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Vector-based model of elastic bonds for simulation of granular solids2
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A model (further referred to as the V model) for the simulation of granular solids, such as rocks, ceramics,
concrete, nanocomposites, and agglomerates, composed of bonded particles (rigid bodies), is proposed. It is
assumed that the bonds, usually representing some additional gluelike material connecting particles, cause both
forces and torques acting on the particles. Vectors rigidly connected with the particles are used to describe the
deformation of a single bond. The expression for potential energy of the bond and corresponding expressions for
forces and torques are derived. Formulas connecting parameters of the model with longitudinal, shear, bending,
and torsional stiffnesses of the bond are obtained. It is shown that the model makes it possible to describe any
values of the bond stiffnesses exactly; that is, the model is applicable for the bonds with arbitrary length/thickness
ratio. Two different calibration procedures depending on bond length/thickness ratio are proposed. It is shown
that parameters of the model can be chosen so that under small deformations the bond is equivalent to either a
Bernoulli-Euler beam or a Timoshenko beam or short cylinder connecting particles. Simple analytical expressions,
relating parameters of the V model with geometrical and mechanical characteristics of the bond, are derived.
Two simple examples of computer simulation of thin granular structures using the V model are given.
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I. INTRODUCTION20

The discrete (or distinct) element method (DEM) [1] is21

widely used for the computer simulation of solid and free-22

flowing granular materials. Similarly to classical molecular23

dynamics [2,3], in the framework of DEM the material24

is represented by a set of many interacting rigid body25

particles (granules). The equations of the particles’ motion are26

integrated numerically. In free-flowing materials the particles27

interact via contact forces, dry and viscous friction forces,28

electrostatic forces, etc. Computer simulation of deformation29

and fracture of granular solids, such as rocks [4], concrete [5],30

ceramics [6,7], particle compounds [8], agglomerates [9],31

nanocomposites [10], etc., is even more challenging. Particles32

in granular solids are usually connected together by some33

additional bonding material such as cement [4,5] or glue34

[6–10]. The example of composite material consisting of PbS35

nanoparticles bonded together by a copolymer is shown in36

Fig. 1 (for details, see Ref. [10]). The copolymer (bonding37

material) resists the relative translation and rotation of neigh-38

boring PbS particles. In DEM simulations bonding material is39

usually taken into account implicitly using the concept of so-40

called bonds [4,7,9,11]. Neighboring particles are connected41

by the bonds that resist stretching/compression, shear, bending,42

and torsion. The bonds cause forces and torques acting on43

the particles along with contact forces [12]. The mass of44

the bonding material is usually neglected [4,7,9,11]. The45

assumption does not influence static properties of the granular46

material. The influence on the dynamic properties is not so47

straightforward and should be considered separately. However,48

let us note that in many practical applications [4,7,9,10] the49

mass of bonding material is much smaller than the mass of50

the particles (see, for example, Fig. 1). Therefore, the mass of51

bonding material can be neglected.52
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According to the review, presented in Ref. [11], only a 53

