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Thermal echo in a finite one-dimensional harmonic crystal

A.S. Murachev,∗ A.M. Krivtsov,† and D.V. Tsvetkov‡

Department of Theoretical Mechanics, Peter the Great St. Petersburg Polytechnic University
(Dated: 07 July 2018)

An instant homogeneous thermal perturbation in the finite harmonic one-dimensional crystal
is studied. Previously it was shown that for the same problem in the infinite crystal the kinetic
temperature oscillates with decreasing amplitude described by the Bessel function of the first kind.
In the present paper it is shown that in the finite crystal this behavior is observed only until a certain
period of time when a sharp increase of the oscillations amplitude is realized. This phenomenon,
further referred to as the thermal echo, occurs periodically, with the period proportional to the
crystal length. The amplitude for each subsequent echo is lower than for the previous one. It is
obtained analytically that the time-dependence of the kinetic temperature can be described by an
infinite sum of the Bessel functions with multiple indices. It is also shown that the thermal echo in
the thermodynamic limit is described by the Airy function.

I. INTRODUCTION

Analytical and experimental results demonstrate an
anomalous nature of thermal processes in ultrapure ma-
terials [1–9]. These processes can be caused by shock
waves [10–13] or by ultrashort laser pulses [14–20]. One-
dimensional crystal lattices are subject of an extensive
research since they admit analytical solutions and allow
verification of fundamental phenomena inherent also for
higher dimensional systems [21–25]. An analytical de-
scription of the thermal processes in non-equilibrium har-
monic crystals can be obtained on the basis of the covari-
ance analysis [1, 3, 4, 26]. The corresponding description
of the anomalous heat propagation is presented in pa-
pers [3, 27, 28] for one dimension and in works [4, 29–31]
for two and three dimensions.

One of the specific phenomena of the nonequilibrium
thermal processes in discrete molecular systems is the
high-frequency oscillations of the kinetic temperature,
which have long been known from the results of numerical
simulation [32]. Covariance analysis admit analytical de-
scription of this phenomenon, for example in the case of
the instantaneous thermal perturbation of the simplest
model of one-dimensional harmonic crystal these oscil-
lations are described by the Bessel function of the first
kind and the zero order [26], similar result was obtained
earlier by direct analytical solution of the equations of
the atoms motion by Ilya Prigogine [33]. For the case of
the one-dimensional crystal on an elastic substrate the
same problem is solved in [24], for higher dimensions in
papers [4, 30].

Unlike previous papers [3, 24, 26, 27], where the main
attention is focused on infinite crystals, the present pa-
per investigates thermal processes in finite crystals [34].
The systems with a finite number of particles is of practi-
cal importance, especially because nanotechnologies are
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actively developing [35–39]. In the current paper it is
demonstrated that for the finite crystals the temperature
oscillation amplitude is decreasing only until a certain
moment in time when a sharp increase of the amplitude
of the kinetic temperature oscillations is realized. This
phenomenon can be interpreted as a thermal echo, which
will be analyzed in details in the presented paper. Exact
and asymptotic formulas describing the oscillations of the
kinetic temperature are obtained. These results, in par-
ticular, are important for description of the anomalous
heat propagation in ultrapure materials [3, 5, 40].

II. DYNAMICS OF THE CRYSTAL

A. The mathematical model

We consider a one-dimensional harmonic crystal con-
taining N identical particles connected by harmonic
springs. The equation of motion for the particles is

ük = Luk , Luk
def
= ω2

e(uk+1 − 2uk + uk−1), (1)

where uk is the displacement of the kth parti-
cle (k = 0..N − 1), L is the liner deference operator,

ωe =
√
C/m is the elementary frequency, C is the stiff-

ness of the interparticle spring, m is the particle mass.
Periodic boundary conditions are used:

u0
def
= uN , uN+1

def
= u1. (2)

The initial conditions are

uk = 0 , vk
def
= u̇k = σρk, (3)

where ρk are independent random numbers with zero
mathematical expectation and unit variance, σ is the
initial velocity variance. These initial conditions cor-
respond to an instantaneous temperature perturbation,
such as perturbations caused by an ultrashort laser
pulse [14, 15, 17]. The crystal temperature before the
perturbation is zero.
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The initial problem (1)–(3) describes stochastic dy-
namics of the particles in the crystal. Further the de-
terministic equations for the statistical characteristics of
motion (covariances) are analyzed to describe the ther-
mal processes in the crystal.

