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Abstract. The work is devoted to description of unsteady thermal processes in low-

dimensional materials. One-dimensional harmonic crystals with alternating masses and 

stiffnesses are considered. Analytical solution demonstrates the ballistic nature of heat 

propagation, which is confirmed by numerical simulations based on the particle dynamics 

method. It is shown that temperature distribution propagates as two consecutive thermal 

fronts with finite speed, and its initial shape is preserved.  
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1. Introduction 
The relevance of this study is connected with the active development of new technologies for 

creating materials that allow to regulate the material composition and structure at the atomic 

level [1-3]. The properties of low-dimensional materials are often unique, which opens up 

promising opportunities for their application [4]. For example, the hexagonal boron nitride 

has high stability, chemical resistance, hardness, strength and thermal conductivity [5, 6]. In 

general, low-dimensional materials have a complex crystal structure. For example, two-

dimensional graphene lattice consists of two sublattices formed by carbon atoms, and the 

sublattices of hexagonal boron nitride, binary boron and nitrogen compound, are formed by 

two different kinds of atoms. Filamentary nanocrystals (nanowires, nanowhiskers) can be 

formed by either one type of atoms (silicon, carbon-carbine), or several ones (gallium 

arsenide, indium phosphide). Hence, the development of models that would correctly describe 

the physical and mechanical properties of such media and structures, including non-stationary 

thermal processes, becomes particularly important. It should be noted that the existing 

mathematical models are often not applicable to low-dimensional structures. For example, 

recent experimental studies have shown that heat propagation at the nanoscale has peculiar 

properties [6-8]. In particular, the Fourier law, which implies the diffusive type of heat spread, 

is not fulfilled for low-dimensional structures; in contrast, the heat propagation in 

nanostructures is of a ballistic nature [7, 9]. The analytical solution demonstrating the 

anomalous heat propagation in one-dimensional harmonic chain was first presented in [10]. 

The solution was obtained for the stationary problem of heat propagation between two 

thermal reservoirs with different temperatures, and it was shown that the thermal resistance 

does not depend on the length of the chain, which contradicts the Fourier law; harmonic 

crystals consisting of particles with different masses were considered, for example, in [11, 

12]. 
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In recent works [13-17], a method that allows analytical description of thermal 

processes in harmonic crystals has been developed. This paper is devoted to application of 

this method to one-dimensional harmonic crystals with alternating masses and stiffnesses. The 

object of investigation is a harmonic crystal, which is a crystal lattice consisting of material 

points interacting via linearized forces. The principle of separation of fast and slow thermal 

processes is applied. Characteristic time for a fast process is of order of several periods of 

atomic vibrations. Fast motions refer to fluctuations in the kinetic temperature associated with 

the partial transfer of the kinetic energy to thermal energy; in polyatomic crystals, it is 

accompanied by the redistribution of kinetic energy over the unit cell's degrees of freedom. 

Characteristic time for a slow process is much larger than a period of atomic vibrations [18, 

19]; heat transport, i.e. time evolution of the spatial distribution of kinetic temperature, is a 

slow process. In this paper, analytical solutions are given for two unsteady heat transfer 

problems: (i) cold and hot half space contact and (ii) propagation of an initially rectangular 

thermal perturbation. Analytical results are verified by numerical simulation based on the 

particle dynamics method. 

 

2. Problem statement 

 

 
Fig. 1. One-dimensional harmonic crystal with alternating masses 

 

Lattice dynamics equations. Initial conditions. Particle dynamics equations for an 

infinite one-dimensional harmonic crystal with alternating masses (Fig. 1) have the form: 

  ̈      
 (                 )        ̈      

 (                 ). (1) 

Here      and      are displacements of the particles with masses    and    which 

belong to the  th unit cell;   is the bond stiffness, and the respective frequencies are 

   √ 
  

⁄  and    √ 
  

⁄ . Following [20], we introduce the equilibrium interparticle 

distances:   is the one inside the unit cell, and     is the distance between the neighboring 

particles from different cells. Hence, the so-called length of the unit cell is equal to  . 

Consequently, for the case of       the system yields to one-dimensional harmonic chain 

with the unit cell length equal to   ⁄ . 

In order to reduce the number of unknowns, let us introduce a parameter        : 

              
 ⁄                  √ 

 ⁄          √   (2) 

Taking the symmetry of its definition (2) into account, we can restrict ourselves to 

       . 
The initial conditions are written as follows 

                                 ̇                   ̇            , (3) 

where      are random velocities with zero mean, i.e. their mathematical expectations are 

equal to zero. Such initial conditions are used, for instance, to model an ultrashort laser 
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impact [21, 22]. Note, that the solution of the resulting system (1)-(3) will be a set of random 

values. 