few models proposed in the literature allow a description 54

of all possible deformations of the bond accurately. The 55

bonded-particle model (BPM), proposed in Ref. [4], is widely 56

used for simulation of deformation and fracture of solids, in 57

particular, rocks [13,14] and agglomerates [9]. For example, 58

the impact of a granule with a rigid wall is considered in 59

Ref. [9]. Several drawbacks of the BPM, in particular, in the 60

case of coexistence of bending and torsion of the bond, are 61

discussed in Ref. [11]. It is noted that the main reason for the 62

drawbacks is the incremental algorithm, used in the framework 63

of the BPM. Also it should be noted that the BPM contains 64

only two independent parameters, describing bond stiffnesses, 65

while, in general, the bond has four independent stiffnesses 66

(longitudinal, shear, bending, and torsional). A Timoshenko 67

beam connecting particles’ centers is used as a model of a 68

bond in Ref. [15]. The model has a clear physical meaning and 69

is applicable for thin, long bonds under small deformations. 70

However, it has low accuracy for the description of short bonds, 71

connecting particles’ surfaces. For example, the model [15] is 72

not accurate in the case shown in Fig. 1. Also the generalization 73

of the model for the case of large nonlinear deformations 74

of the bond is not straightforward. The approach, based on 75

decomposition of relative rotation of particles, is proposed in 76

Ref. [11]. Forces and torques are represented as functions 77

of angles, describing the relative rotation of the particles. 78

It is shown that the method in Ref. [11] is more accurate 79

from the computational point of view than the incremental 80

procedure of the BPM. Though the formalism proposed in 81

Ref. [11] is correct from a mathematical point of view, it 82

has a drawback. It is evident from the paper that if particles 83

rotate in the same direction and there is no relative translation, 84

then forces and torques are equal to zero. The reason is 85

that the forces and torques, proposed in Ref. [11], depend 86

only on relative position and orientation of the particles, 87

while, in general, the dependence on the orientation of the 88

particles with respect to the bond should also be taken into 89

account. 90
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FIG. 1. Scanning electron microscope images of composite con-
sisting of PbS nanoparticles bonded by a copolymer. From Ref. [10].

Another approach for description of interactions between91

both material points [2] and rigid bodies [3] is used in92

classical molecular dynamics. Forces and torques, acting93

between particles, are derived from the potential energy. Linear94

interactions between rigid body particles in crystalline solids95

are discussed in detail in Refs. [16,17]. Different types of96

nonlinear interactions are proposed in Refs. [3,18] and [19,20]97

for molecular liquids and crystalline solids, respectively.98

In the present paper a vector-based model (further referred99

to as the V model) of elastic bonds in solids is developed100

using a combination of approaches, proposed in Refs. [16]101

and [3,18]. Equations describing interactions between two102

rigid bodies in the general case are summarized. The general103

expression for the potential energy of the bond is represented104

via vectors rigidly connected with bonded particles. The105

vectors are used for description of different types of bond106

deformation. The expression for potential energy correspond-107

ing to tension/compression, shear, bending, and torsion of the108

bond is proposed. Forces and torques acting between particles109

are derived from the potential energy. Two approaches for110

calibration of V model parameters for bonds with different111

length/thickness ratios are presented. Simple analytical for-112

mulas connecting geometrical and elastic characteristics of113

the bond with parameters of the V model are derived. The114

main aspects of numerical implementation of the model are115

discussed. Two examples of computer simulations using the V116

model are given.117

II. PAIR POTENTIAL INTERACTIONS BETWEEN RIGID118

BODIES: THE GENERAL CASE119

Let us consider the approach for the description of pair120

potential interactions between rigid bodies in the general121

case [3,17,18]. In the literature the formalism is referred to122

as moment interactions [16,17,19–21]. In the present paper123

moment interactions are applied for description of elastic124

bonds between particles in granular solids.125

Consider a system consisting of two interacting rigid body126

particles, marked by indexes i and j . In the general case127

particles interact via forces and torques depending on their128

relative position, relative orientation, and orientation with 129

respect to the vector connecting the particles. Let us introduce 130

the following designations: Fij and Mij are force and torque, 131

respectively, acting on particle i from particle j . Torque Mij 132

is calculated with respect to the center of mass of particle i. In 133

Ref. [17] it is shown that Fij and Mij satisfy Newton’s third 134

law, its analog for torques, and equation of energy balance, 135

Fij = −Fji , Mij + Mji − rij × Fij = 0,
(1)

U̇ij = Fij · ṙij − Mij · ωi − Mji · ωj ,

where rij
def= rj − ri ; ri ,rj are radius vectors of particles i and 136

j ; ωi ,ωj are angular velocities; Uij is the internal energy of 137

the system. 138

Assume that the interactions between particles are potential 139

and that the internal energy Uij depends on particles’ relative 140

position, relative orientation, and orientation with respect to 141

rij . Relative position of the particles can be described by vector 142

rij . Therefore, Uij should be a function of rij . In order to 143

introduce the dependence of Uij on particles’ orientation the 144

approach, initially proposed for liquids in Ref. [18] and applied 145

for solids in Ref. [20], is used. Let us describe the orientation 146

of particle i via the set of vectors {nk
i }k∈�i

, rigidly connected 147

with the particle, where �i is a set of indexes. Hereinafter 148

the lower index corresponds to a particle’s number, while the 149

upper index corresponds to a vector’s number. The maximum 150

amount of vectors is not limited and does not influence the 151

general considerations. Since orientations of the particles are 152

determined by vectors {nk
i }k∈�i

, {nm
j }m∈�j

, it follows that 153

internal energy has the form 154

Uij = U
(
rij ,

{
nk

i

}
k∈�i

,
{
nm

j

}
m∈�j

)
. (2)

