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1. INTRODUCTION 

In recent years, there have appeared a large number
of publications by Russian and foreign scientists,
devoted to computer simulation [1–5] and analytical
investigation [1, 5–9] of solids with microstructure.
The interest in these objects is associated, to a large
extent, with the development of nanotechnologies.
For example, carbon nanotubes are considered in [3,
7]. Small sizes and discrete structure of these materials
lead to the necessity of using atomistic approaches. It
is usually assumed that a medium with microstructure
can be represented by an ensemble of material points
or solids that model, for example, crystal lattice nodes
and interact with each other via a potential the param�
eters of which are determined from a comparison
between physical properties of the model and real
materials. For this purpose, it is necessary to find a
relationship between the characteristics obtained
within the discrete approach and the continuum
parameters [2, 5–7]. 

A common model of media with microstructure is
the crystal lattice. The “spherically symmetric” pair
force interaction potentials, which depend only on the
distance between the atoms, are effectively used for
both analytical description and numerical simulation
of close�packed lattices. In the case of non�close�
packed structures, this approach can lead to the prob�
lems associated with the instability of the model mate�
rial. Therefore, it is common practice to consider
either many�body interaction [10] or moment interac�
tion [11]. 

A frequently encountered crystal structure is the
hexagonal close�packed (HCP) structure, which is
typical for many metals. According to [12], the bond
in a metal crystal is non�directional, i.e., “spherically
symmetric”; consequently, in crystallography, a real
metal atom is replaced by a hard sphere with the
radius—the so�called metallic radius of atom—equal
to half of the distance between the nearest neighbor
atoms. A perfect close�packed lattice consists of hard
spheres packed in layers within a particular volume.
The lattice of real HCP metals has a lower density of
packing, which corresponds to the packing of the
ellipsoids of revolution rather than spheres. In the
majority of cases, the ratio of the semiaxes of the ellip�
soid differs from 1 by no more than 4%. 

The description of metals is usually performed
using the embedded atom potential [13], which cor�
rectly describes some of the HCP metals [14]. The
adequate description of other HCP metals requires a
modification [15] associated with the introduction of
additional terms that take into account the change in
the angle between the bonds. The modified embedded
atom potentials, which ensure the stability of the HCP
lattice for a number of metals, were constructed in [16,
17]. The embedded atom potential has a large number
of parameters that allows one to describe the elastic
and energy characteristics. However, as well as in the
case of the moment interaction, the procedures used
for fitting of the parameters and numerical simulation
are much more complicated in comparison with the
pair force interaction. In [18], it was proposed to use
the so�called anisotropic interatomic interaction
potential, which depends on the angle between the
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bonds. The symmetry of the crystal lattice in this case
is reflected by the potential function. 

In [19], it was shown that the elastic properties of
HCP metals from the B�subgroup of the Periodic
Table (transition elements) are fairly well described
using the pair force interaction models. In the present
paper, we consider the possibility of adequate descrip�
tion of HCP structures with the use of a pair force
interaction potential which contains a small number
of parameters, does not depend on the structure of the
lattice of real HCP metals, and ensures their stable
equilibrium. Under the conditions of the formulated
problem, we use spline potentials in order to exclude
atoms outside the so�called cut�off radius from con�
sideration [2, 20, 21]. For the chosen potential, we
verify the stability and energetic favorability of the
model. 

2. HEXAGONAL CLOSE�PACKED STRUCTURE 

The unit cell of an HCP lattice consists of parallel
rhombi with the side ac and the angle of 60°, which are
spaced at the distance c. An additional atom is located
on the middle plane between the bases of the cell. The
triple unit cell, which is frequently depicted (Fig. 1),
has a regular hexagon, which is formed by three
rhombi, in the base. The lattice of real HCP metals is
characterized by the parameter 

For the parameter η = η0 = , we have the closest
packing of the atoms. Let us also introduce the dimen�
sionless parameter ζ = (η – η0)/η0. 

