics approach, proposed
in the recent paper [30]. In paper [30] it is shown that in
homogeneous harmonic chains (with identical masses and
stiffness) the total energy flux is conserved. Generalization of
this result for the case of two-dimensional harmonic scalar
lattices is carried out in paper [31]. In inhomogeneous chains,
the flux satisfies a balance equation, similar to the equation of
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FIG. 1. The interface between chain 1 (n < 0) and chain 2 (n� 0).

momentum balance. The balance equation is not closed, since
it contains the unknown “force” acting on the wave packet.
Therefore constitutive relations for this “force” are required.
For chains with slowly varying properties these constitutive
relations are derived in paper [30]. In the present paper, we
show how the constitutive relations can be derived for the
interface between two dissimilar chains, i.e., abrupt change
of chain’s parameters. Thus, we make a step toward analyt-
ical description of propagation of waves in inhomogeneous
discrete media using the energy dynamics approach.

The paper is organized as follows. In Sec. II, we formulate
equations of motion, describing dynamics of the two con-
nected semi-infinite harmonic chains with harmonic on-site
potentials (lying on linear elastic foundations). Initial condi-
tions, corresponding to an incident wave packet, are discussed
in Sec. III. In Sec. IV, frequency dependence of the trans-
mission coefficient is obtained using the ansatz approach (for
semi-infinite waves) and the energy dynamics approach [30]
(for wave packets). In Sec. V, qualitative analysis of this de-
pendence is presented. In Sec. VI, conditions for the acoustic
transparency of the interface are derived. Influence of the way
how spectra of the two chains intersect on the transmission
coefficient is analyzed in Sec. VII.

II. EQUATIONS OF MOTION

We consider wave propagation in a system consisting of
two connected semi-infinite chains on linear elastic foun-
dations (with harmonic on-site potentials). Particles are
numbered by integers n. In chain 1 the indices are negative,
while in chain 2 they are nonnegative (see Fig. 1). The spring,
connecting particles n, n + 1, has half-integer number n + 1

2 .
Masses of particles Mn, stiffness of springs Cn+ 1

2
, and stiffness

of elastic foundation Dn in chain 1 are equal to m1, c1, d1,
while in the chain 2 they are equal to m2, c2, d2. The spring
connecting the chains has stiffness c12. Then

Mn =
{

m1, n < 0,

m2, n � 0,
Cn+ 1

2
=
⎧⎨
⎩

c1, n < −1,

c12, n = −1,

c2, n � 0,

Dn =
{

d1, n < 0,

d2, n � 0.

(1)

Using notation (1), we write equations of motion for all parti-
cles in the same form:

Mnv̇n = Fn+ 1
2
− Fn− 1

2
− Dnun, Fn+ 1

2
= Cn+ 1

2
εn+ 1

2
,

εn+ 1
2

= un+1 − un, vn = u̇n. (2)

Initial conditions for the equations (2), corresponding to a
wave packet, traveling from chain 1 to chain 2, are discussed
in the next section.

The dispersion relations for chains 1 and 2 have the form

ω2
i (ki ) = di

mi
+ 4ci

mi
sin2 ki

2
, ki ∈ [0; 2π ], i = 1, 2. (3)

The frequencies (3) satisfy inequalities

di

mi
� ω2

i � 4ci + di

mi
. (4)

Group velocities, corresponding to the dispersion rela-
tions (3), are given by

gi(ki ) = a
dωi

dki
= aci sin ki

miωi(ki )
, (5)

where a is the equilibrium distance between particles. Exclud-
ing the wave number ki from (5), we obtain

gi(ω) = a

2ω

√(
ω2 − di

mi

)(
4ci + di

mi
− ω2

)
. (6)

This formula is valid for frequencies, satisfying the inequality
(4), otherwise we set gi = 0. For di = 0 the group velocity is
equal to zero at the maximum frequency, while for di �= 0 it
vanishes at both minimum and maximum frequencies, given
by (4).

III. INITIAL CONDITIONS

In this section, we discuss the initial conditions, corre-
sponding to a wave packet with frequency Ω and a slowly
changing envelope, traveling from chain 1 toward the inter-
face. Due to Rayleigh’s reciprocity theorem [32], the fraction
of energy transmitted through the interface is independent
on the direction of motion of the wave packet. Therefore it
is sufficient to solve the problem (calculate the transmission
coefficient) for wave packets traveling form chain 1 to chain 2.

To specify the initial conditions we use the following ap-
proximate solution of equations of motion for chain 1 [33,34]:

un = A(βna, βt ) sin(k1n − Ωt ), |β| � 1. (7)

Here β is a small parameter, A(βx, βt ) is a slowly changing
envelope of the wave packet, where x is the coordinate, equal
to na at particle positions in the undeformed chain. The ex-
pression (7) is substituted into equations of motion for chain
1. The equations are expanded into series with respect to β.
Setting zero and first order terms equal to zero, we obtain

Ω2 − d1

m1
− 4c1

m1
sin2 k1

2
= 0,

∂A

∂βt
= −g1

∂A

∂βx
, (8)

where g1 is the group velocity, corresponding to the wave
number k1. It is seen that the equations (8) are satisfied,
provided that the frequency Ω is related to the wave number
k1 by the dispersion relation (3), while the envelope A travels
with the group velocity, i.e., A = A(β(x − g1t )). Then the
approximate solution (7) takes the form

un ≈ A(β(na − g1t )) sin(k1n − Ωt ),
vn ≈ Ȧ sin(k1n − Ωt ) − ΩA cos(k1n − Ωt ).

(9)

The solution remains accurate at time scale Ωt ∼ β−1, while
at larger time scale of the order β−2 the dispersion causes
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changing of the envelope’s shape [33,34]. The approximate
solution (9) allows to specify the wave packet with a desired
envelope and to make sure that the envelope does not change
significantly before reaching the interface.

In our numerical simulations, the initial displacements and
velocities for chain 1 (n < 0) are specified using formula (9)
at t = 0 with the Gaussian envelope A such that

un = Bn sin(k1n), Bn = U0 exp

(
−β2

2
(n − n0)2

)
,

vn = −Bn

[
Ω cos(k1n) − β2g1

a
(n − n0) sin(k1n)

]
,

(10)

where U0 is the amplitude of displacements in the wave
packet; n0a < 0 is the initial coordinate of the wave packet’s
center. For chain 2 (n � 0), zero initial conditions are used.

We note that since formula (10) is based on the ap-
proximate solution, it generates both the main wave packet
propagating to the right and a small reverse wave packet
propagating to the left. However, the amount of energy in the
reverse packet is small and it decreases as β → 0. To avoid
the reverse wave packet one can use the approach described
in paper [35]. In [35] the initial displacements are specified
according to the first formula from (10). These displacements
are then expanded using normal modes. The amplitudes of
normal modes are used to specify the velocities such that
all energy propagates in one direction and the reverse wave
packet is absent. However, since the reverse wave packet has
small energy, we have chosen the initial conditions (10) for
simplicity.