Let us derive the relation between forces, torques, and potential 155

energy Uij . Substituting formula (2) into equation of energy 156

balance (1) and assuming that forces Fij and torques Mij are 157

independent on linear and angular velocities of the particles, 158

one can show that 159

Fij = −Fji = ∂U

∂rij

, Mij =
∑
k∈�i

∂U

∂nk
i

× nk
i ,

(3)

Mji =
∑
m∈�j

∂U

∂nm
j

× nm
j .

If the internal energy (2) is known, then forces and torques 160

are calculated using formulas (3). Note that function U must 161

satisfy the material objectivity principle. That is, it must be 162

invariant with respect to rigid body rotation. If the objectivity 163

principle is satisfied, then forces and torques, calculated 164

using formulas (3), satisfy Newton’s third law for torques 165

automatically. Therefore, U must be a function of some in- 166

variant arguments. For instance, the following invariant values 167

can be used: rij ,eij · nk
i ,eji · nm

j ,nk
i · nm

j , |eij × nk
i |,|nk

i × nm
j |, 168

etc., where eij
def= rij /rij ,k ∈ �i,m ∈ �j . In practice the first 169

four expressions from the list are sufficient as the remaining 170

invariants can be represented via their combination. These 171

expressions have simple geometrical meaning. The first one 172

is a distance between the particles. The second and the third 173

invariants (eij · nk
i and eji · nm

j ) describe the orientation of 174

particles i and j with respect to vector rij . The fourth invariants 175
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nk
i · nm

j describe the relative orientation of the particle. Thus,176

in the general case the potential of interaction between rigid177

bodies is represented in the following form:178

Uij = U
(
rij ,

{
eij ·nk

i

}
k∈�i

,
{
eji · nm

j

}
m∈�j

,
{
nk

i · nm
j

}
k∈�i,m∈�j

)
.

(4)

In general, sets �i,�j may contain any number of vectors.179

However, from computational point of view it is desirable to180

minimize this number.181

III. VECTOR-BASED MODEL OF A SINGLE BOND182

Let us use moment interactions for the description of the183

elastic deformation of the bond. Note that, in general, the184

particle can be bonded with any number of neighbors. How-185

ever, the behavior of the bonds is assumed to be independent.186

Therefore, for simplicity, only two bonded particles i and j187

are considered. Assume that the bond connects two points that188

belong to the particles. The points lie on the line connecting189

the particles’ centers in the initial (undeformed) state. For190

example, the points can coincide with particles centers. Let191

us denote distance from the points to the particles’ centers of192

mass as Ri and Rj , respectively (see Fig. 2). For example, in193

the case shown in Fig. 2, the points lie on the particles’ surfaces194

and values Ri and Rj coincide with the particles’ radii. Let us195

introduce orthogonal unit vectors n1
i , n2

i , n3
i and n1

j , n2
j , n3

j ,196

rigidly connected with particles i and j , respectively. The197

lower indexes correspond to particles’ numbers; the upper198

indexes correspond to vectors’ numbers. Assume that in the199

undeformed state the following relations are satisfied:200

n1
i = −n1

j = eij , n2
i = n2

j , n3
i = n3

j . (5)

Following the idea described in the previous paragraph, let201

us represent the potential energy of the bond as a function202

of vector Dij
def= rij + Rj n1

j − Rin1
i and vectors nk

i ,n
m
j ,k,m =203

1,2,3. Vector Dij connects the “bonded” points with radius204

vectors ri + Rin1
i ,rj + Rj n1

j (see Fig. 2). Let us consider the205

following form for potential energy of the bond:206

U = UL(Dij ) + UB

(
n1

i · n1
j ,dij · n1

i ,dji · n1
j

)
+UT

({
nk

i · nk
j ,dij · nk

i ,dji · nk
j

}
k=2,3

)
,

Dij = |Dij |, dij = Dij /Dij . (6)

