Санкт-Петербургский политехнический университет Петра Великого Физико – механический институт Высшая школа теоретической механики

КУРСОВОЙ ПРОЕКТ

Формирование 3D моделей деталей и сборки по чертежу

по дисциплине «Системы автоматизированного проектирования»

Выполнил студент гр. 5030103/80101		А. К. Логинов		
Руководитель		А. А. Устинова		
	«	»	2021 г.	

Санкт-Петербург

Содержание

Введение	3
1. Чтение чертежа	4
1.1 Назначение изделия	
1.2 Состав изделия	
2. Создание эскизов	
3. Создание объемных деталей по готовым эскизам	8
4. Сборка модели	13
Заключение	14
Список использованной литературы	15

Введение

Курсовой проект по теме «Формирование 3D моделей деталей и сборки по чертежу» создан на примере изделия «Выпрессовка внутреннего кольца в сборе заднего подшипника ведущей шестерни».

Основная цель: формирование умения читать чертежи, закрепление знаний и получение устойчивых навыков работы в программном продукте трехмерного моделирования. Изучение общих принципов построения трехмерных моделей деталей и сборок в системе автоматизированного проектирования SolidWorks.

Пакет SolidWorks представляет собой приложение для автоматизированного объектно-ориентированного конструирования твердотельных моделей и изделий для машиностроения.

Возможности пакета:

- 1. Передача пространственной параметрической модели детали или сборки в партнерские системы инженерных расчетов для их анализа;
- 2. Наглядность обозрения проектируемого объекта в параллельной, центральной или аксонометрической проекции и с анимацией при необходимости;
- 3. Приобретенные умения и навыки могут быть использованы в научно-исследовательской работе, в курсовом и дипломном проектированиив процессе учебы и при решении инженерных задач на производстве.

1. Чтение чертежа

1.1 Назначение изделия.

Наиболее сложная операция при ремонте редуктора — выпрессовка внутреннего кольца заднего подшипника ведущей шестерни. Здесь натяг должен быть в пределах 0,003...0,0032 мм, т.е. может отличаться более чем в 10 раз.

Выпрессовку наружных колец подшипников из картера редуктора рекомендуется производить оправкой А.70185; предварительно необходимо извлечь сальник, маслоотражатель и внутреннее кольцо переднего подшипника. Кроме этого, при выпрессовке кольца заднего подшипника обязательно нужно выпрессовать и кольцо переднего.

1.2 Состав изделия

В изделие (Рисунок 1) входит 6 оригинальных деталей, которые подлежат изготовлению: внутреннее кольцо подшипника в сборе – поз. 1; винт – поз. 2; захват – поз. 3; тяга – поз. 4; болт – поз. 5; траверса – поз. 6.; винт – поз. 7.

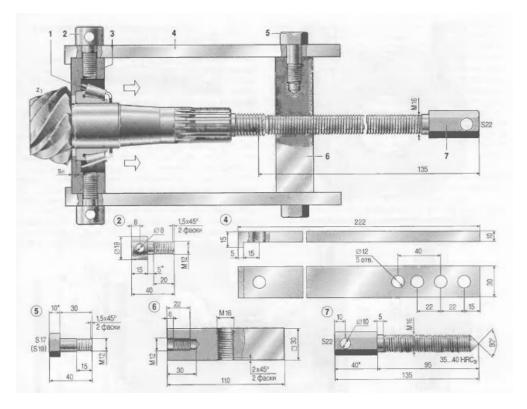


Рисунок 1 – Общий вид

2. Создание эскизов

Для дальнейшего создания объемных деталей, требуемых для модели, необходимы эскизы (основные контуры объектов), которые можно реализовать в пакете Solidworks при переходе на одну из основных плоскостей (Спереди, Сверху или Справа) или на созданной плоскости и нажатия кнопки Эскиз. Далее при помощи основных инструментов режима Эскиз, таких как: линия, окружность, дуга и др., можно создать необходимый нам контур.