Under initial conditions (10), all energy of the system is
initially concentrated in the incident wave packet (in chain 1).
At the interface, the incident wave packet is split into transmit-
ted and reflected wave packets. Further we derive analytical
expressions for the transmission coefficient, relating energies
of these wave packets (see, e.g., Sec. IV B). In analytics, the
transmission coefficient is obtained in the limit β → 0. In
this case, the transmission coefficient is independent of the
particular shape of the wave packet’s envelope.

IV. CALCULATION OF THE TRANSMISSION
COEFFICIENT

In this section, we derive the expressions for the transmis-
sion coefficient using the ansatz approach (for semi-infinite
waves) and the energy dynamics approach (for wave packets).

A. Ansatz approach

We start with derivation of the expression for the transmis-
sion coefficient using the particular solution of equations of
motion (2) in the form of incident, reflected, and transmitted
semi-infinite harmonic waves (see, e.g., [18,36]). Frequencies
of the waves are equal, while their amplitudes are chosen
such that the equations of motion for the interfacial particles
−1 and 0 are satisfied. This solution does not satisfy the
initial conditions (10), corresponding to a wave packet. How-
ever, we show below that the transmission coefficient, derived
from this solution, coincides with the transmission coefficient,
obtained for the wave packet, provided that the wave packet is
sufficiently wide [i.e., β → 0 in formula (10)].

Following [18,36], we seek the solution of the equations of
motion (2) in the form of three harmonic waves having the
same frequency Ω:

un =
{

AI ei(Ωt−k1n) + ARei(Ωt+k1n), n < 0,

AT ei(Ωt−k2n), n � 0,
(11)

where i is the imaginary unit; miΩ
2 = di + 4ci sin2 ki

2 ; AI , AR,
AT are amplitudes of the incident, reflected, and transmitted
waves respectively; k1, k2 are wave numbers, corresponding
to the frequency Ω . We limit ourselves by the case when
waves with frequency Ω can propagate in both chains. Then
k1 and k2 are real. The case of imaginary wave number k2,
corresponding to the total reflection from the interface and
exponentially decaying solution in chain 2, is beyond the
scope of the present paper.

For any AI , AR, AT , the solution (11) satisfies equations of
motion (2) for all particles except for the interface, i.e., for n =
−1 and n = 0. Equations of motion for particles −1, 0 yield
the relation between the amplitudes. These equations have the
form

m1ü−1 = c12(u0 − u−1) + c1(u−2 − u−1) − d1u−1,

m2ü0 = c12(u−1 − u0) + c2(u1 − u0) − d2u0.
(12)

Substituting the solution (11) into equations (12), and us-
ing the dispersion relation in the form ci(eiki + e−iki ) = 2ci +
di − miΩ

2, we obtain

(c12 − c1)
(
AI e

ik1 + ARe−ik1
)+ c1(AI + AT ) = c12AT ,[

c2
(
eik2 − 1

)+ c12
]
AT = c12

(
AI e

ik1 + ARe−ik1
)
.

(13)

The system of equations (13) after some transformations
yields

AT

AI
= 2ic12 sin k1

c12(1−e−ik1 )+c2(eik2 −1)(1 + e−ik1 (c12 − c1)/c1)
.

(14)
We further focus on the case c12 = c1 unless otherwise

stated. This case is chosen for several reasons. First, it leads
to the simplest expression for the transmission coefficient.
Second, our results combined with Rayleigh’s reciprocity the-
orem [32] show that the transmission coefficient for c12 = c1

coincides with the transmission coefficient for c12 = c2.
Third, our main result, namely transparency of the interface,
is observed when all stiffnesses are equal, i.e., c1 = c2 = c12

(see section VI B). Since the frequencies of incident and trans-
mitted waves are equal then the dispersion relations for chains
1 and 2 yield

c1−c2 = 1

2

[
(m1−m2)Ω2+d2−d1+2(c1 cos k1 − c2 cos k2)

]
.

(15)

Substituting (15) into (14) and using the first equation from
(13), we obtain

AT

AI
= 4ic1 sin k1

(m1 − m2)Ω2 + d2 − d1 + 2i(c1 sin k1 + c2 sin k2)
,

AI + AR = AT .

(16)
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Thus, amplitudes of incident, transmitted, and reflected waves
are related by formula (16).1 Since energy fluxes and energy
densities in the waves are proportional to absolute values of
the amplitudes squared, the formula (16) allows to calculate
the transmission coefficient.

According to the solution (11), energies carried by the
incident, transmitted, and reflected waves are infinite. There-
fore, for semi-infinite waves we define the transmission and
reflection coefficients T and R in terms of fluxes rather than
energies:

T = hT

hI
, R = 1 − T, (17)

where hI and hT are average2 fluxes in the incident and trans-
mitted waves, respectively. This formula can be interpreted as
follows. During the period 2π/Ω , the incident wave brings
toward the interface the amount of energy 2πhI/Ω , while
the amount of transmitted energy during the same time is
2πhT /Ω . The ratio of these energies is equal to the transmis-
sion coefficient.

Using formula (A6) for the average flux in a harmonic
wave, we obtain

T = m2g2|AT |2
m1g1|AI |2 . (18)

Substitution of (16) into (18) yields

T = 16Ω2m1m2g1g2

4Ω2(m1g1+m2g2)2 + a2
(
(m1 − m2)Ω2 + d2 − d1

)2 ,

(19)
where gi = gi(Ω ). We note that formula (19) is symmetric
with respect to change of indices 1,2.

Analysis of frequency dependence of the transmission co-
efficient is presented below in Secs. V–VI. Since formula (19)
is derived from the exact solution (11), it is further used as a
benchmark.

B. Energy dynamics

In this subsection, we derive the expression for the trans-
mission coefficient using the energy dynamics approach [30].
In contrast to the previous subsection, here we deal with
wave packets rather than the semi-infinite waves. The key
quantity of interest is the total energy flux in the system. In
the homogeneous case (for m1 = m2, c1 = c2 = c12, d1 = d2),
the total flux is conserved under arbitrary initial conditions
[30] [see also formula (23)]. In the inhomogeneous case (in
the presence of the interface), the total flux is generally not
conserved for two reasons. First, the flux in chain 1 changes
sign due to reflection. Second, since group velocities in chains
1 and 2 are different, then the energy is transferred in them
at different speeds. Therefore, evolution of the total flux in
time is closely related to reflection. To describe the evolution,
we derive the balance equation for the total energy flux. The

1The particular case of (16) for m1 = m2, d1 = d2 = 0 is obtained
in the book [36].

2The averaging is carried out over the period, which is identical for
incident, reflected, and transmitted waves.

right hand side of this equation can be interpreted as a “force,”
acting on a wave packet. The force depends on the difference
between parameters of chains 1 and 2 and on motion of par-
ticles −1 and 0, located at the interface. Using the balance
equation and additional “constitutive” relations, we calculate
the transmission coefficient.