Note that potential energy (6) satisfies the objectivity prin-207

ciple. That is, it is invariant with respect to rotation of the208

system as a rigid body. Let us describe the relation between209

functions UL,UB,UT and different kinds of deformation of210

the bond, shown in Fig. 3. Function UL describes stretch-211

ing/compression, function UB describes bending and shear of212

FIG. 2. Two bonded particles in the undeformed state (left) and
deformed state (right). Here and below a is an equilibrium distance.

FIG. 3. Different kinds of deformation of the bond and corre-
sponding change in vectors, connected with the particles. Dashed
lines show the initial states of the particles.

the bond. Arguments dij · n1
i , dji · n1

j change in the case of 213

bending and shear. Argument n1
i · n1

j changes only in the case 214

of bending and is invariant with respect to shear. Function UT 215

changes in the case of both torsion and bending. The following 216

expressions for functions UL,UB,UT from formula (6) are 217

proposed in the present paper: 218

UL(s) = B1

2
(s − a)2,

UB(s1,s2,s3) = −B2

2
s2

1 − B3

2

(
s2

2 + s2
3

)
,

UT ({s1k,s2k,s3k}k=2,3) = −B4

4

∑
k=2,3

(s1k + s2ks3k)2

× (
1 + s2

2k

)(
1 + s2

3k

)
, (7)

where a is an equilibrium length of the bond (see Fig. 2); 219

Bm,m = 1, . . . ,4, are parameters of the model. Functions (7) 220

are the simplest with independent longitudinal, shear, bending, 221

and torsional stiffnesses (see Sec. IV A). Note that the number 222

of parameters of the V model is equal to the number of 223

bond stiffnesses. Further it is shown that the behavior of the 224

bond under small deformations can be described exactly by 225

fitting parameters of the model. For brittle materials, such as 226

rocks [4], it is sufficient as critical deformations are usually 227

small. On the other hand, it is shown below that the V model has 228

reasonable behavior at finite deformations (see Sec. VI). Thus, 229

very flexible structures can be considered as well. Also the V 230

model can be generalized for the nonlinear case, changing 231

expressions for UL,UB,UT and introducing new parameters 232

into the potential. The generalization can be important, in 233

particular, for simulation of polymer bonds [7]. Note that 234

analogous generalization of existing models, such as the BPM 235

[4], is not so straightforward. 236

Let us derive expressions for force Fij and torque Mij . 237

Using formulas (3) and (7), one obtains 238

Fij = B1(Dij − a)dij − B3

Dij

dij · (
n1

i ñ1
i + n1

j ñ1
j

)
+ 1

Dij

∑
k=2,3

(
∂UT

∂s2k

ñk
i − ∂UT

∂s3k

ñk
j

)
,

Mij = Rin1
i × Fij − n1

i · [
B2n1

j n1
j + B3dij dij

] × n1
i

+
∑
k=2,3

(
∂UT

∂s1k

nk
j + ∂UT

∂s2k

dij

)
× nk

i . (8)

Here and below ñk
i = nk

i − nk
i · dij dij . The expressions for 239

partial derivatives ∂UT /∂smk,m = 1,2,3, k = 2,3 are the 240
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following:241

∂UT

∂s1k

= −B4

2
(s1k + s2ks3k)

(
1 + s2

2k

)(
1 + s2

3k

)
,

∂UT

∂s2k

= −B4

2
(s1k + s2ks3k)

(
1 + s2

3k

)
× (

s3k + s1ks2k + 2s3ks
2
2k

)
,

∂UT

∂s3k

= −B4

2
(s1k + s2ks3k)

(
1 + s2

2k

)
× (

s2k + s1ks3k + 2s2ks
2
3k

)
, k = 2,3. (9)

