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The system of particles �atoms� interacting via multibody interatomic potential of general form is consid-
ered. Possible variants of partition for the total force acting on a single particle into pair contributions are
discussed. Two definitions for the force acting between a pair of particles are compared. The forces coincide
only if the particles interact via pair or embedded-atom potentials. However in literature both definitions are
used in order to determine Cauchy stress tensor. A simplest example of pure shear for perfect square lattice is
analyzed. Two methods for stress calculation are considered. It is observed that, at least in the particular case,
stresses calculated using classical continuum mechanics definition do not depend on the way of partition for the
total force. In contrast, Hardy’s definition gives different results depending on the radius of localization
function. The differences strongly depend on the way of the partition.
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I. INTRODUCTION

Classical molecular dynamics �MD� �1,2�, based on the
numerical solution of the Newtonian equations of motion for
many interacting particles, has been widely used for physical
modeling and simulation for several decades. Interactions
between particles are usually described by so-called empiri-
cal interatomic potentials. A variety of potentials has been
proposed: starting with simple pair potentials �3�, more ac-
curate embedded-atom potential �4� and ending with com-
plex bond-order potentials �5–7�. The MD simulation tech-
nique requires calculation of the total force acting on every
particle. If the potential energy is known, then the total force
Fi acting on particle number i is determined by the following
formula �8�:

Fi = −
�U��Ri�i=1

N �
�Ri

, �1�

where �Ri�i=1
N is the set of particle radius-vectors; N is the

total number of particles; U is the total potential energy of
the system. Thus formula �1� is sufficient for MD simulation.
However interpretation and verification of simulation results
are not so straightforward. The usual way is to calculate
continuum variables, such as stress tensor and heat flux, dur-
ing MD simulation and compare the results with predictions
of continuum theory. This problem was addressed by many
authors starting from the late 19th century �9�. Comprehen-
sive reviews on this topic may be found in papers �10,11�. In
the majority of approaches it is assumed that the total force
can be expressed by the summation of pair contributions Fij
satisfying Newton’s third law �see, for example, Hardy’s for-
malism �12��

Fi = �
j�i

Fij, Fij = − F ji. �2�

Here and below the summation is carried out over all par-
ticles in the system. In the paper �11� it was stated that par-

tition �Eq. �2�� can always be carried out. However the physi-
cal meaning of Fij is clear only for pair interactions.
Moreover it was stated in �16� that division �Eq. �2�� may be
nonunique. Let us explain the reason for the ambiguities.
Any system with pair interactions is equivalent to the set of
particles connected by longitudinal springs. Therefore Fij is a
force caused by the deformation of the spring. In contrast the
simplest system with multibody interactions can be imagined
as the set of particles connected by longitudinal and angular
springs between the bonds. Every angular spring belongs to
three particles and causes the forces acting on all of them.
Even in this simple case partition �Eq. �2�� is not straightfor-
ward. Note that commonly used multibody potentials, such
as Tersoff �6�, are even more complex. Several definitions for
Fij were proposed in literature. In the paper �13� the quantity
Fij, satisfying Eq. �2�, was introduced for systems with three-
body forces �5–7�. The generalization for N-body forces was
carried out in �14�. Another definition for Fij was given in
papers �15,16�. Both expressions for Fij mentioned above
were used in order to calculate Cauchy stress tensor for a
discrete system with multibody interactions �13,16,19�.
However the comparison of these approaches for calculation
of stresses and the analysis of different definitions for Fij
were not carried out.

In the present paper the problem of the partition for the
total force into pair contributions is discussed in detail. Two
definitions for the force Fij acting between a pair of particles
�material points �20�� are considered. It is shown that the
partition is not unique and does depend on the way the po-
tential energy is represented. The influence of the partition
on the value of stresses is analyzed for the simplest
example—a pure shear of a square lattice.

II. THEORY

Let us compare possible definitions for the force Fij acting
between two particles. Consider the approach proposed in
the paper �13� for the case of three-body interactions. It was
shown that both the Stillinger-Weber �5� potential and the
Tersoff �6� potential can be expressed in the following form:*kuzkinva@gmail.com
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U =
1

2�
i

Ui, Ui = �
j�i; k�i,j

Uijk�Rij,Rik,Rkj� . �3�

Here and below Rij =Ri−R j , Rij = �Rij�. Then using defini-
tion �Eq. �1�� the total force acting on the ith particle can be
represented in form �Eq. �2��, where the expression for Fij
has form

Fij = −
1

2 �
k�i,j

��Uijk + Ukij + Ukji + Ujik + Uikj + Ujki�
�Rij

eij .

