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Abstract: A model accounting for the influence of ice coverage on the propagation of surface sea
waves is suggested. The model includes higher-order linear and nonlinear terms in the equation
of wave motion. The asymptotic solution is obtained to account for nonlinear modulated wave
propagation and attenuation. Two kinds of attenuation are revealed. The influence of the higher-
order nonlinear, dispersion, and dissipative terms on the shape and velocity of the modulated
nonlinear wave is studied. Despite the presence of higher-order terms in the original equation, the
modulated solitary wave solution contains free parameters, which is important for the possible
generation of such waves.
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1. Introduction

The influence of ice on sea waves’ propagation and attenuation attracts considerable
interest [1–8]. Conventional modeling includes use of the Navier–Stokes equations and
various models for elastic and visco-elastic sheets to describe the dynamics of the ice on the
water surface. As a result, an equation for the water surface variations is obtained.

Description of more realistic sea ice dynamics results in more complex modeling by
adding so-called higher-order linear and nonlinear terms in the governing equation [9–12].
Higher order means a higher-order derivative for the linear terms and a higher-order power
together with a higher-order derivative for nonlinear terms. The higher-order linear terms
frequently have a dispersion nature; they describe the dependence of the wave velocity on
its length. Dissipative terms can be included using the generalization of the Maxwell and
Focht models [4–8,13].

Analysis of these generalized models faces serious problems. An important class of
the solutions is a nonlinear localized traveling wave solution or a traveling solitary wave
solution. Such waves transfer considerable localized energy. These solutions appear as a
result of a balance of nonlinearity, dispersion, and dissipation. In particular, the known
traveling solitary wave solution to the Korteweg-de Vries (KdV) equation appears as a result
of a balance between nonlinearity and dispersion. It requires a specific initial condition
in the form of the single solitary wave solution at t = 0. It is known in the KdV case that
a more general input splits into a sequence of solitary waves of different amplitude and
velocity; however, each of them can be described by the single solitary wave solution. This
happens since the single solution contains a free parameter allowing various amplitudes of
the wave.

Like the KdV equation, many nonlinear wave equations admit a single traveling
solitary wave solution. However, the amplitude and/or the velocity of the wave are
usually fixed by the coefficients of equation, and no waves with different amplitudes
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propagate. Then, an arbitrary localized input cannot produce a sequence of solitary waves
with different amplitudes, while specific initial conditions are unlikely to realize in practice.

A possible way to overcome this problem is to consider another class of the solutions,
the so-called modulated waves [14–20]. An asymptotic procedure is applied to transform
the problem of obtaining the original model equation solution to the problem for finding
the solution to the equation for the amplitude part of the solution. The familiar modulation
equation is the nonlinear Schrödinger equation (NLSE) and its generalizations [21]. One
can note only a few papers where modulation NLSE is used for ice–sea dynamics [22,23].

The advantage of the approach in this paper is based on the simultaneous inclusion of
the higher-order terms in the model and looking for the solutions in the form of a modulated
nonlinear wave. For this purpose, a phenomenological model is suggested. The asymptotic
procedure is applied to derive the model equation for the wave amplitude, whose solution
contains free parameters. Then, we examine the role of higher-order nonlinear, dispersion,
and dissipative terms on the modulated nonlinear wave behavior using the asymptotic
solution to the modulation equation. The presence of free parameters in the traveling wave
solution allows us to anticipate its arising in unsteady processes. A disadvantage could
be connected with the restricted class of the solution; however, universal consideration of
nonlinear waves is impossible as a rule.

2. Model Equation

We consider the model for the surface waves under an ice sheet including nonlinear,
dispersive, and dissipative factors. The influence of these factors is described by the
so-called higher-order terms.