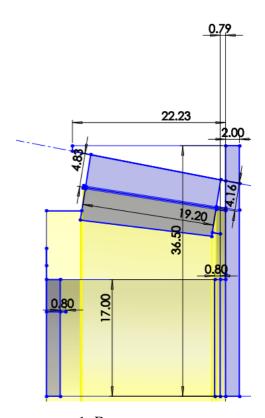


Рисунок 2 – Эскиз детали 1: Внутреннее кольцо подшипника в сборе

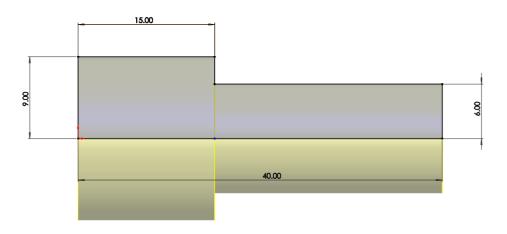


Рисунок 3 – Эскиз детали 2: Винт

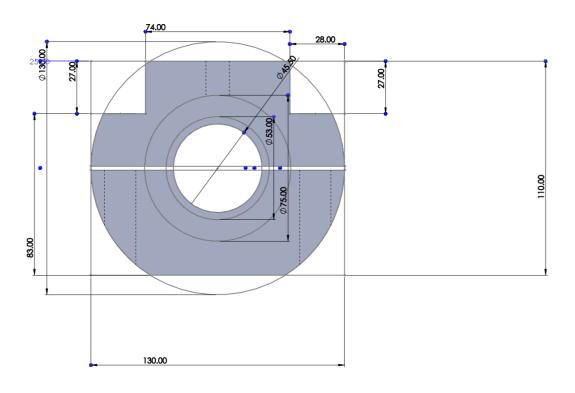


Рисунок 4 – Эскиз детали 3: Захват

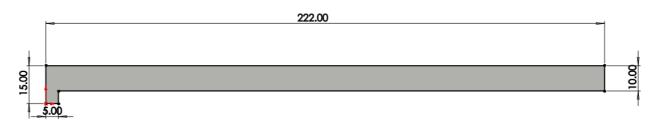


Рисунок 5 – Эскиз детали 4: Тяга

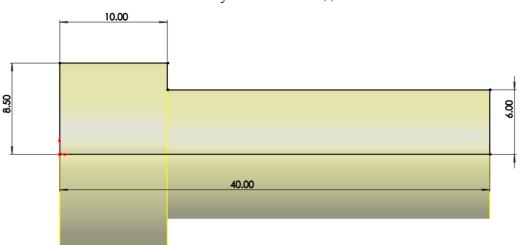


Рисунок 6 – Эскиз детали 5: Болт

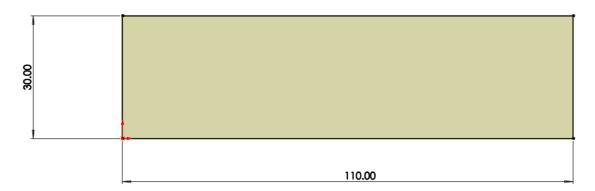


Рисунок 7 – Эскиз детали 6: Траверса

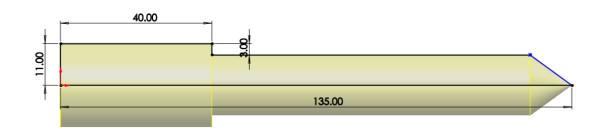


Рисунок 8 – Эскиз детали 7: Винт

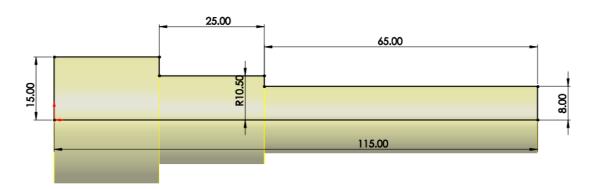


Рисунок 9 – Эскиз детали 8: Болт для захвата

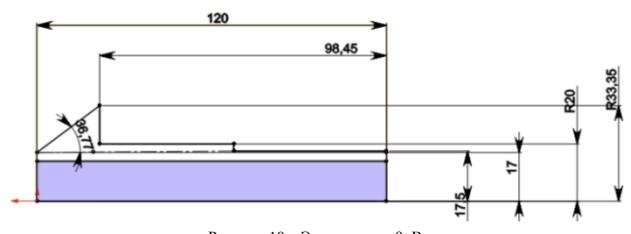


Рисунок 10 – Эскиз детали 9: Вал

3. Создание объемных деталей по готовым эскизам

После построения эскиза необходимо создать объемные модели деталей будущей сборки. В данной работе это выполнялось при помощи инструментов: повернутая бобышка/основание, вытянутая бобышка/основание и др. Чтобы привести полученные модели к необходимому виду использовались инструменты: вытянутый вырез, фаска и др.