Dispersion relation. Let us seek the solution of (1)-(2) in the wave form with frequency 

  and one-dimensional wave vector  : 

        
                         

            (4) 

Hence, the dispersion relation is determined as 

    
    [(   

 ⁄ )  √    
  ⁄         ]  (5) 

 

 
Fig. 2. Dispersion curves for one-dimensional diatomic harmonic crystals with various mass 

ratios      . Black line (   ) corresponds to the one-dimensional harmonic chain 

 

Figure 2 shows the branches of dispersion relation for one-dimensional diatomic 

harmonic crystal at different values of the parameter        . For example, the curves for 

      correspond to the mass ratio for the two-dimensional hexagonal boron nitride (the 

exact value is 0.772), which possesses unique physical and mechanical properties [5, 6]. 

If the masses differ slightly, i.e.    , optic and acoustic branches    and    merge. 

Consequently, we obtain two dispersion curves for monoatomic chain, shifted by    along 

the horizontal axis relative to each other. The appearance of the two curves is due to the 

change in the translational symmetry; in this case we still solve the system (1) of the two 

equations for two neighboring particles. 

Differentiation of (5) with respect to the wave vector leads to the following 

representation of group velocities  

     
 

     
  

⁄           

(

 
         

     √    
  ⁄        

⁄

)

 
 

. (6) 

Note, that the dispersion curves (Fig. 2) will look the same for the system with 

alternating stiffnesses provided that the ratio of its parameters is kept 
  

  
⁄   . 
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3. Heat propagation 
Kinetic temperature. Let us now follow [13-17] and consider the transfer from the 

stochastic problem for particle displacements (1)-(3) to closed deterministic one for the 

statistical characteristics of pairs of particles.  

First, we introduce a spatial coordinate     , which is one of the convenient ways to 

identify a  th unit cell. Then, we introduce the kinetiс temperature        proportional to the 

sum of the kinetic energies of the particles in the unit cell:  

          
 ⁄ (  〈 ̇   

 〉    〈 ̇   
 〉)  (7) 

where    is Boltzmann constant, and brackets 〈 〉 denote mathematical expectation. 

Consequently, the velocities      (see initial conditions (3)) are the random velocities with the 

variance 〈    
 〉  

        
  

⁄ , where             . 

Thus, the conditions (3) mean that at the initial time, the particles have random 

velocities corresponding to a certain temperature field. This field correlates with the initial 

kinetic temperature of the system, while the potential energy is initially zero. This, in turn, 

means that, according to the virial theorem [13, 16, 23], after a certain period of time, the 

kinetic and potential energies will equilibrate. Characteristic time of this process is of order of 

several periods of atomic vibrations, and it is referred to as fast process. Also, at such times 

the kinetic energy is redistributed over the degrees of freedom inside the unit cell [17]. On the 

contrary, heat transport is a slow process, for which the characteristic time is much larger.  

It has been demonstrated that the propagation of the thermal perturbation       in a 

monoatomic chain is described by the formula [16]: 

            

   
     

  ⁄ ∫            
 

  

    
  ⁄ ∫ [  (         )    (         )]     

 

  

, (8) 

where   is frequency, determined by the dispersion relation,   is one-dimensional wave 

vector, and    is group velocity. At large times fast processes    vanish, and temperature field 

is a superposition of thermal waves travelling with the speed    and having the shape of the 

initial perturbation      . 
Analysis of fast processes for one-dimensional diatomic crystal is given in [17]. 

Specifically, it is demonstrated that the solution oscillates around the half of the initial 

temperature   , and its amplitude decays as  
√ 

⁄ . At larger times when fast processes are 

negligible, formulae (8) for polyatomic chain can be rewritten 

           
   ⁄ ∫ ∑ *  (     

     )    (     
     )+ 

        
 

  
  (9) 

where   is the number of atoms in the unit cell; for diatomic chain    ;    
 are the 

respective group velocities (6). Further, several solutions will be constructed and compared 

with the results of numerical simulation using the particle dynamics method. Formula (9) 

means that the heat propagation has ballistic character, which differs from the Fourier law. In 

the case of    , formula (9) was derived for scalar lattices [16]. 

Cold and hot half space contact. Let the initial thermal perturbation have the form of a 

Heaviside function: 

                    ̇         (10) 

where    is the temperature of     half-space before kinetic and potential energy 

equilibrate. Then, for the considered diatomic system, formula (9) yields to 
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Taking into account, that            we finally obtain 

 (  ⁄ )  
  

  ⁄ ∫ * (  ⁄     
    )   (  ⁄     

    )   (  ⁄     
    )  

 

  

 (  ⁄     
    )+      . (12) 

 

 
Fig. 3. Propagation of a Heaviside function in one-dimensional diatomic chain with different 

mass ratios       

 

Figure 3 shows the result of integration of (12) for different values of the parameter  

       . For     and     there are two thermal fronts travelling with finite speeds 

[16], i.e. maximum values of group velocities    
 and    

 respectively (6). Note, that    
   , 

corresponding to the acoustic branch, is always larger than    
   . 