�4�

Here and below eij =
def

Rij /Rij. The definition for the force Fij
acting between particles i and j arises in a natural way while
calculating the derivative. On the other hand in the paper
�13� it was shown that the same results can be obtained using
the following definition:

Fij =
def

−
�U

�Rij
eij . �5�

One can see that Eqs. �2� are satisfied and furthermore Fij is
central, i.e., parallel to the vector connecting particles i and j.
The above mentioned approach was generalized in the paper
�14�. Let us assume that the total potential energy depends on
all the interatomic distances in the system, i.e.,

U = U��Rkn�k,n�k� . �6�

Formula �6� is the most general form for potential energy of
the atomic system. According to definition �1� the total force
Fi is

Fi = − �
k,j�k

�U

�Rkj

�Rkj

�Ri
= − �

j�i

�U

�Rij
eij . �7�

One can see that again definition �5� naturally follows from
the derivation. Thus in general case �Eq. �6�� the total force
can be expressed in form Eq. �2�.

The partition discussed above requires the potential en-
ergy U to be represented as a function of all the interatomic
distances in system �Eq. �6��. The requirement is automati-
cally satisfied in the case of pair potentials �3� and the
embedded-atom potential �4�. However representation �Eq.
�6�� may be inconvenient in the case of bond-order potentials
such as Stillinger-Weber �5� and Tersoff �6�, which depend
on angles between bonds. Let us consider the approach pro-
posed in papers �15,16�. Assume that the total potential en-
ergy of the system has the form

U = �
i

Ui��Rij� j�i� . �8�

Obviously all potentials mentioned above can be represented
in form �Eq. �8��. In contrast to the previous approach, the
geometry of the atomic system should be represented via
vectors �Rij� j�i, but not interatomic distances. At first glance
it seems that both approaches are equivalent. Let us show
that in general this is not true. Calculating the total force Fi
using definition �1� and expression �8� one obtains

Fi = − �
j

�
k�j

�Uj

�R jk
·
�R jk

�Ri
= �

j�i
	 �Uj

�R ji
−

�Ui

�Rij

 ,

Fij =
def �Uj

�R ji
−

�Ui

�Rij
. �9�

One can see that introduced definition for Fij satisfies New-
ton’s third law, i.e., Fij =−F ji. It can be shown that forces Fij
are central in the case of pair potentials and embedded-atom
potential. Moreover in these particular cases definitions �5�
and �9� exactly coincide. However in general this is not true.
Note that the partition of the total energy �Eq. �8�� is not
unique. According to formula �9� the partition can, in gen-
eral, affect the value of the force Fij. However the majority
of commonly used potentials are based on partition �Eq. �8��
as well. For example, in the case of the Tersoff potential and
the Stillinger-Weber potential the partition is determined by
formula �3�. The comparison of different partitions will be
carried out below for a simple example �see formulas �21�
and �23��.

Let us compare definitions �5� and �9� in the case of three-
body potentials. Rewriting the expression for potential en-
ergy �Eq. �3�� in the form analogous to Eq. �8� one obtains

U = �
i

Ui, Ui =
1

2 �
k,n�k

Ũikn�Rik,Rin� ,

Ũikn�Rik,Rin� = Uikn�Rik,Rin,Rkn� . �10�

One can show that in this case expression �9� for Fij takes the
form

Fij =
def1

2 �
k�i,j

� �

�R ji
�Ũjik + Ũjki� −

�

�Rij
�Ũijk + Ũikj�� .

�11�

Let us substitute the last formula from Eq. �10� in Eq. �11�
and calculate the derivatives. Then Fij can be expressed in
the following form:

Fij =
def

−
1

2 �
k�i,j

� ��Uijk + Uikj + Ujik + Ujki�
�Rij

eij

+
��Ujik + Ujki�

�Rik
eik +

��Uijk + Uikj�
�Rkj

ekj� . �12�

One can see that expressions �4� and �12� are different. In
particular, from Eq. �4� it follows that forces Fij are parallel
to Rij. According to Eq. �12� this is not true. Further these
statements will be explicitly shown for a simple example
�see Eqs. �16�, �20�, and �22��.

