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Abstract

The work contributes to the study of equivalent continuum model that is able to describe
the elastic moduli of graphene — monolayer of carbon atoms. The moment interaction be-
tween the particles that form the lattice is described by four force constants and depends on
the position of particles and their orientation in space. An approach is applied to link the
macroscopic moduli and the parameters of interaction at microlevel based on the compari-
son of the energy of the microstructure and the energy of the equivalent continuous plate.
The comparison with structural mechanics approach is carried out and the elastic moduli are
derived for the parameters of interaction taken from AMBER force field.

1 Introduction

Graphene is the mother structure of most carbon based materials. A single 2-D sheet of graphene
is a hexagonal structure with each carbon atom forming three bonds with its nearest neighbours.
In the last decade the enhanced attention has been paid to the study of this material due to its
unique properties found (e.g. high conductivity, extremely high strength) and the recent possibility
to extract a layer of graphene one atom thick. This has induced the development of theoretical
models for graphene as well as the experimental study. The combination of atomistic simulations
and continuum elasticity focuses on graphene mechanical properties, especially as for the elastic
moduli. The experimental studies of graphene membranes suspended on a silicon substrate with
holes has been carried out using atomic force microscope [1]–[3]. The Young Modulus of graphene
sheet has been found to be around 350 N/m. As for other elastic moduli, there is still a lack of
experimental data.

Different approaches are applied to build analytical models for analysis of carbon structures.
The empirical force field models are widely used to describe the mechanical behaviour of the
systems containing significant number of atoms [4]. In [5]–[6] such models are proposed based
on the parametric many-body potentials for carbon structures [7]–[8] and the elastic moduli are
evaluated for the equivalent continuum. The mechanical properties of graphene have been derived
from the first principles in [9] – [11]. An equivalent continuum model was proposed in [12]–[14].
In [15]–[16] the molecular model based on AMBER force field constants of interaction for covalent
bonds has been linked with the space-frame structural mechanics model and FEM simulations
have been carried out. However, there is a huge scattering of the results of theoretical studies.
The number of parameters of interatomic potentials used in the studies is relatively large and the
meaning of these parameters often remains obscure. Such potentials are usually unable to satisfy
all elastic constants of the described material. Three-particle interaction, special case of many-
body potential, has been considered in [17]. The effective force constants of interaction have been
evaluated from the experimental data to provide exact matching in case of in-plane deformation
of graphene.

Covalent bond is a directional bond. This can be allowed for by taking into account a so
called moment contribution to the interatomic interaction as an alternative to many-body potential
models where the potential energy is a function of the positions of N particles regarded as material
points. This contribution is usually implicitly considered when torsional and bending properties
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of a bond are taken into account (for example, when a bond is modelled as a beam). In [18] it
was proposed to represent a particle in the lattice as a set of material points rigidly connected to
each other. The interaction between material points from different sets is described by pairwise
potential. As the result the moment component of interaction between the particles is present
introducing additional transversal stiffness. Another way to account for the moment interaction
at microlevel in an explicit form is to consider rotational degrees of freedom of particles forming
the lattice. This approach is described in [19] where the relation between constants of interaction
and the elastic moduli of in-plane deformation of graphene lattice are obtained. In this paper the
latter approach is applied to derive the equivalent continuum able to describe also out-of-plane
deformations of graphene. The material is represented as a set of particles (solids) which interact
in terms of forces and torques. A method based on the energies equivalence is applied to obtain
the relations between the constants of interaction at microlevel and elastic moduli of continuum
corresponding to the discrete structure of graphene.

2 Interatomic potential

The discrete structure of a material is presented as a set of particles with three translational and
three rotational degrees of freedom. The interaction between nearest neighbours is taken into
account. The bonds between the particles are assumed to be transversely-isotropic for the sake
of simplicity. Four force constants are proposed to describe the deformation of a bond: A1 is the
bond stretching resistance force constant, A2 describes the resistance to shear deformations, C1

— to torsion, C2 — to bending of the bond. Potential energy of elastic deformation of a crystal
structure per unit cell can be presented as a sum of potential energies of deformation of the bonds
between some reference particle in the cell and its nearest neighbours:

W =
1

2V0

∑

α

Πα, (1)

where Πα is a potential of interaction between the particle in the cell and its neighbour with index
α, V0 is a volume per particle in the unit cell of the lattice. In general, there can be more than
one particle in the unit cell, lattice with one particle in the unit cell is called simple and otherwise
complex. The lattice of graphene contains two particles per unit cell and thus is complex. It
consists of two triangular sublattices. The potential Πα can be presented as a quadratic form of
strain vectors and stiffness tensors of the bond