Figure 2 shows two most frequently encountered
close�packed structures, i.e., HCP and face�centered
cubic (FCC) structures, as a sequence of spherical lay�
ers of two and three types, respectively. HCP structure
has a two�layer periodicity, and the sequence of layers
of this structure is written as …ABABAB…. FCC struc�
ture has a three�layer periodicity, which is character�

η c/ac.=

2 2/3

ized by the sequence …ABCABCABC…. Both struc�
tures have an identical packing density, which is equal
to the ratio of the total volume occupied by the actual
atoms in the crystal lattice to the total volume of the
crystal lattice itself; however, these crystal structures
have significant topological differences. FCC lattice is
simple: all the atoms (A, B, and C) are located in iden�
tical positions with respect to their environment. HCP
lattice is complex diatomic: with respect to the atoms
in the even (B) and odd (A) layers, their surroundings
are arranged differently. Let us consider that the atoms
located in the even and odd layers are of different
types, even though the atoms themselves are identical
and only the geometry of their surrounding differs.
Any complex lattice can be represented as several sim�
ple sublattices inserted into each other. For HCP lat�
tice, there are two simple sublattices, and they can be
obtained as a combination of the even and odd layers
of atoms, respectively. For a perfect HCP structure,
the double relative distance between the layers is η0 =

, while in the lattice of real HCP metals, this
distance can significantly differ from η0. For metals
with FCC lattice, these differences are not observed.
Thus, the lattice of metals that crystallize in HCP
structure will be described not by the close packing of
hard spheres but by the close packing of the ellipsoids
of revolution that are elongated or flattened in com�
parison with the sphere along the axis perpendicular to
the layer plane. Figure 3 shows metals with HCP
structure. In this figure, the dark�gray areas indicate
metals for which the double distance between the lay�
ers is less than the parameter η0 (Be, Mg, Sc, Ti, Co,
Y, Zr, Tc, Ru, Hf, Re, Os, Tl, Gd, Tb, Dy, Ho, Er, Tm,
Lu), and the light�gray areas indicate metals for which
this distance is larger than η0 (Zn, Cd, La, Ce, Pr, Nd,
Pm, Am, Cm, Bk, Cf) [22]. 

2 2/3

c

ac

ac

60°

Fig. 1. Unit cell of HCP lattice. 

A A A
B

B C

Fig. 2. Visualization of HCP (left) and FCC (right) struc�
tures. 
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3. CONSTRUCTION OF THE INTERACTION 
POTENTIAL 

We introduce the coordination tensor defined by
the expression [8] 

(1)

Here, nα are the unit vectors of the directions of the
bonds passing from the reference atom to the atom
with the number α. The summation is performed over
all the atoms that interact with the reference atom.
The type of reference atom does not matter. 

Let us consider the equilibrium of 12 nearest neigh�
bors of the reference atom without regard for the influ�
ence exerted by the next atoms. For a perfect HCP
structure, the coordination tensor for the 12 nearest
neighbors of the reference atom is spherical. Hence,
we can say that these atoms form the first coordination
sphere. For real metals, the asymmetry of the structure
leads to the asymmetry of the coordination tensor,
making it transversely isotropic. The plane of isotropy
of the tensor coincides with the plane of the layers.
Therefore, the 12 nearest neighbors of the reference
atom should be referred to as the first coordination
ellipsoid. 

Now, we turn to Fig. 4. Here, we use the following
notation: 0 is the reference atom; 1, 2, and 3 are the
atoms located on the first, second, and third coordina�
tion ellipsoids, respectively; and 3a are the atoms
which lie between the second and third coordination
ellipsoids if the parameter ζ < 1.33% (all metals

A nαnα.

α

∑=

marked by dark�gray color in Fig. 3 and cerium), or
which lie between the third and fourth coordination
ellipsoids if ζ > 13% (all metals marked by light�gray
color in Fig. 3, except for cerium). Metals character�
ized by the parameter ζ in the range 1.33% < ζ < 13.0%
do not exist. It should be noted that the tables [18, 23]
provide the values of R0, R, and η, where R0 is the dis�
tance between the reference atom and its nearest
neighbors located in the same layer as this reference
atom, R is the distance between the reference atom
and its nearest neighbors located in the adjacent layers,

and η =  is the double distance
between the layers. The distances between the refer�
ence atom and the atoms located on the first coordina�
tion ellipsoid are equal to R0 and R; the distances
between the reference atom and the atoms located on
the second coordination ellipsoid are equal to

; the distances between the reference atom
and the atoms located on the third coordination ellip�

soid are equal to  and ; and the dis�
tances between the reference atom and the atoms 3a
are equal to ηR0. 