B. The dynamics of covariances

One of the key statistical characteristics of the crystal
is the kinetic temperature T , which can be determined
by the mathematical expectation 〈...〉 of the square of
the centered velocity. The corresponding formula for a
one-dimensional case is

T =
m

kB
〈ṽ2k〉, (4)

where

ṽk
def
= vk − v̄ , v̄

def
=

1

N

N−1∑
k=0

vk. (5)

Here v̄ is the center of mass velocity and kB is the Boltz-
mann constant. In order to obtain a closed system of
equations for statistical characteristics it is imperative
that we consider the covariances of the particle veloci-
ties [3, 26, 30]:

κn = 〈ṽkṽk+n〉, (6)

which are the quantities characterizing motion of the par-
ticle pairs. The following initial problem for the velocity
covariancies can be obtained by differentiating the co-
variances using relations (1)–(3) (see Appendix A):

κ̈n − 4Lκn = −2Lκ0n,

t = 0 : κn = κ0n
def
= σ2δNn −

σ2

N
, κ̇n = 0,

(7)

where δNn is the periodical Kronecker symbol: δNn = 1 for
n divisible by N (including n = 0), otherwise δNn = 0.
Additionally the covariances satisfy the periodicity condi-
tions: κn+N = κn. After solving the initial problem (7),
the kinetic temperature of the crystal can be found using
formula (4), which can be written as

T =
m

kB
κn

∣∣∣∣
n=0

. (8)

C. Representation via Bessel functions

Solution of the initial problem (7) yields the following
expression for the temperature of the crystal (see Ap-
pendix B):

T = TE +
δT

2N

N−1∑
k=0

cos

(
4ωet sin

πk

N

)
(9)

where

TE
def
=

∆T

2

(
1− 1

N − 1

)
(10)

is an equilibrium temperature [48],

∆T
def
=

m

kB
κ0n

∣∣∣∣
n=0

= σ2

(
1− 1

N

)
(11)

is the temperature jump initially caused by the thermal
perturbation and

δT
def
= ∆T

(
1 +

1

N − 1

)
. (12)

Expression (9) accurately describes the time dependence
of the kinetic temperature of the harmonic crystal after
an instant heat perturbation. Formula (9) can be effec-
tively used for computations, however it is less appropri-
ate for an analytical analysis. Therefore an alternative
representation for the crystal temperature in terms of the
Bessel functions is be obtained below.

Let us consider identity [41]

cos(z sinϑ) =
∞∑

p=−∞
J2p(z) cos(2p ϑ), (13)

where J2p(t) is the Bessel function of the first kind of
order 2p. Substitution ϑ = πk/N and summation over k
yields

1

N

N−1∑
k=0

cos

(
z sin

πk

N

)
=

∞∑
p=−∞

J2p(z)δ
N
p , (14)

where

δNp =
1

N

N−1∑
k=0

cos

(
p

2πk

N

)
. (15)

As mentioned before, δNp = 1 if p is divisible by N , over-

wise δNp = 0. Identity (15) is derived in appendix C. Us-

ing properties of δNp formula (14) can be reduced to

1

N

N−1∑
k=0

cos

(
z sin

πk

N

)
=

∞∑
p=−∞

J2pN (z). (16)

Substitution of the obtained formula to expression (9)
gives

T = TE +
δT

2

∞∑
p=−∞

J2pN (4ωet), (17)

Using identity J−2pN ≡ J2pN formula (17) can be rewrit-
ten as

T = TE +
δT

2
J0(4ωet) + δT

∞∑
p=1

J2pN (4ωet), (18)
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where TE and δT is defined in (10) and (12). Thus,
the kinetic temperature can be represented as the equi-
librium temperature plus the sum of terms proportional
to the Bessel functions of multiple orders.

Both expressions (9) and (18) are exact, but expres-
sion (18) is more suitable for the analytical analysis.
Indeed, for a positive integer index µ the Bessel func-
tion Jµ(x) is almost zero for all positive x up to a vicin-
ity of the point x = µ. Therefore, for a finite moment in
time only a finite number of terms gives noticeable con-
tribution to representation (18). For illustration consider
series

S(x) = J0(x)+2Jµ(x)+2J2µ(x)+ ...+2Jpµ(x)+ ... (19)

Graphs for S(x) and the first three terms of its represen-
tation (19) are shown in Fig. 1. The figure shows that
for almost [49] the entire interval [0, µ) the sum S(x)
is determined only by the first term in the expres-
sion (19). Similarly, for almost the entire interval [µ, 2µ)
the sum S(x) is determined by the first two terms, and
so on.