Among the variety of the models of the ice–sea interaction, one can note nonlinear
long wavelength models. These models generalize the nonlinear Korteweg–de Vries (KdV)
equation to account for surface sea wave variations u(x, t) due to the influence of an ice
sheet. The simplest generalization concerns an addition of the higher-order dispersive
term [9,10],

ut + 6u ux + uxxx + γ u5x = 0, (1)

where γ is a constant accounting for the influence of higher-order dispersion.
This equation admits a particular exact traveling solitary wave solution [24]. The

solution has fixed amplitude, and a numerical study revealed another localized wave
solution [25]. This solution cannot be expressed analytically, and no relationship between
the wave parameters and the equation coefficients (physical factors) was obtained.

It is known that localized waves can propagate keeping their shape and velocity due
to a balance between different factors, often between nonlinearity and dispersion. Then,
the generalized models of the ice–sea waves include, in addition to linear, higher-order
nonlinear terms. In particular, the model was developed in [11]

ut + 6u ux + uxxx + αu uxxx + β ux uxx + γ u5x + δu2 ux = 0, (2)

where α, β, and δ are constants describing the influence of the higher-order nonlinear terms.
Further generalization was suggested in [12]. The known exact localized traveling wave
solutions of the generalized equations also do not possess free parameters.

As noted before, attenuation of the waves under an ice sheet is an important problem.
Its solution requires the addition of the so-called dissipative terms to the model equation.
One way is to use a combination of the Maxwell and Focht models. They can be applied
for the linear strains [4,13]. These dissipative models are generalized for the nonlinear case
in [5]. The obvious generalization takes into account the fact that the models establish
a connection between stress and the derivatives of strain in the ice sheet. In the linear
one-dimensional case, strain V is linearly proportional to the spacial derivative of the
displacement U, V = Ux, and its derivatives. In the nonlinear case, V = Ux + 1/2U2

x , and
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this is called geometrical nonlinearity. Looking at the linear models [4,13] and taking into
account geometrical nonlinearity, one can suggest following equation

ut + 6u ux + uxxx + αu uxxx + β ux uxx + γ u5x + δu2 ux +
+ κ1 u − η1 uxx + κ2 u2 − η2 (u2)xx = 0,

(3)

where κ1, κ2, η1, η2 are positive constants, where the terms with the coefficients ηi comes
from the Focht model, while those with the coefficients κi follow from the Maxwell model.
We do not know the exact traveling wave solution to this equation. However, the presence
of dissipative terms usually makes such solutions more problematic and requires more
restrictions on the coefficients of equation.

3. Wave Modulation and Attenuation

We obtain asymptotic solution to Equation (3) accounting for nonlinear wave modu-
lation and attenuation. First, the model equation is transformed to another one using the
multiple-scale method. Then, the solutions to this equation are obtained and analyzed.

3.1. Derivation of the Governing Nonlinear Modulation Equation

We introduce a small parameter ε. The small parameter accounts for weak nonlinearity
and describes small values of u. The solution is sought in the form

u = εu0 + ε2u1 + ε3u2 + ....

We consider the case when some of dissipative terms are small, η1 = ε2η̃1, η2 = ε2η̃2. Then,
we consider dissipative factors mainly described by the Maxwell model. Moreover, we
introduce fast and slow variables, so that ui = ui(x, t, T, X, τ), where T = εt, X = εx,
τ = ε2t.

It follows from Equation (3) at order ε

u0,t + u0,xxx + γ u0,5x + κ1 u0 = 0. (4)

The solution to Equation (4) is sought in the form

u0 = A(X, T, τ) exp(ı(k x − ωt)) + (∗), (5)

where (∗) is the complex conjugate. Substitution of Equation (5) into Equation (4) results in
the equation for the frequency ω,

ı(ω + k3 − γk5)− κ1 = 0,

whose solution is sought as a sum of the real and imaginary parts, ω = ωr + ı ωi, where

ωr = k3(γ k2 − 1), ωi = −κ1. (6)

The presence of the negative imaginary part in the frequency ω means that the har-
monic wave (5) propagates with the phase velocity ωr/k, while its amplitude decreases as
exp(−ωi t).