According to [2], the stress tensor in a simple lat�
tice with pair force interatomic interaction has the
form 

(2)

2 R
2
/R0

2
1/3–

R0
2

R
2

+

R0 3 2R0
2

R
2

+

τ
1

2V0

������� aα  f aα( )nαnα,

α

∑–=

Fig. 3. Metals with HCP structure. 
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where f(r) = –Π'(r) is the interaction force, Π(r) is the
interaction potential, and V0 is the unit cell volume;
for HCP lattice, the unit cell represents a right prism
with the base in the form of a rhombus with the angle
of 60° (see Fig. 1). For a complex lattice, the stress

tensor has the form τ = , where τγ is calculated

by formula (2). In the case of diatomic HCP lattice,
γ = 2. It can be shown that τ1 ≡ τ2. Therefore, the equi�
librium condition for HCP structure in the absence of
external forces takes the form 

(3)

If we considered a perfect HCP structure, the stress
tensor would be spherical, and, instead of a single ten�
sor equation, which is equivalent to six scalar equa�
tions (because τ = τT), we would obtain a single scalar
equation. Due to specific features of HCP lattice, the
stress tensor τ contains two components: 

(4)

where e is the unit vector of the axis perpendicular to
the layer plane, i.e., the unit vector of the symmetry
axis of the coordination tensor. In the equilibrium
position, the stress tensor components  and τe should
vanish. 

It is obvious that, for a perfect lattice, we have the
equality  = τe. If we take only the first coordination
ellipsoid into consideration and ignore the interaction
with the next atoms, the tensor components  and τe

are determined from the stress tensor (2) by 

(5)

We assume that the pair interaction potential allows
only one equilibrium position f(a) = 0. Then, from the
second equation (5), it follows that 

(6)

From the first equation of (5) and (6), we obtain 

(7)

Therefore, considering the first coordination ellip�
soid, we cannot describe the geometric imperfection
of HCP lattice with the use of a “spherically symmet�
ric” interaction force. 

τγγ∑

τ 0.=

τ τ̂E τe τ̂–( )ee,+=

τ̂

τ̂

τ̂

–2V0τ̂ 3R0  f R0( ) 12

4 3η2
+

���������������Rf R( ),+=

2V0τe– 18

4 3η2
+

���������������Rf R( ).=

f R( ) 0 R⇔≡ a.=

f R0( ) 0 R⇔≡ R0 a η⇔ η0.= = =

Taking into account the second coordination ellip�
soid and using (2), we obtain 

(8)

It can be shown that, in this case, the solution of the
problem for the interaction through the “spherically
symmetric” potential also leads to the identical equal�
ity R = R0 too. This can be verified by setting arbitrary
values of the potential parameters and solving equa�
tions (8) for the variables R0 and R. The obtained result
is most likely a consequence of the fact that the coor�
dination tensor composed of atoms of the second
coordination ellipsoid is spherical. Therefore, in order
to describe the geometric imperfection of the HCP
structure, it is necessary to consider a greater number
of coordination ellipsoids. 
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Fig. 4. Considered coordination ellipsoids. 
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Taking into account atoms 3 and 3a (Fig. 4), the
components of the stress tensor are determined by 

(9)

The next step is to choose a particular pair interaction
potential so that, on the one hand, it would satisfy the
equilibrium equations and, on the other hand, it would
allow for a unique equilibrium position and provide
the repulsion and attraction of the particles with a
decrease and an increase in the interparticle distance,
respectively. Moreover, it is necessary to substantiate
the possibility of disregarding the forces of interaction
with more distant atoms. For these purposes, it is con�
venient to use the spline potential, which is commonly
used to accelerate numerical calculations. We intro�
duce the cut�off radius acut so that f(r) ≡ 0 for r > acut.
The spline potential can be constructed from a pair
force interaction potential in different ways [2, 20, 21].
Since the stress tensor includes the interaction forces,
we choose the type of potential which has the simplest
expression for the forces [2] 