Thus, formulas (8) and (9) are used for calculation of forces242

and torques, acting on the bonded particles. Note that in243

contrast to incremental procedure [4], the V model allows244

us to calculate forces and torques at every moment of time245

(time step) independently.246

Note that the V model can be applied to both two- and247

three-dimensional problems. In two dimensions function UT248

describing torsion can be set equal to zero.249

IV. PARAMETER CALIBRATION250

A. Bond stiffnesses251

Let us choose parameters of the V model Bm,m = 1, . . . ,4252

in order to describe any given elastic properties of the bond253

in the case of small deformations exactly. Following the idea,254

proposed in Ref. [17], let us introduce stiffnesses of the bond.255

Consider the force Fij and torque256

M def= Mij − (
Rin1

i + Dij /2
) × Fij , (10)

calculated with respect to the center of the bond, defined257

by vector ri + Rin1
i + Dij /2. According to the results of258

Ref. [17], under small deformations Fij and M can be259

represented in the form260

Fij = A · (uj − ui − (Riϕi + Rjϕj )

× dij + 1
2 Dij × (ϕi + ϕj )

)
,

M = G · (ϕj − ϕi), (11)

where A, G are stiffness tensors; ui , ϕi are displacement and261

a vector indicating a small rotation of particle i. In the case262

of transversally symmetrical bonds, considered in the present263

paper, the stiffness tensors have form264

A = cAdij dij + cD(E − dij dij ),
(12)

G = cB(E − dij dij ) + cT dij dij ,

where E is a unit tensor. The values cA,cD,cB,cT are further265

referred to as longitudinal, shear, bending, and torsional266

stiffness, respectively. One can see from formulas (11)267

and (12) that the stiffnesses completely determine the behavior268

of the bond in the case of small deformations.269

Let us derive the relations between parameters of potential270

(7) and bond stiffnesses. First consider the expression (8) for271

force Fij in the case of pure tension:272

Fij = B1(Dij − a)eij = B1(|rij − Ri − Rj | − a)eij . (13)

Therefore, according to formula (11) longitudinal stiffness of273

the bond cA is equal to B1. Let us determine the relation274

between shear stiffness cD and parameter B3. Consider the 275

following deformation of the bond. Assume that position of 276

particle i is fixed and particle j has a displacement uj k, 277

where k is orthogonal to the line connecting particles in the 278

undeformed state. Orientations of both particles are fixed. In 279

this case the first formula from (11) has the form 280

Fij · k = cDuj . (14)

Let us expand the expression (8) for Fij into a series, assuming 281

that |uj/a| � 1 and neglecting the second order terms. In this 282

case the projection of Fij on vector k has form (14). Omitting 283

the derivation let us present the final expression for cD: 284

cD = 2B3

a2
. (15)

Let us obtain analogous relation for bending stiffness of 285

the bond cB . Assume that vector Dij remains fixed in the 286

equilibrium state, while the particles are rotated by vectors 287

of small turn ϕi ,ϕj . In this case vectors nk
i ,n

m
j in the current 288

(deformed) configuration can be calculated as follows: 289

nk
p ≈ nk

p(0) + ϕp × nk
p(0), k = 1,2,3, p = i,j. (16)

Here zero denotes initial configuration, for example, n1
i (0) = 290

−n1
j (0) = eij (0). This deformation corresponds to bending the 291

bond. Substituting (8) and (16) into (10) and leaving the first 292

order terms only, one obtains 293

M ≈
[(

B3

2
+ B2

)
(E − dij dij ) + B4dij dij

]
· (ϕj − ϕi). (17)

The expressions for bending stiffness cB and torsional stiffness 294

cT follows from the comparison of formula (17) with the 295

second formula from (11). As a result the expressions relating 296

the parameters of the V model to bond stiffnesses have the 297

form 298

cA = B1, cD = 2B3

a2
, cB = B3

2
+ B2, cT = B4. (18)