1. Balance of the total energy flux

We derive the balance equation for the total energy flux in
the system, described by equations of motion (2). Following
[30], we define the total energy flux h and the local flux hn+ 1

2
as

h =
+∞∑

n=−∞
hn+ 1

2
, hn+ 1

2
= −a

2
Fn+ 1

2
(vn + vn+1). (20)

Calculating the derivative of the local flux hn+ 1
2

with respect
to time

ḣn+ 1
2

= −a

2
Cn+ 1

2

(
v2

n+1 − v2
n

)

− a

2
Fn+ 1

2

(
Fn+ 1

2

Mn
−

Fn+ 1
2

Mn+1
+

Fn+ 3
2

Mn+1
−

Fn− 1
2

Mn

− Dn+1un+1

Mn+1
− Dnun

Mn

)
(21)

and summing (21) with respect to all particles, we obtain

ḣ = −a

2
(c12 − c2)

(
v2

0 − d2u2
0

m2

)

− a

2
(c1 − c12)

(
v2

−1 − d1u2
−1

m1

)

+ a(m1 − m2)

2m1m2
c2

12ε
2
− 1

2
+ ac12

2

(
d1

m1
− d2

m2

)
u0u−1. (22)

This exact formula is valid under arbitrary initial conditions.
To reduce the number of parameters, we further focus on

the particular case c12 = c1 (see discussion in Sec. IV A).
Substituting c12 = c1 into the formula (22), yields

ḣ = F (t ), F = a

2
(c2 − c1)

(
v2

0 − d2

m2
u2

0

)

+ a(m1 − m2)

2m1m2
c2

1ε
2
− 1

2
+ ac1

2

(
d1

m1
− d2

m2

)
u0u−1. (23)

Formula (23) shows that changes of the total flux are caused
by the “force” F , which depends on differences between
parameters of the chains and on motion of the interfacial
particles −1 and 0. If the particles don’t move (e.g., before
and after the reflection) then the force is equal to zero and the
flux remains constant. Here and below we assume that there
is no localization of energy at the interface, i.e., all energy is
either transmitted or reflected. Investigation of possibility of
localization is beyond the scope of the present paper. We refer
to, e.g., works [37–42] for analysis of continuum and discrete
systems with localization.

We further use the balance law (23) to calculate the amount
of energy transmitted through the interface.
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2. Transmission coefficient

To define the transmission coefficient in the framework of
the energy dynamics approach, we denote energies of chains
1,2 at time t as E1(t ) and E2(t ). Then the transmission coeffi-
cient T is defined by

T = E2(∞)

E
, E2(∞) = lim

t→∞ E2(t ), (24)

where E = E1 + E2 is the total energy of the system, which is
equal to the energy of the incident wave packet. We note that
this definition formally differs from the previous definition
(17). The definition (24) is natural for wave packets, while
it is inapplicable to semi-infinite waves. In turn, the definition
(17) is inapplicable to wave packets.

To find the frequency dependence of the transmission co-
efficient, we integrate equation (23) over time:

h(∞) − h(0) =
∫ ∞

0
Fdt . (25)

To represent all quantities in this formula in terms of ener-
gies of incident, transmitted, and reflected wave packets, we
assume that the energy is transferred to chain 2 by a wave
packet with frequency Ω and unknown envelope B(βna, βt ):

un = B(βna, βt ) sin(k2n − Ωt ), n � 0, |β| � 1. (26)

In Appendix A it is shown that the flux, corresponding to the
initial conditions (10) for small β, has the form

h(0) ≈ Eg1(Ω ), (27)

where g1(Ω ) is the group velocity for chain 1, corresponding
to the frequency Ω . Under assumption (26), a similar expres-
sion is valid for the total flux in chain 2, i.e., the total flux is
equal to E2(∞)g2(Ω ). We also assume that the reflected wave
packet has the frequency Ω . Then the total flux at large times
is given by

h(∞) ≈ E2(∞)g2(Ω ) − E1(∞)g1(Ω ). (28)

Substitution of formulas (27) and (28) into (25) yields

E2(∞)g2(Ω ) − (E + E1(∞)
)
g1(Ω ) ≈

∫ ∞

0
Fdt . (29)

The last and the most complicated step toward calculation of
the transmission coefficient is to represent the r.h.s. in (29) in
terms of energies. In Appendix B it is shown that∫ ∞

0
Fdt ≈ G(Ω )E2(∞),

G = a2

2g2Ω2

[
(2m1 − m2)c2 − c1m1

m1m2

(
Ω2 − d2

m2

)

+ 1

2

(
2c1 + d2

m2
− Ω2

)(
d1

m1
− d2

m2

)]
. (30)

Formula (30) is derived by combining the solution (26) with
equations of energy balance and dynamics equations for the
interfacial particles. This allows to relate F with the envelope
function B(βna, βt ), which in turn is related to the energy E2

(see Appendix B for details).
Substituting (30) into (29), dividing both parts by E , and

using the definition of the transmission coefficient (24), we

finally obtain

T = 2g1(Ω )

g1(Ω ) + g2(Ω ) − G(Ω )
. (31)

We note that formulas (19) and (31) are obtained by en-
tirely different means and using formally different definitions
(17), (24) for the transmission coefficient. Formula (19) is
exact because it is derived using the exact solution (11).
Derivation of the formula (31) involves several assumptions
and approximations. However, the accuracy of these approxi-
mations increases with decreasing β (increasing width of the
wave packet). Therefore the transmission coefficients, calcu-
lated by formulas (19) and (31), coincide in all cases we have
considered.3

Thus, the energy dynamics approach allows to calculate the
transmission coefficient. Although it is less straightforward
than the “ansatz” approach, we expect that the energy dynam-
ics can be used when there is no exact solution like (11).

V. QUALITATIVE AND DIMENSIONAL ANALYSIS

In this section, we discuss qualitative features of the fre-
quency dependence of the transmission coefficient T (Ω ),
given by formula (19).

Since the transmission coefficient is dimensionless, it de-
pends only on the dimensionless parameters of the problem.
To introduce the dimensionless frequency, we use the fact that
the transmission coefficient is not equal to zero only if the
waves with frequency Ω can propagate in both chains 1 and 2.
In other words, Ω should satisfy the relations

Ωlow � Ω � Ωhigh, Ω2
low = max

(
d1

m1
,

d2

m2

)
,

Ω2
high = min

(
4c1 + d1

m1
,

4c2 + d2

m2

)
.

(32)

Using formula (32), we introduce the dimensionless fre-
quency

Ω̃2 = Ω2 − Ω2
low

Ω2
high − Ω2

low

. (33)

Then the transmission is possible provided that Ω̃2 ∈ [0; 1].
Formula (33) allows, in particular, to plot frequency depen-
dencies of the transmission coefficient for different values of
parameters on a single graph.