(10)

where k(r) is the smoothing function: 

(11)

Here, b is the critical distance at which the interatomic
bond is broken (it is determined from the condition
f '(b) = 0). In addition, for this potential, the cut�off
radius acut is chosen arbitrarily, and the potential is
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continuous up to and including the second derivative.
This potential is calculated by 

(12)

The base potential Π(r), for which the corresponding
force is multiplied by the smoothing function (see
expression (10)), is taken as the Mie potential 

(13)

Here, D is the depth of the potential well and a is the
equilibrium distance. Then, the critical distance is
determined by the relationship b =

. So, in the spline potential,
we have four parameters: a, acut, n, and m. The depth
of the potential well D is temporarily excluded from
consideration, because, upon the substitution of the
interaction force into the equilibrium equations (9), it
is factored out from the parentheses. 

We propose the following method for determining
the parameters a, acut, n, and m. Let us transform
equations (9) into the dimensionless form and set the
right�hand sides equal to zero: 

(14)

(15)

Next, we introduce ρ = R0/a and ρcut = acut/a so that
the dimensionless interaction forces depend on the
dimensionless parameters. 

In order to determine the parameters ρ, ρcut, n, and
m, we minimize the sum of the squares of the left�hand
sides of equations (15) according to the following
scheme: 

(i) The parameters n and m are varied from 1 to 10
under the condition n > m so that the resulting poten�
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tial provides the repulsion and attraction of the parti�
cles with a decrease and an increase in the interparticle
distance, respectively. 

(ii) The equilibrium distance of the potential
should be larger than the radius of the first coordina�
tion sphere; however, in this case, it should be taken
into account that the addition of only three coordina�
tion spheres cannot lead to a significant change in the
distance between the nearest neighbor atoms [2] 

. (16)

(iii) The cut�off radius should be such that all the
considered atoms would be inside the region bounded
by it and the next atoms would be outside this region. 

(a) For ζ ≤ 0% (all metals marked by dark�gray
color in Fig. 3), we have 

(17)

(b) For ζ = 1.33% (cerium), we have 

(18)

(c) For ζ ≥ 13% (all metals marked by light�gray
color in Fig. 3, except for cerium), we have 

(19)

4. VERIFICATION OF THE STABILITY 

After the potential providing the equilibrium of the
real HCP structure is constructed, it is necessary to
find out whether this equilibrium position is stable.
For this purpose, according to [24, 25, 28], we should
analyze the stiffness tensor for the positive definite�
ness. The stiffness tensor of a complex diatomic lattice
has the form [2, 8] 

(20)

(21)

where nα are the unit vectors of the directions of the
bonds, aα are the bond lengths, vα = 0 if atoms of the
same type interact with each other, vα = 1 if atoms of
different types interact with each other, E is the iden�
tity tensor, Π(aα) is the interaction potential of the ref�
erence atom with the atom under the number α, and
V0 is the unit cell volume. The summation is per�
formed over all the atoms that interact with the refer�
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���� vα aαΠ'' aα( ) Π' aα( )–( )nαnαnα,
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C4

*
1

V0

���� aα aαΠ'' aα( ) Π' aα( )–( )nαnαnαnα,

α

∑=

ence atom. The type of reference atom does not
matter. 

The deformation of a complex lattice involves the
deformation of the sublattices and their displacement

with respect to each other. The tensor  character�
izes the stiffness of the crystal without regard for the
displacement of the sublattices, the tensor 2C charac�
terizes the stiffness of the crystal with respect to the
displacement of the sublattices, and the tensor 3C
describes the mutual influence of two types of defor�
mations. Since we consider the complex lattice, the
positive definiteness, according to [8], should take
place for the two tensors 4C and 2C. The fourth�rank
tensor 4C is positively definite in the case when
for any nonzero 2� the following inequality holds
true: 2�· · 4C · · 2� > 0. If the condition providing the
positive definiteness of the tensor 2C is not satisfied,
there occurs a loss of stability due to the displace�
ment of the sublattices. 