The equation at order ε2 is

u1,t + u1,xxx + γ u1,5x + κ1 u1 =
= −u0,T − 3u0,xxX − 5γu0,xxxxX − 6u0 ux − αu0 u0,xxx − βu0,xu0,xx − κ2 u2

0.
(7)

The terms at exp(ı(k x − ω t)) in the right hand side of Equation (7) give rise to the secular
terms. Then, we have to assume that

AT − (3 − 5γk2) k2 AX = 0. (8)
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This means that A = A(ξ), ξ = X − W T,

W = (3 − 5γk2) k2.

In the absence of the secular terms, the solution to Equation (7) can be obtained in the form

u1 = B(X, T, τ) A2 exp(2ı(kx − ωt)) + (∗), (9)

where B = Br + ı Bi,

Br =
κ1 κ2 + 6k4(5γk2 − 1)((α + β)k2 − 6)

κ2
1 + 36k6(5γk2 − 1)2

Bi =
κ2 k3(5γk2 − 1)− κ1 k ((α + β)k2 − 6)

κ2
1 + 36k6(5γk2 − 1)2

.

Next, order (ε3) equation is

u2,t + u2,xxx + γ u2,5x + κ1 u2 =
= −u0,τ − u1,T − 3u1,xxX − 3u0,xXX − 5γu1,xxxxX − 10γu0,xxxXX−

−6(u0 u1)x − 6u0 u0,X − δu2
0 u0,x − αu0 u1,xxx − αu1 u0,xxx − 3αu0 u0,xxX−

−βu0,Xu0,xx − 2βu0,xu0,xX − β(u0,Xu1,x)x − 2κ2 u0 u1 + η̃1 u0,xx.

(10)

Equating to zero, the terms at exp(ı(kx − ωt)) in the right hand side of Equation (10) result
in the equation for the amplitude A, required to suppress the secular terms,

ıAτ + pA2 A∗ − k (3 + 10γ k2) Aξξ + ı η̃1k2 A = 0, (11)

where
p = pr + ıpi,

pr = Br k (7α k2 − 6)− 2Bi(β k3 − κ2)− δ k,

pi = Bi k (k2(7α − 2β)− 6)− 2κ2 Br.

This equation generalizes the integrable Nonlinear Schrödinger equation (NLSE) [14–17];
however, it differs from the Ginzburg–Landau equation (another generalization of NLSE)
due to the absence of an imaginary part in the coefficient at Aξξ .

3.2. Attenuation of Modulated Waves

The solutions to Equation (11) are sensitive to the sign of the product of the coefficients
at A2 A∗ and Aξξ . The sign, in turn, depends on the coefficients at the higher-order terms in
Equation (3).

We begin with the case of the absence of dissipation, κi = 0, ηi = 0. Equation (3)
becomes the NLSE. The analytical solution is sought by separating the real and imaginary
parts of the equation using the following representation:

A = Φ(τ, ξ) exp(ıϕ(τ, ξ)),

where Φ and ϕ are real functions. Then, the real and imaginary parts of Equation (11) are

prΦ3 − k (3 + 10γ k2)(Φξξ − Φ ϕ2
ξ)− Φ ϕτ = 0, (12)

Φτ − k (3 + 10γ k2)(Φϕξξ + 2Φξ ϕξ) = 0. (13)
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The known NLSE exact solutions can be obtained if we assume that Φ = Φ(χ),
ϕ = ϕ(τ, χ), where χξ = 1, χτ = −w. Then, the solution to Equation (13) is

ϕ = s1τ + s2χ, (14)

where s1, s2 are constants, provided that

w = −2k (3 + 10γ k2) s2.