Πα =
1

2
εα ·Aα · εα + εα ·Bα · κα +

1

2
κα · Cα · κα. (2)

Here A
α
, B

α
, C

α
are stiffness tensors of the bond α and they contain information about the

deformation of the bond in different directions:

A
α
= A1nαnα +A2

(
E − nαnα

)
,

C
α
= C1nαnα + C2

(
E − nαnα

)
, anα = aα,

(3)

tensor B is equal to zero if a lattice has two normal to each other planes of symmetry [20]. It holds
true in case of graphene lattice. Vector aα connects two neighbour particles, a is a length of a
bond in equilibrium configuration, E is a unit tensor; εα, κα are strain vectors and are expressed
as follows [20]:

εα = uα − u+
1

2
aα × (ϕ

α
+ ϕ), κα = ϕ

α
− ϕ. (4)

Here uα, u, ϕα, ϕ are translations and rotations of the particle with index α and some reference
particle relative to their equilibrium position.

Equations (2) – (4) are substitutted into (1) and thus the potential energy of the system of
particles is obtained depending on position of particles u, uα, orientation ϕ, ϕα, geometry of initial
configuration aα and constants of interaction A1, A2, C1, C2.
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3 Towards the macroscale

Let us confront the displacements and rotations of the particles with the displacements and ro-
tations of continuum u = u(r), ϕ = ϕ(r), where r is radius-vector in initial configuration. Then
displacements and rotations of neighbour particles are uα = u(r − aα), ϕα = ϕ(r − aα). Under

long-wave approximation2 these displacement and rotations can be expressed as follows:

uα = u+ aα · ∇u+ ηζ, ϕ
α
= ϕ+ aα · ∇ϕ+ ηψ, (5)

where ∇ is the nabla operator. Parameter η is equal to 1 for lattices that contain two atoms in the
unit cell (complex lattice) and to 0 if there is only one atom in the unit cell of the lattice (simple
lattice). Vectors ζ, ψ denote relative displacements and rotations of the particles from different
sublattices constitutting complex lattice.

Equations (5) can be substitutted in the energy W derived in the previous section. Vectors
ζ, ψ correspond to the minimum of potential energy of the lattice and thus can be found from the
system of equations

∂W

∂ζ
= 0,

∂W

∂ψ
= 0. (6)

Finally, the energy of the corresponding continuum W can be obtained:

W =W (∇u,∇ϕ, ϕ,A1, A2, C1, C2). (7)

It can be also presented as a quadratic form of stiffness tensors of fourth rank and strain tensors:

W =
1

2
ε · ·4A · ·ε+ ε · ·4B · ·κ+

1

2
κ · ·4C · ·κ. (8)

Strain tensors are

ε = ∇u+ E × ϕ, κ = ∇ϕ. (9)

In order to obtain the relations between coefficients of stiffness tensors at macrolevel and force
constants of interaction at microlevel the representations (7) and (8) should be compared.

4 The lattice of graphene

The lattice of graphene is 2D lattice where carbon atoms are located in the nodes of hexagons.
Let us introduce orthonormal basis {e1, e2, e3}, where e1 and e2 lie in the plane, e3 is normal to
the plane containing the lattice. Let us name the axes with the unit vectors e1, e2, e3 as x, y and
z, respectively. The vectors u, ϕ, aα can be expressed then

u = ux(x, y)e1 + uy(x, y)e2 + uz(x, y)e3,

ϕ = ϕx(x, y)e1 + ϕy(x, y)e2 + ϕz(x, y)e3,
(10)

and vectors aα are

a1 = e1, a2 = − 1
2e1 +

√
3
2 e2, a3 = − 1

2e1 −
√
3
2 e2. (11)

Derivation of the relations between the coefficients of the stiffness tensors of corresponding con-
tinuum and parameters of interactions at microlevel is carried out by comparing the multipliers of
similar terms of ux,x, u

x
,y, u

y
,x, u

y
,y, u

z
,y, u

z
,x, ϕ

x
,x, ϕ

x
,y, ϕ

y
,x, ϕ

y
,y, ϕ

z
,x, ϕ

z
,y, ϕx, ϕy, ϕz in (7) and (8).