The investigation performed in this work demon�
strated that, for the majority of the metals marked in
Fig. 3, we managed to choose the potential providing
the stability properly. However, in a number of cases,
we failed to construct the appropriate potential. This is
associated with the fact that, for some of the lan�
thanides and actinides, the distance between the layers
is almost two times larger than that for the perfect lat�
tice. For zinc and cadmium, ζ ≈ 13–15%, which also
proved to be too high. 

Table 1 presents the calculated parameters of the
potentials for metals in which they provide a stable
equilibrium, as well as the magnitudes of the ratios of
the left�hand sides of (15) to the maximum dimen�
sionless force which is achieved at the bond breaking.

C4

*

1.71.61.51.41.31.21.11.00.9
ρ

0.4

−0.4

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

f

Ti, ζ = −2.76%,
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Fig. 5. An example of the interaction force (titanium). 
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It can be seen from Table 1 that the ratios  and

 have the order of 10–8–10–10. 

A typical graph of interaction forces is presented in
Fig. 5. In this figure, the points indicate the forces cor�
responding to different coordination ellipsoids (the
numbers of the ellipsoids are designated by numerals). 

The ratios of the elastic constants C33/C11 calcu�
lated from expressions (10)–(13), (20), and (21) are
presented in Table 2 in comparison with the experi�
mental data [26, 27]. The values of the elastic con�
stants measured at the temperature of 4.2 K for all
metals, except for Dy (298 K) and Er (81 K), are
reported in [26], and the corresponding values
obtained at room temperature are given in [27]. The
maximum deviation of the theoretical values from the
experimental ones is approximately equal to 15%. 

5. COMPARISON WITH FACE�CENTERED 
CUBIC STRUCTURE 

The closest packing, which is geometrically repre�
sented as a packing of spheres, ensures the minimum
internal energy in the crystal. The question now arises
as to whether FCC lattice consisting of spheres with
appropriate radius is energetically more favorable than
the less dense HCP lattice composed of ellipsoids. 

F/f b( )

Fe/f b( )

Let us consider an FCC lattice in which the atoms
interact through the potential defined by expressions
(10)–(13). We construct the stress tensor (2) taking
into consideration three coordination spheres sepa�
rated from the reference atom by the distances RFCC,

RFCC , and RFCC , respectively. In the case of FCC
lattice, they are exactly the spheres, because the dou�
ble distance between the spherical layers is equal to η0

for all metals. In the first coordination sphere, there
are 12 atoms, the second coordination sphere contains
6 atoms, and the third coordination sphere includes
24 atoms. From condition (3), we determine the dis�
tance between the nearest neighbor atoms RFCC. A sim�
ilar procedure is performed for all sets of parameters
presented in Table 1. As a result, we find that R <
RFCC < R0 for ζ < 0 and R0 < RFCC < R for ζ > 0. Further�
more, the radius of the fourth coordination sphere
2RFCC in all cases proves to be larger than the cut�off
radius acut of the potential. 

Next, we have to calculate the energy per atom in
HCP and FCC lattices [2, 8]: 

(22)