The transmission coefficient also depends on the mass
ratio m1/m2, stiffness ratio c1/c2, ratio of stiffness of elastic
foundations d1/d2, and on d1/c1 (for c12 = c1). Therefore, in
general, it is a function of five parameters:

T = T

(
Ω̃2,

m1

m2
,

c1

c2
,

d1

d2
,

d1

c1

)
. (34)

We show below that the number of parameters can be reduced
at least by one [see formulas (57), (67)].

3Though in the most general case we were not able to derive (19)
from (31) or vice versa, we were also not able to find the case when
the two definitions yield different values of T .
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FIG. 2. Three qualitatively different frequency dependencies
of the transmission coefficient T , calculated by formulas (19)
and (31). Solid red line—case (35) for m2/m1 = 2, c2/c1 = 3,
d2/d1 = 2, c1/d1 = 1; dashed green line— the second case from
(36) for m2/m1 = 3, c2/c1 = 2, d2/d1 = 1/2, c1/d1 = 1; dash dot-
ted blue line—case (37) for m2/m1 = 2/3, c2/c1 = 1, d2/d1 = 0,
c1/d1 = 1/2. Numerical results are shown by circles.

Consider qualitative features of frequency dependence of
the transmission coefficient. The dependence is determined by
the way how spectra (passbands4) of chains 1 and 2 intersect
with each other. Three qualitatively different dependencies
T (Ω ) are shown in Fig. 2. These dependencies correspond
to the following three cases.

Case 1. Equal minimal frequencies:

d1

m1
= d2

m2
. (35)

Under condition (35), the transmission coefficient monotoni-
cally decreases with increasing frequency5 (see solid line in
Fig. 2). In particular, this condition is satisfied in the absence
of elastic foundation (d1 = d2 = 0) and for chains with iden-
tical spectra m1/m2 = c1/c2 = d1/d2. These cases are further
analyzed in Secs. VII B 1 and VII D.

Case 2. Intersecting or nested spectra with⎡
⎢⎢⎣

d1

m1
�= d2

m2
,

4c1 + d1

m1
�= 4c2 + d2

m2
,

d1

m1
�= d2

m2
,

4c1 + d1

m1
= 4c2 + d2

m2
, c1 �= c2.

(36)

Under conditions (36), the transmission coefficient first mono-
tonically increases from zero at Ω̃ = 0 to the maximum value
and then monotonically decreases toward zero at Ω̃ = 1 (see
dashed line in Fig. 2). The case of nested spectra is further
analyzed in Sec. VII B, while the case of intersecting spectra
is analyzed in Sec. VII C.

4By spectra or passbands we mean intervals [d1/m1; (4c1 +
d1)/m1], [d2/m2; (4c2 + d2)/m2].

5Excluding the trivial case when left and right parts on the chains
have identical parameters. In the latter case, the transmission coeffi-
cient is equal to 1 for all frequencies inside the spectrum.

Case 3. Equal maximal frequencies and equal stiffnesses:

d1

m1
�= d2

m2
,

4c1 + d1

m1
= 4c2 + d2

m2
, c1 = c2. (37)

Under conditions (37), the transmission coefficient monoton-
ically increases from zero at Ω̃ = 0 toward the maximum
value at Ω̃ = 1 (see dash dotted line in Fig. 2). This case is
further analyzed in Sec. VII B 2.

To check formulas (19) and (31) for the transmission co-
efficient, we solve the equations of motion (2) with initial
conditions (10) numerically using the leap-frog integration
scheme with time step of 0.05/Ωhigh. The two connected
chains, consisting of 1500 particles each, are considered. The
initial wave packet is given by (10) with β = 0.02 and n0 =
−4/β. In simulations, the total energies E1(t ), E2(t ) of the
two chains are computed. After the reflection, these energies
become constant in time. These constant values are used for
calculation of the transmission coefficient by formula (24).
Numerical results are presented by circles in Fig. 2. It is seen
that the numerical and analytical results practically coincide.
Our simulations also show that the transmission coefficient,
generally, depends on β. If the envelope of the wave packet
is narrow (β is large), then the numerical results deviate from
the analytical solution (19), because the latter formally cor-
responds to the case β = 0. The deviation is larger at higher
frequencies. The difference between numerical and analytical
solutions decreases as β tends to zero.

Thus, in the absence of elastic foundation (or for chains
on elastic foundations having identical minimal frequencies),
the frequency dependence of the transmission coefficient is
monotonically decreasing. Adding the elastic foundation, one
can qualitatively change this dependence and make it non-
monotonic or monotonically increasing. Moreover, in the next
section we show that in some cases the elastic foundation
makes the interface totally transparent.

VI. TOTAL ACOUSTIC TRANSPARENCY

In this section, we discuss the phenomenon of acoustic
transparency, i.e., propagation of waves through the interface
without reflection (T = 1). To obtain the conditions of acous-
tic transparency, we write the following expression for the
reflection coefficient R using formula (19):

R = 1 − T =

= 4Ω2(m1g1 − m2g2)2 + a2
(
(m1 − m2)Ω2 + d2 − d1

)2
4Ω2(m1g1 + m2g2)2 + a2

(
(m1 − m2)Ω2 + d2 − d1

)2 .

(38)

Since both terms in the numerator are nonnegative, the reflec-
tion coefficient vanishes (R = 0) only if

m1g1(Ω ) = m2g2(Ω ), (m1 − m2)Ω2 + d2 − d1 = 0. (39)

The second equation is satisfied at the frequency

Ω2 = Ω2
t = d1 − d2

m1 − m2
. (40)

Therefore, Ωt is further referred to as the frequency of trans-
parency.
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Substitution of (40) into the first equation from (39) after
algebraic transformations, yields (c1 − c2)(d1m2 − d2m1) = 0.
Then the acoustic transparency is possible at frequency Ωt

provided that either stiffnesses are equal (c1 = c2) or the min-
imal frequencies are equal (d1/m1 = d2/m2). These two cases
are analyzed below.

A. Equal minimal frequencies

In the case of equal minimal frequencies d1/m1 = d2/m2

(including the case when there are no elastic foundations d1 =
d2 = 0), the formula (40) for Ωt reduces to

Ω2
t = d1

m1
= d2

m2
. (41)

Then both numerator and denominator of the expression (38)
are equal to zero at Ω = Ωt . Calculating the limit Ω → Ωt ,
we show that the transmission coefficient is given by formula
(52). From this formula it follows that the total transmission
is achieved provided that

Ω2 = Ω2
t = d1

m1
= d2

m2
, m1c1 = m2c2. (42)

These conditions include the case when there are no elastic
foundations (d1 = d2 = 0).

Consider frequency dependence of the transmission coeffi-
cient. Using formula (42) and assuming that c1/m1 < c2/m2,
we obtain6

T =
2
√(

1 − Ω̃2
)(

γ 2∗ − Ω̃2
)

γ∗ − Ω̃2 +
√(

1 − Ω̃2
)(

γ 2∗ − Ω̃2
) ,

γ∗ = m1

m2
= d1

d2
= c2

c1
> 1.