2The expansion is valid for the waves with lengthes far larger than interatomic distance aα in initial configuration
which is assumed to be a small parameter.
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A comma stands for the first derivative with respect to the coordinate that follows. Finally, the
coefficients of the stiffness tensors 4A, 4C are expressed as:

A1111 = A2222 =
√
3
6
A1(A1+3A2)
A1+A2

, C1111 = C2222 =
√
3
6
C1(C1+3C2)
C1+C2

;

A1122 = A2211 =
√
3
6
A1(A1−A2)
A1+A2

, C1122 = C2211 =
√
3
6
C1(C1−C2)
C1+C2

;

A1212 = A2121 =
√
3
6
A2(A2+3A1)
A1+A2

, C1212 = C2121 =
√
3
6
C2(C2+3C1)
C1+C2

;

A1221 = A2112 =
√
3
6
A2(A1−A2)
A1+A2

, C1221 = C2112 =
√
3
6
C2(C1−C2)
C1+C2

;

A3131 = A3232 =
√
3
3 A2, C3131 = C3232 =

√
3
3 C2.

(12)

The left column shows nonzero components of tensor 4A and the right one — of tensor 4C. The
obtained equivalent plate is invariant to the rotation around its normal e3 and reflection from itself
and from two mutually orthogonal planes. This leads to the same symmetry of stiffness tensors due
to Curie’s Principle and this symmetry is reflected in the results (12) [21]. The relation between
some of the components takes place due to the mentioned isotropy:

A1212 +A1221 = A1111 −A1122, C1212 + C1221 = C1111 − C1122. (13)

Another relation can be derived from the system of equations (12):

A3131 =
A2

1111 −A2
1122

3A1122 +A1111
, C1221 =

C1122(C1111 − C1122)

3C1122 + C1111
. (14)

All the components of tensor 4B turned out to be zero — this can also be predicted by applying

the theory of symmetry [21]. Tensor 4A provides a relation between stress tensor T and strain

tensor ε and tensor 4C — between couple stress tensor M and strains κ:

T11 = A1111ε11 +A1122ε22, T22 = A2211ε11 +A2222ε22, T21 = A1221ε12 +A1212ε21

T12 = A2121ε12 +A2112ε21, T13 = A3131ε13, T23 = A3232ε23

M11 = C1111κ11 + C1122κ22, M22 = C2211κ11 + C2222κ22, M21 = C1221κ12 + C1212κ21

M12 = C2121κ12 + C2112κ21, M13 = C3131κ13, M32 = C3232κ23.

(15)

The components of strain tensors ε, κ are:

ε11 = ux,x, ε12 = uy,x − ϕz , ε13 = uz,x + ϕy, ε21 = ux,y + ϕz,

ε22 = uy,y, ε23 = uz,y − ϕx, κ11 = ϕx,x, κ21 = ϕx,y,

κ12 = ϕy,x, κ22 = ϕy,y, κ13 = ϕz,x, κ23 = ϕz,y.

(16)

The components of the stiffness tensors have the following physical meaning: A1111 describes the
stretching properties of the material, A1122 — the Poisson effect, A1212 and A1221 relate shear
strains and stresses in the plane determined by vectors e1, e2 and A3131 — in orthogonal plane.
C1111 describes torsion properties of the material, C1221 — analogue of Poisson effect in case of
torsions. Let us define bending stiffness of the material D as a coefficient between couple stress
in a section orthogonal to e1 and strain κ12 (or e2 and κ21). This coefficient is equal to C1212 (or
C2121):

D =

√
3

6

C2(C2 + 3C1)

C1 + C2
. (17)

386



Description of equivalent elastic continuum for graphene lattice

There is a lack of experiments to determine all of the macroscopic moduli. In order to reduce
the number of independent macroscopic moduli a simpler theory can be taken into consideration.
Due to the momentless (symmetric) theory the in-plane moduli of tensor 4A should be invariant
to transposition of the pairs of indices 12 and 21. For this purpose a new component A∗

1212

corresponding to the simpler theory should be taken as (A1212 +A1221)/2:

A∗
1212 = A∗

1221 = A∗
2121 = A∗

2112 =
√
3
3

A1A2

A1+A2
. (18)

The results for coefifcients A1111 and A1122 that describe in-plane deformation correspond with
the results obtained in [19] where experimental data for bulk graphite was applied to find the
values of force constants A1 and A2. It turned out that A2/A1 = 0.55: transversal stiffness of
covalent bond is the same order as longitudinal one and thus needs to be taken into account. The
analysis of relations (18) shows that the Poisson effect is eliminated when A1 = A2. The same
phenomenon takes place in case of equality of torsion and bending stiffnesses C1 and C2: there is
no twisting in the direction orthogonal to the direction where twisting moment is applied.