2 3

W 1
2N
������ Π aα( ),

α

∑=

 
Table 1. Results of the calculations of the parameters of the potential

Metal ζ, % n m ρ ρcut

Ce (cerium) 1.33 5.9804 2.1017 0.9259 1.7902 5 × 10–10 1 × 10–9

Mg (magnesium) –0.57 8.7960 2.6601 0.9810 1.6993 2 × 10–9 2 × 10–8

Co (cobalt) –0.60 8.7721 2.5801 0.9806 1.6989 7 × 10–9 4 × 10–8

Re (rhenium) –1.17 8.3911 1.4743 0.9731 1.6901 1 × 10–8 4 × 10–8

Tc (technetium) –1.75 7.1687 1.3537 0.9673 1.6817 9 × 10–9 3 × 10–8

Tl (thallium) –2.12 6.8749 1.2102 0.9647 1.6781 6 × 10–9 3 × 10–8

Sc (scandium) –2.41 6.5200 1.2083 0.9629 1.6749 2 × 10–8 1 × 10–8

Zr (zirconium) –2.48 6.4945 1.2079 0.9628 1.680 3 × 10–9 2 × 10–8

Gd (gadolinium) –2.61 6.3553 1.1832 0.9619 1.6735 4 × 10–9 3 × 10–8

Ti (titanium) –2.76 6.2731 1.1507 0.9612 1.6723 1 × 10–9 8 × 10–9

Lu (lutetium) –2.97 6.1169 1.1413 0.9603 1.6708 6 × 10–11 3 × 10–9

Ru (ruthenium) –3.11 6.0141 1.1379 0.9597 1.6708 4 × 10–9 3 × 10–9

Tb (terbium) –3.18 5.9899 1.1213 0.9595 1.6691 2 × 10–8 6 × 10–9

Hf (hafnium) –3.23 5.9806 1.1053 0.9593 1.6687 1 × 10–8 3 × 10–9

Os (osmium) –3.31 5.9296 1.1007 0.9591 1.6680 4 × 10–9 3 × 10–8

Dy (dysprosium) –3.64 5.8335 1.0400 0.9581 1.6663 1 × 10–8 2 × 10–8

Y (yttrium) –3.79 5.7662 1.0301 0.9578 1.6653 1 × 10–8 2 × 10–8

Tm (thulium) –3.84 5.7586 1.0166 0.9576 1.6650 5 × 10–9 2 × 10–8

Er (erbium) –3.86 5.7585 1.0134 0.9576 1.6650 5 × 10–9 2 × 10–8

Ho (holmium) –3.87 5.7583 1.0101 0.9576 1.6649 5 × 10–9 3 × 10–8

Be (beryllium) –3.98 5.7108 1.0041 0.9573 1.6643 4 × 10–9 2 × 10–8

F/f b( ) Fe/f b( )
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where N = 38 (HCP) and N = 42 (FCC) are the num�
bers of atoms that interact with the reference atom; the
factor 1/2 is explained by the fact that the potential
Π(a

α
) describes the interaction between two atoms. 

The calculations performed in this work demon�
strated that, in all cases, the energy per atom in HCP
structure is lower than the corresponding energy in
FCC structure by approximately 11%. Therefore, the
interaction defined by expressions (10)–(13) provides
not only the stability of the equilibrium but also the
energetic favorability of the geometrically imperfect
and, consequently, non�close�packed structure. 

6. RESULTS AND CONCLUSIONS 

Thus, we have analyzed the possibility of ade�
quately describing HCP structures, which correspond
to the packing of the elongated or flattened ellipsoids
of revolution in comparison with the sphere along the
axis perpendicular to the layer plane (Fig. 2), with the
use of the pair force interatomic interaction potential.
The potential defined by expressions (10)–(13), which
provides the stability of structures with a deviation
from the ideal structure of no more than 4%, is
obtained from the equilibrium condition. All the
parameters of the potential, except for the parameter
D, which characterizes the depth of the potential well,

are determined by the geometry of the structure and
the condition of its equilibrium. The parameter D can
be found from a comparison of the results of the calcu�
lations with the experimental values of the elastic con�
stants. 

It is shown that the potential (10)–(13) correctly
describes the structure of the stiffness tensor, because,
for example, the ratio of the theoretically obtained
elastic constants C33/C11 differs from the experimental
value by no more than 15% (Table 2). 

Furthermore, HCP structure is energetically more
favorable than FCC structure in which atoms interact
via the same potential (10)–(13). The energy per
atom in HCP structure is lower than that in FCC
structure by approximately 11%. This effect is similar
to that observed when using the pair force interatomic
interaction potential in solving the problem of equi�
librium of four particles on a plane: either a square or
a rhombus with the vertices occupied by the particles
can be preferred depending on the width of the poten�
tial well [28]. 

The use of the cut�off radius that does not exceed
the double equilibrium distance in the expression for
the potential, in combination with a simple formula
for the interaction force, can significantly accelerate
numerical calculations. 
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