FIG. 1. Bessel functions multiple orders, µ = 103 (the top
three graphs); sum of the Bessel functions (the lower lines).

If the crystal has a nonzero initial temperature T0 be-
fore the heat perturbation then the equilibrium temper-
ature (10) contains additional term T0:

TE
def
= T0 +

∆T

2

(
1− 1

N − 1

)
, (20)

while expressions (17), (18) remain unchanged. This is a
direct consequence of the superposition principle, which
is valid for harmonic systems

T̃ = T − TE =

δT

2

(
J0(4ωet) + 2

∞∑
p=1

J2pN (4ωet),

)
,

(21)

where δT = ∆T
(

1 + 1
N−1

)
(12), ∆T is the tem-

perature jump [50] caused by temperature pertur-
bation. As follows from expression (21) the equi-
librium temperature TE is the temperature reached

when N →∞, t→∞ (equilibrium state of an infinite
crystal).

III. OSCILLATIONS OF THE KINETIC
TEMPERATURE

A. Thermal echo

According to the virial theorem [42, 43] in harmonic
systems a time average for both kinetic and potential en-
ergies tends to the same value. Earlier studies [26, 33]
have shown that in the one-dimensional infinite harmonic
crystal this equilibration process is accompanied by the
energy (and, consequently, the temperature) oscillations
described by the Bessel function of the zero order. Ac-
cording to formula (17) or (18) the same process in the
finite harmonic crystal is described by an infinite series
of the Bessel functions with multiple orders.

This phenomenon referred to as thermal echo can be
explained as follows. The solution of the initial prob-
lem (1)–(3) due to the linearity of the system can be
represented as a superposition of N problems for each
individual particle, where only this certain particle was
randomly disturbed. For each particle elastic waves prop-
agate to the right and left from its position in the crys-
tal and superposition of these waves for all particles de-
scribes the thermal process in the crystal. Since the
crystal is periodic (circular), the elastic waves meet each
other after they have passed half-length of the crystal.
All particles were disturbed instantly, therefore the waves
initiated from each particle meet simultaneously, caus-
ing a sharp short-term increase of the system’s kinetic
temperature — the first thermal echo. Then the waves
travel further and meet again — the second thermal echo
is realized, and so on. Each thermal echo (18) is ex-
pressed in terms of the Bessel functions of order 2pN ,
where p = 1, 2, 3, ... is the echo number.

The crystal is discrete system that posses dispersion
— the wave speed depends on the wave length. The
fastest are the long waves that travel with the speed of
sound cs = aωe [44, 45], where ωe is an elementary fre-
quency (1), a is the lattice step. These waves meet after
they pass half-length of the crystal, therefore the thermal
echo period is

τ0 =
L

2cs
=

N

2ωe
, (22)

where L = Na is the crystal length. The number of ther-
mal echos in the system up to the time t can be obtained
using ratio t/τ0. Shorter waves are slower and meet later
— therefore the thermal echo has a finite width, and con-
sequently each next thermal echo is less prominent.

The time t = pτ0 we will call the reference time for
the thermal echo number p. At that time the long waves
from the initial disturbances have the meeting number p,
that causes the temperature oscillations of corresponding
the thermal echo.
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B. Thermal echo implementations

Using formula (18) the kinetic temperature can be rep-
resented in the form:

T = TE + TB + T1 + T2 + ...+ Tp + ... ;

TB =
δT

2
J0(4ωet) , Tp = δTJ2pN (4ωet);

(23)

where TE is the equilibrium temperature (18), TB is the
basic thermal mode, and the subsequent terms Tp are the
thermal modes with the number p = 1, 2, 3, ...

The temperature oscillations in a crystal contain-
ing 106 particles are shown in Fig. 2. The plots show
the time vicinity of the first, second and third thermal
echo. The first thermal echo is initiated for t ≈ τ0. The
corresponding temperature oscillations (23) are described
by the first thermal mode T1.

Each thermal mode is represented by the correspond-
ing Bessel function. Bessel functions are not periodic,
however it is convenient to consider a quasiperiod — the
interval between two consequent maximums of the Bessel
function. This quasiperiod is not a constant, its value de-
creases for each next maximum.