(43)

A similar expression for c1/m1 > c2/m2 can be obtained
by permutation of the indices 1,2 in the expression for γ∗.
The transmission coefficient (43) is equal to unity at Ω̃ = 0.
For large γ∗, the frequency dependence of the transmission
coefficient tends to a limiting curve:

T = 2
√

1 − Ω̃2

1 +
√

1 − Ω̃2
. (44)

The dependence (43) for different values of γ∗ is shown in
Fig. 3. It is seen that, as expected, the transmission coeffi-
cient is equal to 1 at Ω̃ = 0. For 0 < Ω̃ < 1 the transmission
coefficient decreases with increasing contrast in parameters γ∗
and tends to the limiting curve (44).

Thus, in the case of equal minimal frequencies, the con-
ditions of acoustic transparency are given by (42). However,
we note that since the group velocities vanish at the mini-
mal frequency (for d1 �= 0, d2 �= 0) then, strictly speaking, the
waves with Ω = Ωt do not transport the energy. However, the
transmission coefficient is still close to one in some vicinity
of the minimal frequency.

6Note that formula (43) remains valid for d1 = d2 = 0. In this case
γ∗ = m1/m2 = c2/c1.

FIG. 3. Frequency dependence of the transmission coefficient T
[formula (43)] for γ∗ equal to 1.1 (solid line), 2 (dashed line), 4 (dash
dotted line), and 8 (dash double dotted line) are shown. The dotted
line shows the limiting case γ∗ → ∞, given by formula (44).

B. Equal stiffnesses

Consider the case of equal stiffnesses and different min-
imal and maximal frequencies, i.e. c1 = c2 = c, d1/m1 �=
d2/m2, and (4c + d1)/m1 �= (4c + d2)/m2. Then the condi-
tions (39) are satisfied and the total transmission is possible,
provided that the frequency Ωt belongs to spectra of the two
chains, i.e.,

Ωlow < Ωt < Ωhigh, (45)

where Ωlow,Ωhigh are defined by (32). This condition is
satisfied only in the case of nested spectra, considered in
Sec. VII B. Rewriting the inequalities (45) in terms of pa-
rameters of the chains and taking into account equality of
stiffnesses, we obtain the following conditions of acoustic
transparency

Ω2 = Ω2
t = d1 − d2

m1 − m2
, c1 = c2 = c,

0 <
m2d1 − m1d2

4c(m1 − m2)
< 1.

(46)

The last formula in (46) is identical to the condition 0 < Ω̃2
t <

1, where Ω̃t is the dimensionless frequency of transparency
[see formula (49)]. We note that the interface can be transpar-
ent even if only one chain has the elastic foundation.

To explain the phenomenon of acoustic transparency, we
show that under the conditions (46) the equations of motion
(2) has the exact solution in the form of a harmonic wave,
propagating in both chains. Substituting conditions (39) into
formulas (15) and (16), and using expressions (5) for the
group velocities, we obtain

AI = AT , AR = 0, k1 = k2 = kt . (47)

Combining (47) with (11), we show that the equations of
motion (2) has the exact solution

un = AI e
i(Ωt t−kt n), sin2 kt

2
= m2d1 − m1d2

4c(m1 − m2)
. (48)
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FIG. 4. Frequency dependence of the transmission coefficient T for Ω̃2
t = 0.1 (kt = π/5, left) and Ω̃2

t = 0.5 (kt = π/2, right). In both
plots results for m1/m2 equal to 1.1 (solid line), 2 (dashed line), 4 (dash dotted line), and 8 (dash double dotted line) are shown. Vertical dotted
lines correspond to Ω̃ = Ω̃t .

Here Ωt is given by formula (46); the second formula for
kt follows from the dispersion relations (3) and equality of
frequencies of the incident and transmitted waves. We note
that the r.h.s. in the second formula in (48) is equal to the
dimensionless frequency of transparency

Ω̃2
t = m2d1 − m1d2

4c(m1 − m2)
= Ω2

t − Ω2
low

Ω2
high − Ω2

low

. (49)

Thus, the harmonic wave with frequency Ωt and wave number
kt propagates through the interface without reflection.

To illustrate the phenomenon of acoustic transparency, we
consider the frequency dependence of the transmission co-
efficient under the conditions (46). The dependence is given
by formula (58) with c1 = c2. The formula shows that the
transmission coefficient depends on dimensionless frequency
Ω̃ , mass ratio m1/m2, and dimensionless frequency of trans-
parency Ω̃t . For example, we plot frequency dependence
of the transmission coefficient for Ω̃2

t = 0.1 (kt ≈ π/5) and
Ω̃2

t = 0.5 (kt = π/2) at different mass ratios (see Fig. 4). As
expected, the transmission coefficient decreases with increas-
ing mass ratio, except for the frequency Ω̃ = Ω̃t , at which the
interface is always transparent, i.e., T = 1.

To demonstrate changes of the wave packet when passing
through the transparent interface, we plot the distribution of
the local energy en before (at t = 0) and after (at t = 3n0a/g1)
the transmission (see Fig. 5). The local energy is defined as

en = 1

2
Mnv

2
n + 1

4
Cn− 1

2
ε2

n− 1
2
+ 1

4
Cn+ 1

2
ε2

n+ 1
2
+ 1

2
Dnu2

n. (50)

Figure 5 shows that all energy is transmitted through the in-
terface without reflection. Since chains 1 and 2 have different
group velocities [in Fig. 5, g1(Ωt ) = 2g2(Ωt )], spatial distri-
bution of energy in the incident and transmitted wave packets
is also different. The energy envelope in the transmitted wave
packet is twice as high and twice as narrow as in the incident
wave packet, while the total energies are equal.

We note that under the transparency conditions (46), the
total energy flux is not conserved. As mentioned above,
changes in the total energy flux are generally caused by two

mechanisms: (i) changes in the sign of the flux in chain 1
due to reflection and (ii) changes of the group velocity from
g1 in chain 1 to g2 in chain 2. Since in the case of acoustic
transparency there is no reflection, changes of the energy flux
are due to the second mechanism only.

Thus, the interface is transparent at Ω = Ωt even at high
contrast of parameters (e.g., m1/m2 = 8). We note that in the
vicinity of frequency Ωt the transmission coefficient is close
to unity and therefore the interface is almost transparent. The
transmission coefficient is also close to unity for c1 ≈ c2.
Therefore, the effect of acoustic transparency is “robust” with
respect to small variation of conditions (46).

VII. INFLUENCE OF SPECTRA INTERSECTION ON THE
TRANSMISSION COEFFICIENT

In this section, we consider influence of the way how
spectra of the chains intersect on frequency dependence of the
transmission coefficient and analyze different particular cases.

A. Low- and high-frequency limits

In this subsection, we analyze the behavior of the trans-
mission coefficient, given by formula (19), in the vicinity of
the lowest and highest frequencies, Ωlow and Ωhigh, defined by
formula (32).