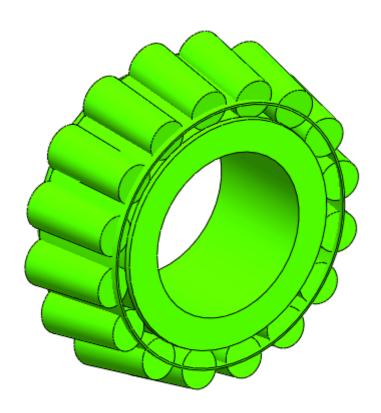


Рисунок 11 – Модель детали 1: Внутреннее кольцо подшипника в сборе

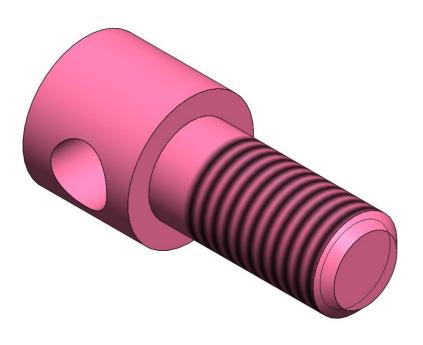


Рисунок 12 – Модель детали 2: Винт

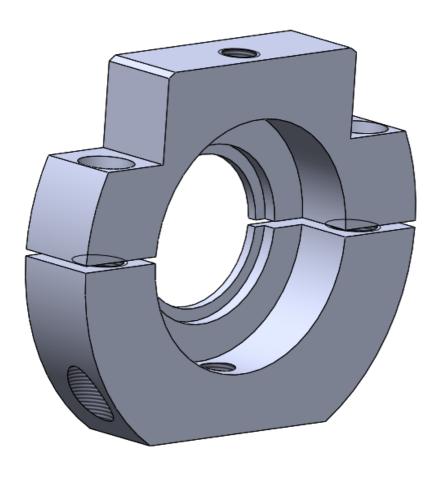


Рисунок 13 – Модель детали 3: Захват

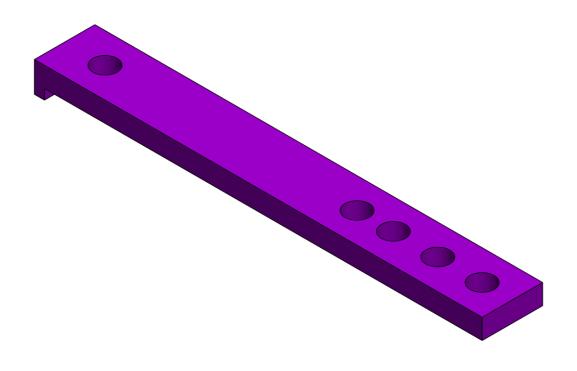


Рисунок 14 – Модель детали 4: Тяга

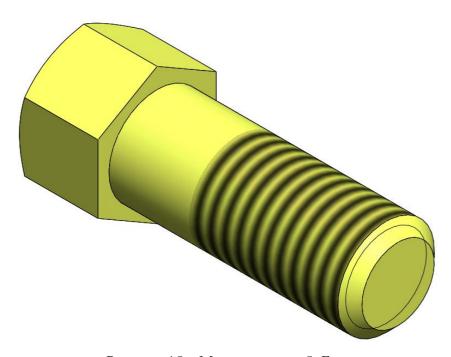


Рисунок 15 – Модель детали 5: Болт

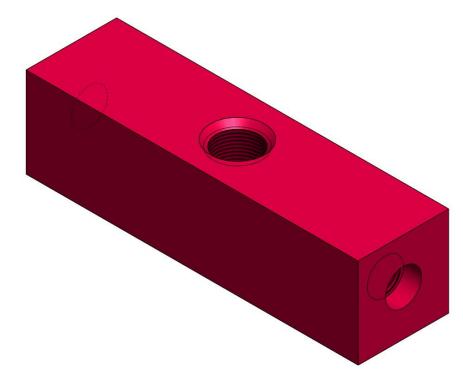


Рисунок 16 – Модель детали 6: Траверса

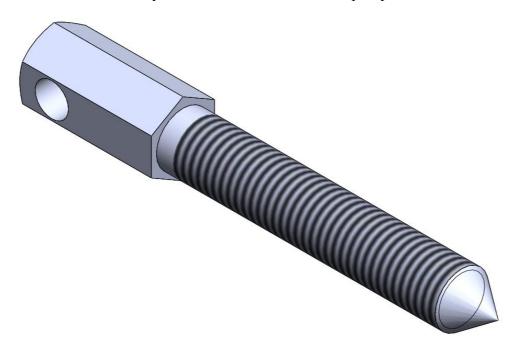


Рисунок 17 – Модель детали 7: Винт

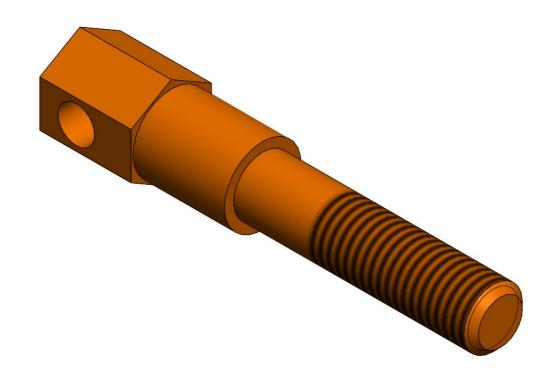


Рисунок 18 – Модель детали 8: Болт для захвата

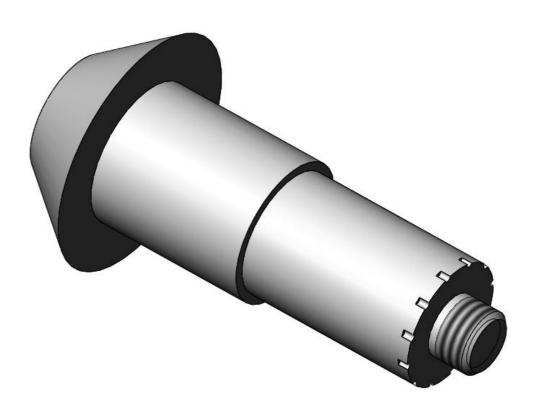


Рисунок 19 – Модель детали 9: Вал

4. Сборка модели

Из готовых деталей при помощи режима Сборка, производится моделирование данной конструкции. В режиме Сборка, для корректного получения итоговой модели используются инструменты: условия сопряжения, концентричность, совпадение, параллельность и др.