As can be seen from Fig. 2 (a), for t ≈ τ0 the os-
cillations are superposition (18) of the basic mode TB
(small short oscillations on the graph) and the first mode
T1 (global oscillations on the graph). For t ≈ τ0 the
quasiperiod of the basic mode is mach smaller than the
quasiperiod of the first mode. The larger is the crys-
tal, the more significant is the discrepancy. For times
t ≈ 2τ0, the oscillation parameters of the basic and
the first thermal modes become close, which leads to a
beat phenomena. For t ≈ 2τ0, the second thermal echo
is realized, superimposed by the mentioned beatings —
see Fig. 2 (b). For t ≈ 3τ0, the third thermal echo is re-
alized (see Fig. 2 (c)). Numerical experiments show that
for large times plural realizations of the thermal echo
result in an increasingly complex form of beats. The re-
alizations of the thermal echo with large ordinal numbers
is less pronounced against the background of residual os-
cillations from previous implementations of the thermal
echo. As a result, at large times the temperature fluc-
tuations acquire a quasi-stochastic character resembling
thermal noise.

Fig. 3 shows comparison of the analytical solution (bot-
tom) and the computer simulation of the crystal dynam-
ics (top). The crystal under consideration contains 103

particles. The analytical solution is described by for-
mula (9) or (18). The computer simulation uses the
method of central differences to solve numerically the
system of 103 differential equations of the chain dynam-
ics (1) with the integration step 0.02/ωe. The results are
regarded over 100 realizations of such chain with an inde-
pendent random initiation. As it can be seen from Fig. 3
the graphs of the computer simulation and the analytical
solution are almost identical.

FIG. 2. Beats of temperature imposed on three successive
thermal echoes. The number of particles N = 106, TE is

the equilibrium temperature, δT = ∆T
(

1 + 1
N−1

)
, ∆T is

the temperature jump of the crystal caused by the thermal
perturbation, t is time, τ0 is the period of realization of the
thermal echo.

C. Asymptotics

Expression (18), which describes the temperature os-
cillations in the crystal, includes Bessel functions of mul-
tiple orders. In the time-vicinity of the thermal echo ap-
pearance the following asymptotic representation of the
Bessel functions [41] can be used:

Jµ(x) =

(
2

µ

)1/3

Ai

((
2

µ

)1/3

(µ− x)

)
+O(µ−1), (24)

where Ai is the Airy function [51] [41]. This represen-
tation is valid [52] for x ≈ µ� 1. More general asymp-
totics, which is valid for any x is given in Appendix D.
The important advantage of these asymptotic represen-
tations is that they express special function Jµ(x) of two
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FIG. 3. Oscillations of kinetic temperature T in the finite
crystal. Numerical (top) and analytical (bottom) solutions.
The averaging is performed using 100 numerical experiments.
The number of particles N = 103, t is time and ωe is the
elementary frequency.

variables x, µ in terms of a special Airy function of a
single variable. Therefore each thermal mode (23) ex-
cept the basic mode can be obtained from the Airy func-
tion by a linear transformation. Substitution µ = 2pN
and x = 4ωet to (24) allows to obtain asymptotics
the thermal echo. The Airy function graph in a form
of Ai(−z) is plotted in Fig. 4. This graph demonstrates
the shape of the thermal echo in the thermodynamic
limit (N → ∞), where the value z = 0 corresponds to
the reference time t = pτ0 of the thermal echo number p.
It is a bit unexpected that the significant temperature
increase starts before the reference time, that is before
the long waves from the initial disturbance formally meet
each other. Probably this is due to the nature of discreet
systems, where some energy can be transferred faster
then the speed of sound of the corresponding continuum
system.

Then the temperature (18) can be represented as

T ≈ TE+
δT

2
J0(4ωet)+

δT

∞∑
p=1

1
3
√
pN

Ai

(
2pN − 4ωet

3
√
pN

)
.

(25)

For large values of arguments x� µ+ 1 the following
asymptotics for the Bessel functions fulfils [41]:

Jµ(x) =

√
2

πx
cos
(
x− πµ

2
− π

4

)
+O(x−3/2). (26)

Asymptotic representations (24) and (26) for the
Bessel functions allows to obtain the basic characteris-
tics of the temperature oscillations for large N .

