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ENERGY DISTRIBUTION IN ONE-DIMENSIONAL CRYSTAL
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Summary Reversible transfer between mechanical and thermal energy is considered for α-Fermi-Pasta-Ulam (FPU) crystal. Numeric study
for long enough periods of time demonstrate numerous transitions between mechanical and thermal degrees of freedom. Influence of initial
velocity fluctuations on the energy transfer process is analyzed.

INTRODUCTION

Nowadays, one of the most rapidly developing areas of modern mechanics is the mechanics of nanostructures [1, 2, 3].
Thanks to nanotechnologies it is possible to obtain almost ideal, defectfree materials. Therefore, prediction of the properties
and behavior of this materials is a topical problem. Understanding of heat transfer at microlevel is significant to obtain link
between microscopic and macroscopic description of solids [4, 5]. Development of computer technology allows to simulate
large enough pieces of material, and to investigate their behavior on the required time interval.

The important close topic is Zermelo’s Paradox, resulting from the Poincare recurrence theorem [6, 7], which can be
effectively studied using finite one-dimensional crystals. We study the celebrated α-Fermi-Pasta-Ulam (FPU) system [8, 9],
for which some questions still remain open.

In this regard, in this paper we consider the process of converting the mechanical energy of a nonlinear one-dimensional
crystal into heat and back over time. We also study the times much greater then the system return time.

PROBLEM DEFINITION

A chain of identical particles of mass m, connected by the same nonlinear springs with stiffness C is considered.

The dynamic equations have the form: ük = ω2
0(uk−1 − 2uk + uk+1)(1 + uk+1 − uk−1), ω0

def
=
√

C
m , where uk —

displacement of kth particle; k — index that is arbitrary integer. The boundary conditions are periodical: uk+N = uk, where
N � 1 — number of independent particles. Two cases are considered: deterministic and stochastic problem.

DETERMINISTIC PROBLEM

Initial conditions
Initial displacement is zero. Initial velocity in the crystal is defined as follows: v(x)|t=0 = A sin

(
2πx
L

)
, where A

— amplitude, L — crystal length, x ∈ [0, L].

The crystal shape determining method
For small time velocity distribution along the length of the crystal clearly has a sinus form. However, over the time the

chain distribution loses its shape and motion of particles indistinguishable from the heat. This happens due to the nonlinear
interaction between the particles. However, over the time the chain takes the form of a sine again but curved by thermal
motion. To determine how the chain shape is close to a sine more accurately, we calculate the parameter E∗ — ratio of the
total mechanical energy E to the total initial mechanical energy E0.E∗ ∈ [0, 1]. The larger the parameter E∗, the greater the
crystal shape is similar to a sine.

Analysis of the solution of the problem for a long period of time
Time in this section is measured in the number of oscillations of the sinus. According to the graph T (t) (Fig. 1a) you can

see that after some time system returns to a state close to the original. This means that the velocity distribution regains the sine
shape. It also shows that the system does not return to the initial state perfectly, but with some deviations. Fig. 1b shows the
same graph, but for a longer period of time. It is seen that the peak height isn’t constantly decreasing, but varying according
to a certain law.

STOCHASTIC PROBLEM

Initial conditions
Initial displacement in the crystal is zero. Initial velocity is defined as follows (Fig. 2a): v(x)|t=0 = A

(√
2 sin

(
2πx
L

)
+
√
3σρ

)
,

where A — amplitude, L — crystal length, x ∈ [0, L], σ — dispersion, ρ — random variable, ρ ∈ [−1, 1].
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a) For small T
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b) For big T
Figure 1: Results
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a) Initial conditions
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b) Results
Figure 2: Stochastic problem

Results
Time Tα, for which the function E∗(T ) falls below a certain value α, depending on the initial fluctuations dispersion σ,

was determined. α = 0.1, so we get the time value, for which 90% of the mechanical energy is converted into heat. Amplitude
A = 0.01 ·

√
2 ≈ 0.0141.

Three cases are calculated for the following amount of particles: N = 1000, N = 5000 and N = 25000 giving almost
the same results. In each case, the time Tα calculated for the variance σ = 0; 1; 2; 5; 10; 20; 50; 100. The results are shown
in Fig. 2b. This graph shows that the addition of thermal energy to mechanical at the initial time leads to the fact that the
mechanical energy converting into thermal energy becomes faster. It is also seen that the decay rate function E∗(T ) for the
initial dispersion of the investigated fluctuation range is practically independent from the number of particles.

CONCLUSIONS

The problem of converting of the mechanical energy into thermal energy and back over the time in one-dimensional
non-linear crystal is studied. If the crystal is short enough, after some time part of the thermal energy converts back into
mechanical energy. The longer is the crystal, the longer one needs to wait for the reverse transformation of the energy and the
less thermal energy goes back into mechanical energy. Time to reverse energy transformation is inversely proportional to the
amplitude of the velocity fluctuations. The addition of thermal energy to mechanical at the initial time leads to the fact that the
mechanical energy converts into thermal energy faster. By adding thermal energy 100 times greater than mechanical energy,
the transformation rate of the mechanical energy into thermal energy increases by about 3.5 times. For the investigated range
of the particles in the crystal (1000–25000), the rate of the mechanical energy conversion into thermal energy is practically
independent from the particle number in the crystal.

References

[1] Goldstein R.V., Morozov N.F.: Mechanics of deformation and fracture of nanomaterials and nanotechnology. Physical mesomechanics. 2007. vol. 10.
5. pp.1730.

[2] Krivtsov A.M., Morozov N.F.: About mechanical properties of nanoscale objects. Solid state physics. 44, 2158-2163, 2002.
[3] Krivtsov A.M.: Heat transfer in infinite harmonic one-dimensional crystals. Doklady Physics 60, 407–411, 2015.
[4] Hoover W.G., Hoover C.G.: Simulation and control of chaotic nonequilibrium systems. Advanced Series in Nonlinear Dynamics: Vol. 27, World

Scientific, 2015.
[5] Charlotte M., Truskinovsky L.: J. Mech. and Phys. of Solids 60, 1508, 2012.
[6] Katok A.B., Hasselblatt B.: Introduction to the modern theory of dynamical systems, Factorial, 1999. p. 768.
[7] Arnold V.I.: Mathematical methods of classical mechanics. Ed. 5th stereotype, Editorial URSS, 2003. - p. 62.
[8] Fermi E., Pasta J., Ulam S.: Studies of Nonlinear Problems. Los Alamos report LA-1940, published later in Collected Papers of Enrico Fermi, E. Segre

(Ed.), University of Chicago Press, 1965.
[9] Onoratoa M., Vozellaa L., Promentb D., Lvovc Y.V.: Route to thermalization in the α-Fermi-Pasta-Ulam system, Proceedings of the National Academy

of Sciences, 2015.

2451