Low-frequency limit. We calculate the transmission coeffi-
cient at the lowest frequency Ωlow, at which the transmission
is possible, i.e.,

Tlow = lim
Ω→Ωlow

T . (51)

Substituting (19) into (51) and calculating the limit, we obtain

Tlow =

⎧⎪⎪⎨
⎪⎪⎩

4
√

c1m1c2m2(√
c1m1 + √

c2m2
)2 ,

d1

m1
= d2

m2
,

0,
d1

m1
�= d2

m2
.

(52)

This formula is valid, in particular, for d1 = d2 = 0. It shows
that the energy is totally transmitted through the interface
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FIG. 5. Acoustic transparency of the interface at Ω̃2 = Ω̃2
t = 0.5, m1/m2 = 1/2, c1 = c2, d1 = 0, d2/c2 = 2. Local energies en for all

particles at t = 0 (blue empty circles) and at t = 3n0a/g1 (red circles) are shown. No reflected wave is observed. Arrows show directions of
the energy flux. Lengths of the arrows are proportional to the values of group velocities (g1 = 2g2).

(Tlow = 1) at the lowest frequency, provided that m1c1 = m2c2

(see Sec. VI A).
High-frequency limit. We calculate the transmission coeffi-

cient at the highest frequency Ωhigh at which the transmission
is possible, i.e.,

Thigh = lim
Ω→Ωhigh

T . (53)

Substituting (19) into (53) and calculating the limit, we obtain

Thigh = 4
√

m1m2(√
m1 + √

m2
)2 , (54)

for (4c1 + d1)/m1 = (4c2 + d2)/m2, c1 = c2, and Thigh = 0
otherwise. For example, the formula (54) is valid for m2/m1 =
2/3, c2/c1 = 1, d2/d1 = 0, and c1/d1 = 1/2. The frequency
dependence of the transmission coefficient for these values
of parameters is shown by the dash dotted line in Fig. 2. For
further analysis of this case see Sec. VII B 2.

B. Nested spectra

In the present subsection, we consider the case when the
spectrum of chain 2 is inside the spectrum of chain 1 (or vice
versa), i.e., either

d1

m1
� d2

m2
<

4c2 + d2

m2
� 4c1 + d1

m1
(55)

or

d2

m2
� d1

m1
<

4c1 + d1

m1
� 4c2 + d2

m2
. (56)

We focus on case (56). Similar results for case (55) can be
obtained by permutation of indices. We show that the number
of dimensionless arguments of the transmission coefficient in
formula (34) can be reduced by one.

Using the frequency of transparency Ωt , we show that the
transmission coefficient depends on four parameters:

T = T

(
Ω̃2,

m1

m2
,

m1c2

m2c1
, Ω̃2

t

)
,

Ω̃2
t = Ω2

t − Ω2
low

Ω2
high − Ω2

low

= d1m2 − d2m1

4c1(m1 − m2)
.

(57)

The explicit form of the dependence (57) is given by the
following formula:

T =
4 m1

m2

√
Ω̃2
(
1 − Ω̃2

)
W[

m1
m2

√
Ω̃2(1 − Ω̃2) + W

]2
+
(

m1
m2

− 1
)2(

Ω̃2 − Ω̃2
t

)2 ,

W =
√[

m1c2

m2c1
+
(

1 − m1

m2

)
Ω̃2

t − Ω̃2

][(
1 − m1

m2

)
Ω̃2

t + Ω̃2

]
.

(58)
Formula (58) for c1 = c2 yields frequency dependence of the
transmission coefficient in the case of acoustic transparency
(see Sec. VI).

1. Equal minimal frequencies

We consider the case of equal minimal frequencies, i.e.,
d1/m1 = d2/m2. In particular, the presented results are valid
for systems without elastic foundation (d1 = d2 = 0). It can
be shown that Ω̃2

t = 0 for d1/m1 = d2/m2 and formula (58)
reduces to

T =
4

√(
1 − Ω̃2

)(m1c2
m2c1

− Ω̃2
)

m1
m2

+ c2
c1

− 2Ω̃2 + 2

√(
1 − Ω̃2

)(m1c2
m2c1

− Ω̃2
) . (59)

The maximum value of the transmission coefficient (59) is
achieved at the lowest frequency (at Ω̃ = 0). The transmis-
sion coefficient monotonically decreases toward zero value at
the highest frequency (at Ω̃ = 1). For illustration, frequency
dependence of the transmission coefficient for c1 = c2 and
different values of m1/m2 is shown in Fig. 6.
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FIG. 6. Frequency dependence of the transmission coefficient T
for c1 = c2 and d1/m1 = d2/m2. Results for m2/m1 equal to 1.1 (solid
line), 1.5 (dashed line), 3 (dash dotted line), 10 (dash double dotted
line), and 100 (dotted line) are shown.

Additionally, we note that in the case d1 = d2 = 0 and
either m1 = m2 or c1 = c2, the transmission coefficient can
be represented in terms of group velocities as

T = 4g1(Ω )g2(Ω )

[g1(Ω ) + g2(Ω )]2 . (60)

We note that similar formula is valid for plane acoustic and
electromagnetic waves, provided that the group velocities are
replaced by sound speeds or by speeds of light (see, e.g., [5]).

Thus, in the case of equal minimal frequencies, the trans-
mission coefficient, T , depends on the ratio of masses m1/m2

in exactly the same way as on the ratio of stiffness c2/c1. We
also note that the function T (Ω̃2, m1/m2, c1/c2) is exactly the
same for systems with and without elastic foundation.

2. Equal maximal frequencies

We consider the case

4c1 + d1

m1
= 4c2 + d2

m2
. (61)

Under condition (61) formula (58) reduces to

T = 4
m1

m2
Ω̃ (1 − Ω̃2)

√(
m1

m2
− 1

)
Ω̃2

t + Ω̃2

⎡
⎢⎣(1 − Ω̃2)

⎛
⎝m1

m2
Ω̃ +

√(
m1

m2
− 1

)
Ω̃2

t + Ω̃2

⎞
⎠

2

+
(

m1

m2
− 1

)2(
Ω̃2 − Ω̃2

t

)2]−1

,

Ω̃2
t = c2m1 − c1m2

c1(m1 − m2)
. (62)

Analysis of formula (62) shows that frequency dependence
of the transmission coefficient can be either nonmonotonic
or monotonically increasing. For c1 �= c2 the transmission

coefficient increases from zero value at Ω̃ = 0 to the maxi-
mum and then monotonically decreases toward zero value at
Ω̃ = 1. For c1 = c2 the formula (62) takes the form

T =
4Ω̃
√

m1
m2

− 1 + Ω̃2

m1
m2

− 1 + 2Ω̃2 + 2Ω̃
√

m1
m2

− 1 + Ω̃2
. (63)

It is seen that the transmission coefficient is not equal to zero
at Ω̃ = 1. On the contrary, it has the maximal value at this
point.