D. Characteristics of thermal echo

Let us consider the thermal mode number p:

Tp = νpδT J2pN (4ωet) (27)

FIG. 4. The Airy function. Such a form takes any thermal
echo for a sufficiently large number of particles N .

for large values of N , where νp = 1
2 for p = 0 (the basic

thermal mode) and νp = 1 otherwise.
In the vicinity of the reference time t = pτ0 the ther-

mal mode Tp with the use of asymptotics (24) can be
represented as

Tp '
νpδT
3
√
pN

Ai

(
2pN − 4ωet

3
√
pN

)
. (28)

The Airy function Ai(−z) is depicted in Fig. 4. Let
zk be the successive points of the local maximums of
this function, where k = 1, 2, 3, ... is the point num-

ber; Ak
def
= Ai(−zk) are the corresponding maximums

of the function. The first three values of these constants
are [46]:

z1 ≈ 1.0 : A1 ≈ 0.53,

z2 ≈ 4.8 : A2 ≈ 0.38,

z3 ≈ 7.4 : A3 ≈ 0.34.

(29)

Then the corresponding points of the first local maxi-
mums tp and the maximum values Mp for the thermal
mode (28) are

tp '
1

4ωe

(
2pN + 3

√
pN
)
, Mp '

νpδT
3
√
pN

A1. (30)

The formula for tp can be rewritten in the form

tp ' pτ0
(

1 +
1

2(pN)2/3

)
. (31)

Hence the relative difference between the reference time
and the time of the temperature maximum tp decreases
with increase of N , which proves that these times coin-
cide in the continuum limit.

In the vicinity of the reference time t = pτ0 the pre-
vious thermal mode Tp−1 (27) with the use of asymp-
totics (26) can be represented as

Tp−1 ' (−1)Nνp−1
δT√
πNp

cos
(

4ωet− πNp−
π

4

)
.

(32)
Let us define the relative height of the thermal echo

hp as a ratio of the maximum value of the thermal
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mode number p (30) to the amplitude of the residual
oscillations from the previous thermal mode (32), which
gives [53]

hp '
√
πA1

6
√
pN

νp−1
. (33)

Thus the relative height of the thermal echo hp increases
with increasing N . Therefore for very large N the resid-
ual oscillations can be considered as negligible. However
this increase is very slow — proportional to N1/6, hence
even for N = 106 the residual oscillations are quite no-
ticeable.

To analyze the thermal echo properties let us introduce
its relative width wk as the ratio of the quasiperiod of the
corresponding Bessel function to the asymptotic period
of Bessel functions at infinity. From formulas (24)–(26)
it follows that the relative width is proportional to N1/3

(see appendix E):

wk '
zk+1 − zk

2π
3
√
pN. (34)

From relations (33) and (34) it follows that for large N
the residual oscillations from the previous thermal echo
are small and frequent in comparison with the current
thermal echo wave — see Fig. 2.

E. Example

As an example consider a chain of N = 103 carbon
atoms with the periodic boundary conditions and initial
temperature T0 = 0◦C. The heat perturbation instanta-
neously increases the temperature up to the value

T0 + ∆T = 100◦C. (35)

The chosen value of ∆T is sufficiently small in compar-
ison with the melting temperature of carbon (3500◦C),
so as not to take into account the nonlinearity of the in-
teratomic interaction. As a result of this perturbation
the temperature oscillations near the equilibrium value
of TE ≈ 50◦C are realized in the crystal. The graph of
the temperature oscillations for the crystal calculated us-
ing numerical and analytical solution is shown in Fig. 3.
Formula (30) gives for the maximum value of the first
thermal mode

M1 ≈ 5.3◦C =⇒ TE +M1 ≈ 55.3◦C. (36)

Thus the thermal echo brings approximatly 10% change
of the temperature comparing to the final temperature
raise TE − T0 ≈ 50◦C.

These results are slightly perturbed by the residual
oscillations from the previous (the basic) thermal mode.
Formulas (33) and (34) yield

h1 ≈ 5.9 , w1 ≈ 11.3, (37)

hence the residual oscillations are approximately 6 times
weaker and have 11 times shorter period than the oscil-
lations caused by the first thermal echo. The residual os-
cillations according to formula (32) have the amplitude
of approximately 0.9◦C, which is about 17% of M1. If
the residual oscillations are taken into account the max-
imum temperature achieved by the first thermal echo is
approximately 56.2◦C.