Then, Equation (12) is

prΦ3 − k (3 + 10γ k2)Φχχ −
(

s1 + k (3 + 10γ k2)s2
2

)
Φ = 0,

and the so-called bright solitary wave solution [14] is

Φ =

√
−2k (3 + 10γ k2)

pr
m sech(m χ), (15)

provided that
s1 = −k (3 + 10γ k2)(s2

2 + m2), (16)

where m is a free parameter. This localized wave solution exists at 2k (3 + 10γ k2)/pr < 0.
It always happens in the absence of higher-order terms, γ = 0, α = 0, β = 0, δ = 0. When
only the linear higher-order term is taken into account, α = 0, β = 0, δ = 0, the absolute
value of pr always decreases with an increase in γ. The coefficient γ also affects the value
of the coefficient at dispersion term Aξξ in Equation (11). The variation in the value of the
coefficients at higher-order nonlinear terms, α, β, δ, also influence both the value and the
sign of the ratio 2k (3 + 10γ k2)/pr.

At 2k (3 + 10γ k2)/pr > 0, there exists another known so-called dark solitary wave
solution expressed through the tanh function that does not vanish at infinity [14]. That is
why the sign of the ratio of coefficients is important.

Assume that the coefficients at dissipative terms in Equation (11), pI and η1 are small
and introduce a small parameter εd to account for this smallness, pI = εd p̃I , η̃1 = εd ˜̃η1,

ıAτ + pr A2 A∗ − k (3 + 10γ k2) Aξξ = −ı εd( p̃i A2 A∗ + ˜̃η1k2 A). (17)

We also introduce the slow variable z = εdτ and assume that Φ = Φ(χ, z), ϕ = ϕ(ζ, χ, z),
where

χξ = 1, χτ = −w(z), ζξ = 0, ζτ = s3(z).

Then, the governing equations are obtained by separating the real and imaginary parts in
Equation (17),

wΦϕχ − k (3 + 10γ k2)(Φχχ − Φ ϕ2
χ)− s3 Φϕζ + prΦ3 − εdΦϕz = 0, (18)

k (3 + 10γ k2)(Φ ϕχχ + 2Φχ ϕχ) + wΦχ − εd( p̃iΦ
3 − ˜̃η1k2 Φ + Φz) = 0. (19)

The asymptotic solution to Equations (18) and (19) is sought as

Φ = Φ0 + εdΦ1 + ..., ϕ = ϕ0 + εd ϕ1 + ....

The leading-order problem is

wΦ0 ϕ0,χ − k (3 + 10γ k2)(Φ0,χχ − Φ0 ϕ2
0,χ)− s3 Φ0 ϕ0,θ + prΦ3

0 = 0, (20)

k (3 + 10γ k2)(Φ0 ϕ0,χχ + 2Φ0,χ ϕ0,χ) + wΦ0,χ = 0. (21)
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The solution to Equation (21) is

ϕ0 = ζ + s(z)χ, w = −2k (3 + 10γ k2) s. (22)

The bell-shaped solitary wave solution is

Φ0 =

√
−2k (3 + 10γ k2)

pr
m sech(m χ), (23)

where
s3 = −k (3 + 10γ k2)(m2 + s2). (24)

The next-order (εd) problem is

w(Φ1 ϕ0,χ + Φ0 ϕ1,χ)− k (3 + 10γ k2)(Φ1,χχ − 2Φ0 ϕ0,χ ϕ1,χ)−
− s3 (Φ1 ϕ0,θ + Φ0 ϕ1,θ) + 3prΦ2

0Φ1 − Φ0 ϕ0,z = 0,
(25)

k (3 + 10γ k2)(Φ1 ϕ0,χχ + Φ0 ϕ1,χχ + 2Φ1,χ ϕ0,χ + 2Φ0,χ ϕ1,χ) + wΦ1,χ −
− p̃iΦ3

0 + ˜̃η1k2 Φ0 − Φ0,z = 0.
(26)

In view of the leading-order solution, Equation (26) is rewritten as

2k (3 + 10γ k2)(Φ2
0 ϕ1,χ)χ − Φ0Φ0,z − p̃iΦ4

0 − ˜̃η1Φ2
0 = 0, (27)

where
Φ0,z =

mZ
m

Φ0 +
mZ
m

χ Φ0,χ.