5 Comparison with the structural mechanics approach

The method of the linkage of molecular mechanics and structural mechanics was proposed in [16]–
[15] to use the AMBER force field [22] for the simulation of covalent bonds. From the viewpoint
of molecular mechanics carbon structure can be regarded as a large molecule consisting of carbon
atoms. The interactions between the atoms can be described by some force field. The representa-
tion of this field as a sum of potential energies that correspond to different interactions is widely
used in literature:

U =
∑

Ur +
∑

Uθ +
∑

Uϕ +
∑

Uω +
∑

Uvdw. (19)

Here Ur corresponds to a bond stretching, Uθ is for bond angle bending, Uϕ — dihedral angle
torsion, Uω — out-of-plane torsion, Uvdw — nonbonded van der Waals interaction. For covalent
systems the main contribution comes from the first four terms which include four-body potentials.
Under assumption of small deformations the simplest harmonic forms of the energies can be con-
sidered. The third and the fourth terms are usually merged to a single equivalent term Uτ . After
that three harmonic forms are left:

Ur =
1

2
kr(∆r)

2, Uθ =
1

2
kθ(∆θ)

2, Uτ =
1

2
kτ (∆ϕ)

2, (20)

where kr, kθ, kτ are force constants and ∆r, ∆θ, ∆ϕ are corresponding strains.
In [15] it is assumed that carbon-carbon bond can be simulated by uniform round beam-like

element with parameters EI, EA and GJ , where E is the Young modulus of a beam, I is the
moment of inertia J is the polar moment of inertia, G is the shear modulus, A is the cross-section
area. This parameters are determined by comparing the energies of the deformation of a bond
subjected to pure axial force, to pure bending moment and pure torsion:

UA =
1

2

EA

L
(∆L)2, UM =

1

2

EI

L
(2α)2, UT =

1

2

GJ

L
(∆β)2. (21)

It is taken into account that each energy term in (20) represents individual interaction without
cross-interactions and that’s why strain energies of structural element under individual forces are
considered. L is the length of a beam and is assumed to be equal to 0.142 nm — the length of a
covalent bond in graphene. By assuming the equivalences

∆L ⇐⇒ ∆r, 2α ⇐⇒ ∆θ, ∆β ⇐⇒ ∆ϕ (22)

and comparing (20) to (21) the following relations are obtained:

EA

L
= kr,

EI

L
= kθ,

GJ

L
= kτ . (23)
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The values for kr, kθ, kτ taken from the AMBER force field [22] are:

kr = 6.52 · 10−7N nm−1, kθ = 8.76 · 10−10N nm rad−2,

kτ = 2.78 · 10−10N nm rad−2.
(24)

The stiffnesses A1, A2, C1, C2 can be linked with parameters of the beams and thus with force field
constants. For Bernoully-Euler beam the relations between the stiffness constants and parameters
of a beam are:

A1 =
EA

L
, C2 =

EI

L
, C1 =

GJ

L
, A2 =

12EI

L3
. (25)

Comparing (23) and (25) and taking into account (24) the following values for the stiffness coeffi-
cients are obtained:

A1 = 652N/m, A2 = 521N/m, C1 = 2.7 · 10−10N nm, C2 = 8.7 · 10−10N nm. (26)

Then the following values for stiffness coefficients of macroscopic material can be obtained:

A1111 = 355 N/m, C1111 = 2 · 10−19 N m;

A1122 = 21 N/m, C1122 = −0.4 · 10−19 N m;

A∗
1212 = 167 N/m, C1212 = 3.7 · 10−19 N m;

A3131 = 301 N/m, C1221 = −1.3 · 10−19 N m.

(27)

The results for in-plane moduli A1111, A1122 give a good correspondence with the results derived
from experimental data for bulk graphite [17]. The negative values of C∗

1122 and C∗
1221 do not

disrupt the positiveness of the potential energy quadratic form that requires the positiveness of
the matrixes of the stiffness tensors.

6 Conclusions

The model of the discrete structure of graphene lattice is considered. Four parameters are in-
troduced to model the linear deformation of the covalent bond. Under assumption of long-wave
approximation the equivalent continuum is derived. The relations between the elastic moduli of the
continuum and the parameters at microlevel are obtained. Thus, if the experiments allow to calcu-
late the macroscopic parameters of interatomic interactions, the elastic moduli can be determined,
and vice versa. The available experimental data allow to determine the in-plane components of
tensor 4A. Component A3131 can be determined then for the present model when parameter A2

is evaluated using the relations with known macroscopic moduli. There is a need to carry out ex-
periments that are able to estimate the moduli of tensor 4C. These moduli can be also estimated
if parameters of interaction at microlevel are known, for example, from some new experiments
or force fields that are already in use. Additional verification is desirable for the results for the
components of tensor 4C derived from the parameters of AMBER force field.
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