III. CALCULATION OF CAUCHY STRESS TENSOR

Let us consider practical consequences of different ways
of partition for the total force. It was mentioned above that
results of MD simulation are usually compared with predic-
tions of continuum theory. Equivalent continuum quantities,
such as Cauchy stress tensor, are calculated for this purpose.
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The stress tensor characterizes external forces acting on the
material surface surrounding the volume selected from the
continuum media. Therefore the forces should be divided
into internal and external in order to calculate stress. The
analogous situation occurs if one defines equivalent stress
tensor for discrete system. Obviously, it is impossible to ex-
press stress tensor in terms of the total forces acting on the
particles. Therefore partition �Eq. �2�� is required. It was
shown above that the partition is not unique. Thus we obtain
the result that stresses in a material can depend on the choice
of definition for Fij. Let us consider the simplest example,
notably a pure shear of a perfect zero-temperature square
lattice. Let particles interact via angular springs connecting
two neighboring bonds. Only nearest neighbors are taken
into account. Longitudinal springs may also be added but
their contribution to forces Fij is the same for both expres-
sions �5� and �9�. Let us consider particle number 0 with
radius-vector R0 and denote its neighbors as in Fig. 1. Note
that this numbering takes symmetry into account, for ex-
ample, R01=−R0�−1�. Assume that potential energy of the
spring connecting bonds R01 and R02 is given by the follow-
ing expressions:

U012 =
c

2
	R01

2 + R02
2 − R12

2

2R01R02

2

, Ũ012 =
c

2
�e01 · e02�2.

�13�

Note that U012
 Ũ012. However different representations for
the energy are required in order to use definitions �5� and �9�.
In the case of small deformations formulas �13� correspond
to the energy of harmonic angular spring with stiffness c. Let
us derive expressions for forces F01, F02, F12, F1�−2�. The
remaining forces can be obtained using symmetry or New-
ton’s third law, for example, F12=F�−2��−1� , F01=−F10. First
let us use definition �5�. For example, let us calculate F01.
Form the symmetry reasons the following identity is satis-
fied:

�

�R01
�U012 + U01�−2�� =

�

�R0�−1�
�U0�−1�2 + U0�−1��−2�� .

�14�

One can show using identity �14� and definition �5� that force
F01 has form

F01 = −
�U

�R01
e01 = − 2

�

�R01
�U012 + U01�−2��e01, �15�

The resulting expression for F01 can be obtained substituting
the first formula from Eq. �13� into formula �15� and calcu-
lating the derivatives. Analogous derivations can be carried
out for forces F02, F12, F1�−2�. As a result one obtains

F01 =
4c

R
sin2 �e01, F12 =

2�2c

R
sin ��1 − sin �e12,

F02 =
4c

R
sin2 �e02, F1�−2� = −

2�2c

R
sin ��1 + sin �e1�−2�.

�16�

where R=R01=R02, � =
def

arcsin�e01·e02�. It is clear that forces
�Eq. �16�� are central. Linearizing the expressions in the case
of small shear ����1 and leaving first order terms only one
obtains

F01 � 0, F02 � 0,

F12 �
2�2c�

R
ê12, F1�−2� � −

2�2c�

R
ê1�−2�, �17�

Here and below êij =
def

eij ��=0.
Let us use definition �9�. It was mentioned above that

representation �Eq. �8�� of the total energy used in formula
�9� is not unique. Let us compare two possible ways of the
partition for the total energy. In the case under consideration
particle number 0 is surrounded by four nearest neighbors
and four corresponding spring. First, let us assume that the
energy of the springs contribute to energy U0 of particle
number 0 only, i.e.,

U0 = Ũ012 + Ũ01�−2� + Ũ0�−1�2 + Ũ0�−1��−2�. �18�

This way of partition is the simplest one and it is similar to
the partition used in the definition for the Tersoff potential
and the Stillinger-Weber potential �Eq. �10��. For example,
let us calculate F01 using definition �9�.