The solution to Equation (27) with Φ0 defined by Equation (23) is obtained by a standard
procedure for finding solutions to ordinary differential equations,

ϕ1 = 1
k (3+10γ k2)

(
1

2m

(
mZ
4m2 +

˜̃η1k2

2m − 2m p̃i k (3+10γ k2)
3pr

)
cosh(2mχ)−

− 2k p̃is
3pr m log

(
cosh(mχ)

)
− mz

2m χ2

)
.

(28)

Preventing exponential growth in the solution results in the following equation for m, and
we assume

mz + 2 ˜̃η1k2m − 8m3

3
p̃i
pr

k (3 + 10γ k2) = 0. (29)

The general solution of Equation (29) is

m =
a1√

4p̃i(3+10γ k2) a2
1

3pr ˜̃η1 k + exp(4η̃1 k2z)
, (30)

where a1 is a free parameter. Solution (30) accounts for a decrease in m caused by dissipation,
and it is bounded and real for p̃i < 0. When the contribution of the Focht model is
negligibly small, one can assume ˜̃η1 = 0. Then, the general solution to Equation (29) has
another form:

m =
1√

m−2
0 − 16p̃i/pr (3 + 10γk2) k z

,

where m0 is a free parameter. Again, the solution is decreasing, bounded, and real for
p̃i < 0.

The solution to Equation (25) does not contain exponentially growing parts when
ϕ0,z = 0 or when we assume sz = 0.
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The obtained solution accounts for an attenuation of the modulated wave (23) due to
the variation of m described by Equation (30).

4. Discussion

Attenuation of the wave due to dissipation is caused by the processes undertaking on
fast and slow variables. An influence of the Maxwell model contribution is described by the
terms with coefficients κi. The linear term with coefficient κ1 in Equation (3) gives rise to
nonzero ωI in Equation (6). It is responsible for a decrease in the fast variable. A nonlinear
term with coefficient κ2 provides the existence of the coefficient pI at the nonlinear term
in Equation (11). It affects the solution for variations of m, Equation (30); however, the
decrease in m is mainly described by the coefficient η̃1 following from the contribution of
the linear part of the Focht model in Equation (3). There is no decrease in the fast variable
when the coefficients κi are small. In this case, nonlinear dissipative terms are negligibly
small, while the linear ones describe together a decrease in m, hence in the amplitude and
velocity of the nonlinear modulated wave.

One has to note two kinds of attenuation. The first of these is described by only a
decrease in the amplitude of solution (5) as exp(−ωi t); see Figure 1. Another attenuation
is provided by the simultaneous variation in the amplitude and wave number due to
Equations (23) and (30). A comparison of two kinds of attenuated waves is shown in
Figure 2. They can be considered as linear and nonlinear attenuation, respectively.

10 20 30 40
x

-1.0

-0.5

0.5

1.0

u

Figure 1. Dynamics of the attenuation of a modulated wave when only the envelope wave amplitude
decreases. The initial profile is shown by the solid line. The dashed line accounts for the wave at
some time.

The obtained modulated nonlinear wave solution contains free parameters that makes
it possible to model the generation of such a wave from a rather arbitrary input. The
higher-order nonlinear and dispersion terms in the original model Equation (3) affect the
value and the sign of the coefficients in modulation Equation (11). It provides the existence
of a bell-shaped modulated wave solution (15) and the values of its amplitude and velocity.
This is important when a partly ice-covered sea is considered. The waves propagating in
open sea and in the ice-covered area are governed by the equation with different coefficients.
When the wave enters the covered area, it may suffer attenuation even in the absence of
dissipation in the model. This process can be described numerically and will be the subject
of future work.
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10 20 30 40 50
x

-0.5

0.5

u

Figure 2. Comparison of the attenuation of modulated waves. The attenuation due to variation of
both the envelope amplitude and wave number is shown by a solid line. The dashed line accounts
for the wave when only the amplitude decreases.
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