If    , the two fronts merge and the solution coincides with the solution for the 

monatomic chain with the unit cell length equal to   ⁄  [13]: 

 (  ⁄ )  

{
 
 

 
 
  

 ⁄  
  

  ⁄       (     ⁄ )        
 ⁄

  
 ⁄       

 ⁄
  (13) 

To verify the obtained solution (12), a numerical simulation based on the particle 

dynamics method was carried out. A sample consisting of 1000 particles was considered, for 

which equations (1) were solved with initial conditions: 

                                  {
 ̇              ̇                

 ̇           ̇             
, (14) 

and periodic boundary conditions. The kinetic temperature was calculated using formula (7), 

where the mathematical expectation was approximated by averaging over 20 realizations with 
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various random initial conditions. Comparison of the analytical solution (12) with the 

numerical solution has shown a good agreement up to small thermal oscillations near    . 

Propagation of rectangular thermal perturbation. For further analysis of the limiting 

cases when     and    , let us consider the following initial temperature distribution 

          (             )      ̇         (15) 

where   is a half of the interval with nonzero temperature.  

The solution of this problem is a sum of solutions (12), according to superposition 

principle. Temperature distribution for a diatomic chain with       at several consequent 

times is shown in Fig. 4. Comparison of the analytical and numerical solutions (see Fig. 5) 

has also shown quite a good agreement. The deviations in the vicinity of     are caused by 

the residual fast processes, which have not fully decayed [17]. This effect decreases with the 

increase of the sample size. 

 

 
Fig. 4. Evolution of initially rectangular thermal perturbation (     ), analytical solution 

 

 
Fig. 5. Comparison of analytical and numerical solutions at t = 600s 
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According to the classical heat conduction theory, a maximum would be observed at 

    and it would decay exponentially. In the case of anomalous thermal conductivity, the 

solution decays faster near zero, forming four fronts that propagate two by two in opposite 

directions with constant speeds. 

Note that in a system with alternating masses or stiffnesses, the thermal front at large 

times, when the "peaks" become less prominent, looks in a way similar to the solution of a 

similar problem based on the Fourier thermal conductivity law, whereas the solution for a 

monatomic chain demonstrates a fundamentally different behavior [13]. 

If the width of the initial perturbation   decreases and its amplitude    increases, the 

solution tends to fundamental solution, i.e. solution with perturbation in the form of a delta 

function. Numerical simulation for     and     has demonstrated that the thermal fronts 

stay at a finite distance from each other, and the speed of the first ones (   
   , acoustic 

branch) always turns out to be greater than the speed of the second ones (   
   , optic branch). 

If one of the masses is negligible in comparison to another, i.e.    , most of the heat is 

transferred with the speed    
   , whereas if     almost all the heat propagates with    

   . 

These observations can be further used to test the presented theory in future experiments. 

 

4. Conclusions 
In the present work, the method that allows analytical description of heat propagation in 

harmonic crystals [13-17] is applied to one-dimensional harmonic crystals with alternating 

masses (Fig. 1). Solution (9) was obtained by analogy with (8) for scalar lattices [16]. Slow 

motions are considered: the temperature field is a superposition of waves moving with group 

velocities (6), and has the form of the initial temperature distribution. 

Analytical solutions are given for two problems: (i) cold and hot half space contact and 

(ii) propagation of an initially rectangular thermal perturbation. It is shown, that if the masses 

differ slightly, all the solutions tend to the profiles for a monoatomic chain.  

For the problem (i), it is demonstrated that, for any ratios between the masses, the initial 

thermal perturbation propagates in the form of two successive thermal fronts having finite 

speeds and repeating the form of the initial perturbation. The speed of the first, faster front 

corresponds to the acoustic branch of the dispersion relation (5), and the speed of the second 

front corresponds to the optical one. In turn, rectangular thermal perturbation (ii) splits into 

four thermal fronts, which propagate two by two in opposite directions with constant 

velocities.  

Comparison of the analytical results with numerical simulation shows that the presented 

theory describes the distribution of heat in a diatomic chain with high accuracy. It is 

demonstrated numerically that if the masses differ slightly, the main part of the initial 

perturbation propagates at a speed corresponding to the acoustic branch, but the velocities of 

the fronts corresponding to the optical branch remain finite. The latter means that up to the 

achievement of exact equality of the masses all fronts exist, and they are located at a finite 

distance from each other. 

The dispersion relation (5) is the same both for a chain with alternating masses and for a 

chain with alternating stiffnesses, if the ratio of the respective parameters is the same as well. 

Thus, from the point of view of the heat transfer problem, these systems are equivalent. Note 

that this is true only when considering the average temperature in the unit cell (7). The 

propagation of heat waves corresponding to different degrees of freedom will be significantly 

different for the two systems [17]. 
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