The above characteristics depend only on the number
of particles N , while the period τ0 of the thermal echo re-
alization depends on the physical properties of the crystal
and the type of oscillations (longitudinal or tranversal).
Let us consider longitudinal oscillations, the mass of the
carbon atom m = 1.99 · 10−26 kg and the stiffness of dia-
mond bond C = 1824 N/m [47]. Then formula (22) gives
τ0 = 1.65 · 10−12 s that is a N

4π ≈ 80 times greater than
the atomic oscillation period.

The obtained numerical characteristics of the thermal
echo can be used to determine its occurrence in natural
experiments.

IV. CONCLUSIONS

The paper considers a finite one-dimensional harmonic
crystal subjected to an instant spatially uniform thermal
perturbation. The numerical and analytical analysis pre-
sented in the paper demonstrates the phenomenon of the
thermal echo: a sharp short-term temperature rise that
is periodically realized in the crystals.

Previous papers [26, 33] have shown that in the infi-
nite one-demensional harmonic crystal the instant ther-
mal perturbation produces the thermal oscillations with
a monotonically decreasing amplitude, these oscillations
are described by the zero order Bessel function. In the
present paper it is shown that in the finite harmonic crys-
tal the sequence of realizations of the thermal echo is
described by a series of the Bessel functions of multiple
orders. Any thermal echo in the thermodynamic limit
is described by the Airy function. A superposition of
the temperature oscillations generated by the sequential
thermal echoes results in a temperature beats. Each sub-
sequent thermal echo complicates the shape of the beats.

It follows thus from the analysis that the maximum
temperature increase caused by the thermal echo de-
creases as 3

√
pN (30), where p the thermal echo number

and N is the number of particles in the crystal. The du-
ration of the thermal echo grows by the same law (34).
Between any two thermal echoes the amplitude of the
temperature oscillations decreases in proportion to the
square root of time (26). The larger is the crystal, the
more noticeable are the temperature increases compered
the residual oscillations (33).

Thus, an analytical description of the thermal echo for
one-dimensional crystals is presented. Our results can
be generalized to two- and three-dimensional cases using
technique presented in [4, 30]. Similar effects can be find
in nanotubes, where we expect to observe two thermal
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echoes. The first one is caused by the elastic waves prop-
agation along the tube direction, and the second one in
the transverse direction. Influence of anharmonic effects
on similar thermal processes is studied numerically in [4].
The investigation shows that harmonic approximation is
quite accurate in the case of small nonlinearity.

This phenomenon is an important feature of thermal
processes in finite systems and should be taken into ac-
count in the development of the modern micro- and nano-
size electronic devices.
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APPENDIXES

Appendix A: The initial problem for the velocities
covariance

Let us consider displacements covariance and velocities
covariance:

ξn = 〈ukuk+n〉 , κn = 〈vkvk+n〉. (A1)

Differentiation of expression (A1) gives us the equation

κ̇n = Lξ̇n, (A2)

where L is the operator from the problem (1). The
equation (A2) leads to the conservation law:

κn − Lξn = ε0n, (A3)

where the constant ε0n can be obtained from the initial
conditions (3):

ε0n = κn

∣∣∣∣
t=0

= σ2〈ρ̃kρ̃k+n〉
∣∣∣∣
t=0

, (A4)

and ρ̃k is centered random numbers. Let us consider the
following expression:

〈ρ̃kρ̃k+n〉 = 〈ρkρk+n〉 − 2〈ρkρ〉+ 〈ρ2〉, (A5)

where ρ is the mean value of ρk. Let us take into account
that

t = 0 : 〈ρkρ〉 =
ρk
N

N−1∑
n=0

ρk+n =
1

N
, ρ2 =

1

N
,

(A6)

then

ε0n = σ2δn −
σ2

N
. (A7)

The equations below can be obtained by differentiating
twice (A1):

ξ̈n = 2(κn + Lξn), κ̈n = 2L(κn + Lξn). (A8)

The using of conservation law (A3) allow us to close equa-
tion for each covariance:

ξ̈n − 4Lξn = 2Lε0n, κ̈n − 4Lκn = −2Lε0n. (A9)

The second equation of (A9) and (A4) gives us the initial
problem for κn.

Appendix B: Equation for velocities covariances

Let us consider the initial problem (7) with the corre-
sponding boundary conditions:

κ̈n − 4Lκn = −2σ2Lδn,

t = 0 : κn = σ2δn −
σ2

N
, κ̇n = 0,

κ0 = κN , κN+1 = κ1.