F01 =
�U1

�R10
−

�U0

�R01
= − 2

�U0

�R01
= − 2

�

�R01
�Ũ012 + Ũ01�−2�� ,

�19�

The symmetry of the problem was taken into account �
�U1

�R10

=−
�U0

�R01
�. Formulas analogous to Eq. �19� can be derived for

forces F02, F12, F1�−2�. Then straightforward calculations lead
to the following results:

F01 = −
4c

R
sin ��e02 − e01 sin ��, F12 = 0,

FIG. 1. Particle number 0 and its nearest neighbors.
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F02 = −
4c

R
sin ��e01 − e02 sin ��, F1�−2� = 0. �20�

Note that in formula �20� forces F12 , F1�−2� are exactly equal
to zero. Obviously forces �Eq. �20�� are noncentral and are
not equal to the previous result �Eq. �16��. Linearizing for-
mulas �20� and leaving first order terms only one obtains

F01 � −
4c�

R
ê02, F02 � −

4c�

R
ê01, F12 = F1�−2� = 0.

�21�

The second way of partition for the total energy was pro-
posed in the paper �16�. Energy U012 of the spring was di-
vided between particles number 0, 1, and 2 in equal portions,
i.e., 1

3U012 contributes to the energy of each particle. In other
respects derivations of expressions for the forces are analo-
gous to the development of formulas �20�. The results are as
follows:

F01 = −
8c

3R
sin ��e02 − e01 sin �� ,

F02 = −
8c

3R
sin ��e01 − e02 sin �� ,

F12 =
2�2c

3R
sin ��1 + sin ���1 − sin �e12,

F1�−2� = −
2�2c

3R
sin ��1 − sin ���1 + sin �e1�−2�. �22�

Note that in contrast to formula �20� forces F12, F1�−2� deter-
mined by formula �22� are not equal to zero. Linearized ex-
pressions �22� has the following form:

F01 � −
8c�

3R
ê02, F02 � −

8c�

3R
ê01,

F12 �
2�2c�

3R
ê12, F1�−2� � −

2�2c�

3R
ê1�−2�. �23�

Thus one can see from formulas �16�, �20�, and �22� that all
approaches mentioned above lead to qualitatively different
expressions for forces.

Let us calculate stress vector � acting on crystal’s cross-
section with normal orthogonal to vector e02. According to
classical continuum mechanics definition, the stress vector is
equal to the force acting on the cross-section per unit length.
Then � has the following form

� =
1

R
�F10 + F12 + F1�−2�� . �24�

Substituting formulas �16�, �20�, and �22� into formula �24�
one obtains that in all the cases the stress vector can be
expressed as

� =
4c

R2sin ��e02 − e01 sin �� . �25�

Thus, we are coming to the conclusion that stresses calcu-
lated using different expressions for Fij are equal. Therefore
at least in the case under consideration classical continuum
mechanics definition of stresses does not depend on the par-
tition for the total force. Linearizing expression �25� for the
case of small shear one obtains

� � C44
� �ê02, C44

� =
def4c

R2 . �26�

The second formula from Eq. �26� coincides with the well-
known expression for elastic constant C44 of the square lat-
tice, obtained, for example, in �17�. Index star is used in
order to mark the exact solution.

Application of mentioned above definition for the stress is
not very convenient, especially for dynamical problems in-
volving large thermal motion, structural transformations,
fracture, etc. Therefore in practice different approaches for
calculation of stress are used �see papers �10,11� for detailed
reviews�. In particular, Hardy’s formalism �12� is frequently
applied �11,13,16�. In papers �13,16� it was shown that in the
framework of Hardy’s formalism the potential part of
Cauchy stress tensor at spatial point R0 and time t has the
form

�pot�R0,t� = −
1

2�
i

�
j�i

FijRij�
0

1

���Rij + R j − R0�d� ,

�27�

where � is so-called localization function �see �16� for de-
tails�. Formula �27� was used in the paper �13� and in the
Appendix of the paper �16�. However the quantity Fij has
different meanings in them. Formula �5� was used as a defi-
nition for Fij in the paper �13�. In contrast in the paper �16�
quantity Fij was calculated using formula �9�. It was shown
above that, in general, forces calculated with the use of Eqs.
�5� and �9� are different. Thus corresponding stress tensors
are also different. The accurate comparison of the stress ten-
sors will be addressed in a separate paper. In the present
work only the simplest example is analyzed.