C. Intersecting spectra

In the present subsection, we consider the case when spec-
tra of chains 1 and 2 intersect with each other, i.e., either

d1

m1
<

d2

m2
<

4c1 + d1

m1
<

4c2 + d2

m2
(64)

or
d2

m2
<

d1

m1
<

4c2 + d2

m2
<

4c1 + d1

m1
. (65)

We show that in these cases the number of dimensionless
arguments of the transmission coefficient in formula (34) can
be reduced by one.

Without loss of generality we consider the case (64), cor-
responding to

Ω2
low = d2

m2
, Ω2

high = 4c2 + d2

m2
. (66)

Similar results in the case (65) can be obtained by permutation
of indices 1,2. Rewriting the expression (19) for the transmis-
sion coefficient in terms of the dimensionless frequency Ω̃ ,
defined by formula (33), we obtain

T = T

(
Ω̃2,

m1

m2
,

4c2(m1 − m2)Ω̃2
t

d1m2 − d2m1
,

[
m1

m2
− 1

]
Ω̃2

t

)
,

Ω̃2
t = Ω2

t − Ω2
low

Ω2
high − Ω2

low

= m1(d1m1 − d2m1)

(m1 − m2)(4c1m2 + d1m2 − d2m1)
.

(67)

The explicit dependence is omitted for brevity. Formula (67)
shows that as in the previous case of nested spectra, the
transmission coefficient depends on four dimensionless pa-
rameters. Typical frequency dependence of the transmission
coefficient is shown by a dashed line in Fig. 2.

D. Identical spectra

In this subsection, we consider the case when dispersion re-
lations of chains 1 and 2 coincide (ω1 = ω2). This is possible
provided that

m1

m2
= c1

c2
= d1

d2
= γ∗∗. (68)

Simplifying formula (19) using conditions (68), we obtain

T =
T0(γ∗∗)

(
1 − Ω̃2

)
1 − T0(γ∗∗)Ω̃2

, T0(γ∗∗) = 4γ∗∗
(γ∗∗ + 1)2

. (69)

Then the transmission coefficient depends on two dimen-
sionless parameters: Ω̃ and γ∗∗. It is seen that the transmission

065004-10



ACOUSTIC TRANSPARENCY OF THE CHAIN-CHAIN … PHYSICAL REVIEW E 107, 065004 (2023)

FIG. 7. Frequency dependence of the transmission coefficient
T/T0(γ∗∗) for two chains with identical spectra [see formula (68)].
Results for γ∗∗ equal to 1.1 (solid line), 1.5 (dashed line), 3 (dash
dotted line), and 10 (dash double dotted line) are shown.

coefficient has maximum value of T0 at Ω̃ = 0 and monoton-
ically decreases toward zero value at Ω̃ = 1. The maximum
value of the transmission coefficient tends to zero as γ∗∗ tends
to infinity (T0 ∼ 4/γ∗∗). Frequency dependence of the normal-
ized transmission coefficient T/T0(γ∗∗) for different values of
γ∗∗ is shown in Fig. 7. The figure shows that the normalized
transmission coefficient tends to become independent on the
frequency (and equal to unity) for γ∗∗ → 1. For γ∗∗ � 1, the
transmission coefficient depends on the squared frequency
almost linearly, i.e., T/T0 ≈ 1 − Ω̃2.

VIII. CONCLUSIONS

We have shown that by adding the on-site potential (elastic
foundation) one can qualitatively change the frequency de-
pendence of the transmission coefficient. In chains without
elastic foundation, the transmission coefficient monotonically
decreases with increasing frequency. In chains with elastic
foundation, the frequency dependence is either monotonically
decreasing or nonmonotonic, or even monotonically increas-
ing. The conditions corresponding to these three qualitatively
different cases has been derived. It was shown, in particular,
that qualitative type of the dependence is determined by the
way how spectra of the two chains intersect with each other.
For example, the transmission coefficient monotonically in-
creases with frequency provided that the highest frequencies
of the two chains are equal [see formula (37)]. Presented
qualitative results may be important, e.g., for understanding
of transmission through the interface between two lattices
with several particles per unit cell (and several branches of
the dispersion relation), because their spectra may intersect in
many different ways.

It was shown that the elastic foundation can make the
interface totally transparent (the transmission coefficient is
equal to unity). The acoustic transparency is observed at fre-
quency, given by formula (40). In the vicinity of this frequency
the transmission coefficient is close to one, and therefore
the interface is almost transparent. Mathematical explanation

of the acoustic transparency is that equations of motion for
both chains have the same exact solution in the form of
an infinite harmonic wave. This wave propagates through
the interface without any reflection or distortion. Similar be-
havior is observed for wave packets. The amplitudes of the
displacements/velocities in the incident and transmitted wave
packets are equal, while widths of these wave packets are
different. The ratio of widths is inversely proportional to the
ratio of group velocities of the two chains.

One of the goals of the present paper was to analyze the
influence of parameters of the two chains on the transmission
coefficient. The complete analysis is quite cumbersome be-
cause even if we set c12 = c1, the problem still contains seven
parameters: wave frequency, two masses, and four stiffnesses.
Using dimensionalization, we have reduced the number of
parameters to four.

We note that the effect of nonlinearity of interparticle in-
teractions and on-site potential on the transmission coefficient
have not been considered in the present paper. We assume that
since the transmission of wave packets through the interface
is a relatively fast process, a weak nonlinearity may not have
enough time to manifest (similarly to quasiballistic energy
transfer [7,10,43] and interfacial heat transfer [44] in weakly
nonlinear lattices). Therefore we believe that the presented
results should be valid for anharmonic systems at least in
the weakly nonlinear limit. However, determining the limits
of applicability of the linear model, considered in the present
paper, requires a separate study.

From a practical point of view, the presented results
may serve, in particular, for managing energy transport and
interfacial thermal resistance (Kapitza resistance [16]) in
low-dimensional systems at the nanoscale, e.g., carbyne,
nanowires, graphene, and other one- and two-dimensional
materials. The low-dimensional systems are usually located at
the substrate, which acts as the elastic foundation. Our results
show that by chooosing properties of the elastic foundation
one may control the transmission coefficient and therefore the
interfacial thermal resistance. We refer to paper [17] for a
comprehensive review on the state of the art in the interfacial
thermal resistance problem and to the recent paper [44] for
analytical expressions for the Kapitza resistance in harmonic
one-dimensional chains.
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APPENDIX A: SOME CHARACTERISTICS
OF A WAVE PACKET

We calculate values u2
n, v2

n , ε2
n+ 1

2
, unun+1, hn+ 1

2
for a wave

packet, propagating in the chain 2 (n � 0), using the following
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expression for the transmitted wave packet:

un = B(βna, βt ) sin(k2n − Ωt ), β � 1. (A1)

Squares of displacements and velocities are equal to

u2
n = 1

2
B2(βna, βt )[1 − cos(2k2n − 2Ωt )],

v2
n ≈ 1

2
B2(βna, βt )Ω2[1 − cos(2k2n − 2Ωt )].

(A2)

Here and below the sign “≈” means that the terms, vanishing
as β → 0, are neglected. Squared deformations of the bonds
and products of displacements of the neighboring particles are
equal to

ε2
n+ 1

2
≈ 2B2(βna, βt ) sin2 k2

2
[1 + cos ((2n + 1)k2 − 2Ωt )],

unun+1 ≈ 1

2
B2(βna, βt )[cos k2 − cos ((2n + 1)k2 − 2Ωt )].

(A3)

The local energy flux, defined by formula (20), is equal to

hn+ 1
2

≈ 1

2
m2Ω

2g2B2(βna, βt )[1 + cos ((2n + 1)k2 − 2Ωt )].