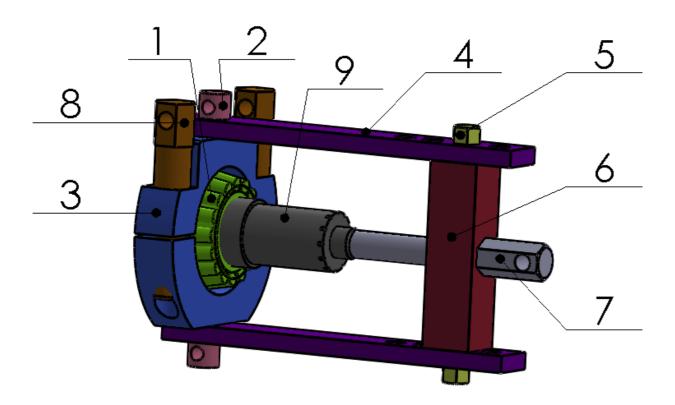


Рисунок 20 — Выпрессовка внутреннего кольца в сборе заднего подшипника ведущей шестерни: 1 — внутреннее кольцо подшипника в сборе, 2 — винт, 3 — захват, 4 — тяга, 5 — болт, 6 — траверса, 7 — винт, 8 — болт для захвата, 9 — вал.

Заключение

Во время работы над данным курсовым проектом были получены навыки чтения чертежей деталей, использования инструментов SolidWorks для построения их цифровых копий и сборки полученных 3D-моделей в готовые изделия. Данные навыки востребованы в математическом моделировании и необходимы для реализации практических расчётов. В результате работы была получена компьютерная модель изделия «Выпрессовка внутреннего кольца в сборе заднего подшипника ведущей шестерни».

Список использованной литературы

- 1. ГОСТ 7798-70 Болты с шестигранной головкой класса точности В. Конструкция и размеры (с Изменениями N 2-6).
- 2. Росс Твег. Приспособления для ремонта автомобилей/ Росс Твег. СПб: За рулем 1992. 136с.