Consider the example of linear pure shear of the square
lattice. Let us calculate Cauchy stress tensor at the point R0,
where particle number 0 is placed. For simplicity the radial
step function is used as a localization function. Function � is
equal to 1 / ��rL

2� inside the localization volume and zero in
the remaining space. Here and below rL is radius of the lo-
calization volume. One can prove substituting formulas �17�,
�21�, and �23� into formula �27� that in all these cases stress
tensor is symmetric. Note that, in general, this is not obvious
as forces �Eqs. �21� and �23�� are noncentral. Let us show
that this is indeed the case. Consider the forces given by
formula �21� and assume that rL=R. Then expression �27� for
stress tensor takes form
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�pot = −
1

�R2 �F01R01 + F0�−1�R0�−1� + F02R02 + F0�−2�R0�−2��

= −
2

�R2 �F01R01 + F02R02� =
8c�

�R2 �ê02ê01 + ê01ê02� , �28�

where the following identity was used F0�−1�=−F01. One can
see that tensor �Eq. �28�� is symmetric. Analogous deriva-
tions can be carried out for the forces determined by formula
�23�.

Let us calculate elastic constant C44 of the system as it
completely determines stresses in the case of linear pure
shear. The exact solution of this problem is given by the
second formula from Eq. �26�. The elastic constant calcu-
lated with different values of rL is shown in Fig. 2. One can
see from Fig. 2 that for small rL /R elastic constants calcu-
lated using expressions �5� and �9� for Fij are different. Fur-
thermore in the second case elastic constant C44 depend on
the partition for the total energy. However the expressions
converge to the same value C44

� with increasing radius of
localization function. Note that the elastic constant that cor-
responds to definition �5� converges to the exact solution
more rapidly. The practical consequence of this fact is that
the first approach requires a smaller value of rL than the
second one. Therefore the first approach is more efficient
from computational point of view.

IV. RESULTS AND DISCUSSION

Let us summarize the results. The problem of the partition
for forces acting in the discrete system with multibody inter-
actions into pair contributions is analyzed. Two methods for
partition, differing in the way of representation for the po-
tential energy U, are discussed. It is shown that in the frame-
work of both methods the total force Fi is expressed as a sum

of pair contributions Fij. In both cases the definition for Fij is
rather natural as the analog of Newton’s third law is satisfied,
i.e., Fij =−F ji. However the definitions coincide only in the
case of pair potentials and embedded-atom potential. In par-
ticular, according to the approach proposed in papers �13,14�
forces Fij are always central. In the framework of the ap-
proach proposed in papers �15,16� forces Fij are, in general,
noncentral. The difference was explicitly shown in the case
of three-body potentials �see Eqs. �16�, �20�, and �22��. Thus
the partition mentioned above is not unique. It depends on
the representation of the potential energy. The influence of
the partition on the value of stress tensor is analyzed for the
simplest example of pure shear of perfect zero-temperature
square lattice. Two definitions for the stress are considered. If
the stress is calculated as a force acting on the cross section
of the crystal per unit length then all expressions for Fij
considered above lead to exactly the same value of stress. In
contrast, Hardy’s definition �27� gives different values of
stress depending on the size of localization volume. The dif-
ferences depend strongly on the way of force definition. Ac-
curate comparison of different expressions for stress tensor
in the case on nonlinear deformation involving thermal mo-
tion is addressed in our future work.

Finally let us note that in the case of multibody interac-
tions a common point of view on the definition for the force
acting between two particles does not exist. Summarizing the
results of the present paper one can formulate several advan-
tages of definition �5�. First, it was mentioned that forces
defined by formula �5� are central. In this case equation of
angular momentum balance is satisfied for any subsystem of
the discrete system �18�. It leads, in particular, to uncondi-
tional symmetry of corresponding Cauchy stress tensor. Note
that in the framework of classical continuum mechanics the
symmetry is required �18�. On the other hand, in the paper
�16� it was shown that definition �9� is more appropriate for
the formulation of equivalent micromorphic continuum
theory for discrete systems. The second appealing feature of
definition �5� is that, at least in the considered case, corre-
sponding stress tensor converges to the exact solution more
rapidly than in the case of definition �9�. In the last case it is
shown that the convergence rate depends on the way of par-
tition for the total energy.
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FIG. 2. Calculated elastic constant C44 divided by the exact
solution C44

� . Squares, triangles and circles correspond to elastic
constant calculated using expressions �17�, �21�, and �23�,
respectively.
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