(A4)
The local energy is equal to

en = 1

2
m2v

2
n + c2

4

(
ε2

n+ 1
2
+ ε2

n− 1
2

)
+ 1

2
d2u2

n

≈ 1

2
m2Ω

2B2(βna, βt )

(
1 + m2Ω

2 − d2

m2Ω2

× cos
k2

2
cos(2k2n − 2Ωt )

)
. (A5)

It is seen that all quantities considered above are represented
as a sum of a slowly changing function, proportional to the
squared envelope B2, and an oscillating function. When these
quantities are integrated over large time, the oscillating part
can be neglected, provided that β is sufficiently small. Then

en ∼ 1

2
m2Ω

2B2(βna, βt ),

hn+ 1
2

∼ 1

2
m2Ω

2g2B2(βna, βt ),

u2
n ∼ 1

2
B2(βna, βt ), v2

n ∼ 1

2
B2(βna, βt )Ω2,

unun+1 ∼ 1

2
B2(βna, βt ) cos k2,

(A6)

where the “∼” sign means that functions have the same inte-
gral for small β:

f1(t ) ∼ f2(t ) ⇔
∫ ∞

0
f1(τ ) dτ ≈

∫ ∞

0
f2(τ ) dτ. (A7)

From formula (A6) it follows, in particular, that the total
energy flux in chain 2 is approximately equal to E2(∞)g2.

APPENDIX B: CONSTITUTIVE RELATION FOR THE
“FORCE” CHANGING THE TOTAL FLUX

In this Appendix, we derive the constitutive relation for the
r.h.s. of the equation

h(∞) − h(0) =
∫ ∞

0
Fdt, (B1)

where

F = a

2
(c2 − c1)

(
v2

0 − d2

m2
u2

0

)

+ a(m1 − m2)

2m1m2
c2

1ε
2
− 1

2
+ ac1

2

(
d1

m1
− d2

m2

)
u0u−1. (B2)

The main goal is to represent the r.h.s. of formula (B1) in
terms of energy of the transmitted wave packet E2(∞).

We use equations of energy balance for chain 2 and for the
particle 0:

Ė2 = h− 1
2
/a, aė0 = h− 1

2
− h 1

2
, (B3)

where e0 is the total energy per particle 0, defined by (50).
Additionally, we use the following identities relating quanti-
ties corresponding to chains 1 and 2∫ ∞

0
v2

0dt = (u0v0)|∞0 −
∫ ∞

0
u0v̇0dt =

= − 1

m2

∫ ∞

0
u0
(
F1

2
− F− 1

2
− d2u0

)
dt,

F 2
− 1

2
= F 2

1
2

+ (m2v̇0 + d2u0)
(
m2v̇0 + d2u0 − 2F1

2

)
.

(B4)

Here in the first identity the nonintegral term is neglected,
assuming that there is no localization of energy at the inter-
face. The second identity is obtained by combining squared
equation of motion (12) for particle 0 with the same equa-
tion multiplied by F1

2
.

We integrate equations (B3) and the second equation in
(B4) over time:

aE2(∞) =
∫ ∞

0
h− 1

2
dt =

∫ ∞

0
h 1

2
dt,∫ ∞

0

(
m2v

2
0 − d2u2

0

)
dt = −

∫ ∞

0
u0

(
F1

2
− F− 1

2

)
dt,∫ ∞

0
F 2

− 1
2
dt =

∫ ∞

0
F 2

1
2
dt+

+
∫ ∞

0
(m2v̇0 + d2u0)

(
m2v̇0 + d2u0 − 2F1

2

)
dt .

(B5)

Further, we show that all integrals in this formula are propor-
tional to E2(∞). Note that formulas (B5) are exact and valid
under arbitrary initial conditions (provided that (u0v0)|∞0 ).

We assume that the energy is transferred to chain 2 by
a wave packet with frequency Ω and unknown envelope
B(βna, βt ):

un = B(βna, βt ) sin(k2n − Ωt ), n � 0, |β| � 1. (B6)

According to the definition (B1), the “force” F linearly de-
pends on u2

0, v2
0 , ε2

− 1
2
, and u0u−1. The first two of these

quantities are related to the envelope of the wave packet (B6)
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as (see Appendix A)

u2
0 ∼ u2

1 ∼ 1

2
B2(0, βt ), v2

0 ∼ 1

2
Ω2B2(0, βt ), (B7)

where the “∼” sign means that the functions have the same in-
tegral for small β [see definition (A7)]. The quantities u0u−1,
ε2
− 1

2
are represented in terms of the envelope function using

the following relations, derived from (B5) and (B6):

c1u0u−1 ∼ (c1 + c2 + d2)u2
0 − c2u0u1 − m2v

2
0,

c2
1ε

2
− 1

2
∼ c2

2ε
2
1
2

= c2
2

(
u2

0 + u2
1 − 2u0u1

)
,

u0u1 ∼ 1

2
B2(0, βt ) cos k2.

(B8)

We note that under assumption (B6), the fourth formula from
(B5) yields F 2

− 1
2

∼ F 2
1
2
.

Similarly, the local flux h 1
2

is represented as (see Ap-
pendix A)

h 1
2

∼ 1

2
m2Ω

2g2B2(0, βt ). (B9)

Then formulas (B7), (B8), and (B9) show that u2
0, v2

0 , ε2
− 1

2
,

u0u−1, and h 1
2

are represented in terms of B2(0, βt ). In turn,

B2 is related to the energy E2 via the first formula from (B5)
and formula (B9):∫ ∞

0
B2(0, βt ) dt ≈ 2aE2(∞)

m2Ω2g2
. (B10)

This formula allows to represent all quantities in the expres-
sion for integral of F in terms of the energy E2(∞). Using
(B10) and formulas (B7) and (B8), we obtain∫ ∞

0

(
v2

0 − d2

m2
u2

0

)
dt ≈

(
Ω2 − d2

m2

)
aE2(∞)

m2Ω2g2
,

∫ ∞

0
c2

1ε
2
− 1

2
dt ≈

(
Ω2 − d2

m2

)
c2aE2(∞)

Ω2g2
,

∫ ∞

0
c1u0u−1dt ≈

(
2c1 + d2

m2
− Ω2

)
aE2(∞)

2Ω2g2
.

(B11)

Then formulas (B1) and (B11) yield∫ ∞

0
Fdt ≈ G(Ω )E2(∞), (B12)

where G(Ω ) is given by formula (30).
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