(B1)

Then we apply the discrete Fourier transformation

κ∗k =

N−1∑
n=0

κne
−2πikn
N (B2)

to the initial problem (B1):

¨̌κk + 4Lκ̌k = 0,

t = 0 : κ̌k =
σ2

2
− σ2δk , ˙̌κk = 0,

(B3)

where

κ̌k = κ∗k −
σ2

2
, L = 4ω2

e sin2 πk

N
. (B4)

The solution of the problem (B3) is

κ̌k =
σ2

2
(1− 2δk) cos

(
4ωet sin

πk

N

)
, (B5)

hence

κ∗k =
σ2

2
(1− 2δk) cos

(
4ωet sin

πk

N

)
+
σ2

2
. (B6)

The inverse Fourier transform for κ∗k is

κn =
1

N

σ2

2

N−1∑
k=0

(
1 + cos

(
4ωet sin

πk

N

))
ei

2πnk
N − σ2

N
.

(B7)
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The κn|n=0 which is proportional ∆T is

κn|n=0 =
σ2

2

(
1− 2

N

)
+

1

N

σ2

2

N−1∑
k=0

cos

(
4ωet sin

πk

N

)
.

(B8)

The (B8) can be represented following form

κn|n=0 =
σ2

2

(
1− 1

N

)(
1− 1

N − 1

)
+

1

N

σ2

2

(
1− 1

N

)(
1 +

1

N − 1

)N−1∑
k=0

cos

(
4ωet sin

πk

N

)
.

(B9)

Appendix C: The formula for the sum of cosines of
multiple angles

Let us demonstrate that the sum of the multiple angles
of the cosine can be represented by the following form:

1

N

N−1∑
k=0

cos

(
p

2πk

N

)
= δNp . (C1)

The sum of cosines of multiple angles can be calculated
as a sum of exponentials, which is calculated as the sum
of the geometric progression:

1

N

N−1∑
k=0

cos kφ = Re
N−1∑
k=0

eikφ = Re

(
eiNφ − 1

eiφ − 1

)
. (C2)

Substitution k = πk/N and the calculation of the real
part (C2) gives us the following representation:

1

N

N−1∑
k=0

cos

(
p

2πk

N

)
=

sin(2πp)

2N
ctg

πp

N
+

sin2(πp)

N
. (C3)

For all p, except p divisible by N , the expression (C3)
is equal to 1, and for p divisible by N , the value of the
expression is equal to 0.

Appendix D: Asymptotics for the Bessel functions

An asymptotic for the Bessel functions of large orders
µ and arbitrary argument x is represented by the series
9.3.35 from [41]. The first term of this expression can be
represented as the following composition:

Jµ(x) '
(

4ζ

1− ξ2

)1/4 Ai
(
µ2/3ζ

)
µ1/3

, µ→∞, (D1)

where

ξ =
x

µ

ζ =



(
3

2

)2/3
[

ln

(
1 +

√
1− ξ2

ξ

)
−
√

1− ξ2
]2/3

,

if 0 ≤ ξ ≤ 1;

−
(

3

2

)2/3 [√
ξ2 − 1− arcsec ξ

]2/3
,

if ξ ≥ 1,

and Ai is the Airy function [41].

In the case of the ξ → 1, the representation (D1) is
reduced to the following one:

Jµ(x) ≈
(

2

µ

)1/3

Ai
(

21/3µ2/3(1− ξ)
)
, (D2)

where the approximation ζ ≈ 21/3(ξ − 1) is used.
The (D2) is equivalent to representation (24), considered
before.

Appendix E: Relative duration of the thermal echo

Let us denote by {xi} the set of points in which the
Bessel function Jµ(x) has local maxima (x1 is the first lo-
cal maximum, x2 is the second, etc.). The approximate
values of xi are found from the condition that the argu-
ment of the Airy function in the expression (24) is equal
to the values −zi (29):

xi ≈ µ+ zi

(µ
2

)1/3
, Jµ(xi) ≈

(µ
2

)−1/3
Ai(−zi).

(E1)

The value of the asymptotic period of the Bessel function
is 2π as seen from the formula (26). Then the expression
for the duration of the thermal echo becomes:

wi
def
=

xi+1 − xi
2π

≈ zi+1 − zi
2π

(µ
2

)1/3
. (E2)
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