It follows from formulas (18) that choosing parameters 299

Bm,m = 1, . . . ,4 one can fit any values of the stiffnesses. 300

Therefore, the linear elastic behavior of the bond can be 301

described exactly. Note that no assumptions about bond’s 302

length/thickness ratio are made. 303

Thus, if stiffnesses of the bond are known, then the calcu- 304

lation of V model parameters is straightforward. In principle, 305

the stiffnesses can be measured, performing the experiments 306

on tension, shear, bending, and torsion for the system of two 307

bonded particles. In this case, formulas (18) are sufficient for 308

calibration. However, if the body, for example, agglomerate 309

[9], contains many bonds with different geometrical character- 310

istics, then experimental calibration is practically impossible. 311

Therefore, an additional model connecting the stiffnesses with 312

geometrical and physical characteristics of the bond, such 313

as bond length, shape, cross section area, elastic moduli of 314

bonding material, etc., is required. Evidently the behavior of 315

the bond strongly depends on bond’s length/thickness ratio. 316

Therefore, models used for calculation of the stiffnesses should 317
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be different for the different ratios. Two procedures for long318

and short bonds are proposed below.319

B. Calibration for long bonds: The Bernoulli-Euler and320

Timoshenko beam theories321

Assume that bonds are relatively long (length/thickness322

ratio is larger than unity). In this case, elastic beam, connecting323

particles, can be used as a model of the bond [15]. Comparison324

of the V model with the results of Bernoulli-Euler and325

Timoshemko beam theories [22] is used as a theoretical basis326

for calibration. Note that in contrast to Ref. [15], in the327

framework of the V model the bonds, connecting, for example,328

particle surfaces, can be considered. This fact is important for329

simulation of solids, composed of glued particles, for example,330

composites [7,10].331

Let us derive the relation between parameters of the332

V model and massless Bernoulli-Euler beam connecting par-333

ticles (the beam connects points with radius vectors ri + Rin1
i334

and rj + Rj n1
j ). Assume that the beam has equilibrium length335

a, constant cross section, and isotropic bending stiffness. The336

expressions for longitudinal, shear, bending, and torsional337

stiffnesses of a Bernoulli-Euler beam are derived in Ref. [21]:338

cA = EA

a
, cD = 12EJ

a3
, cB = EJ

a
, cT = GJp

a
, (19)

where E,G,A,J, and Jp are Young’s modulus, shear modulus,339

cross section area, moment of inertia, and polar moment of340

inertia of the cross section respectively. For example, for the341

beam with circular cross section342

J = πd4
b

64
, Jp = 2J, A = πd2

b

4
, (20)

where db is a diameter of the beam. Using formulas (18) and343

(19) one obtains the expressions, connecting parameters of the344

V model with characteristics of the beam345

B1 = EA

a
, B2 = −2EJ

a
, B3 = −3B2, B4 = GJp

a
.

(21)

Formula (21) can be used for calibration of the parameters346

in the case of long bonds. If the parameters are determined347

by formula (21), then under small deformations the V model348

is equivalent to a Bernoulli-Euler beam connecting particles.349

Note that in this case values B̃m
def= Bma,m = 1, . . . ,4, do350

not depend on the equilibrium bond length a. Therefore,351

B̃m are the same for bonds with different length, but equal352

cross section and elastic properties. Using this fact one can353

reduce the number of parameters, stored in RAM, in computer354

simulations of systems with bonds of different length.355

The Bernoulli-Euler model provides simple theoretical356

basis for calibration. However, if length and thickness of357

the bond are comparable, then this model is no longer358

applicable [22]. In this case more accurate models are required.359

Calibration using a Timoshenko model [22] is described below.360

Consider a Timoshenko beam of length a and constant361

cross section with spherical inertia tensor. Let us derive the362

expressions, connecting parameters of the beam with its stiff-363

nesses. Longitudinal and torsional stiffnesses are determined364

by formulas (19). Without loss of generality the derivation of365

expressions for shear and bending stiffnesses is carried out in 366

the two dimensional case. Consider pure shear of the beam. The 367

corresponding system of equilibrium equations and boundary 368

conditions for the beam has the form [22] 369

w′′(s) = θ ′(s), θ ′′(s) + κA

2J (1 + ν)
[w′(s) − θ (s)] = 0,

(22)

w(0) = 0, θ (0) = 0, w(a) = uj , θ (a) = 0, (23)

where ν is Poisson’s ratio of material of the bond; w(s) and θ (s) 370

are the deflection and angle of rotation for the cross section 371

with coordinate s; κ is dimensionless shear coefficient [22]. 372

Shear coefficients for rods with different cross sections are 373

derived, in particular, in Ref. [23]. 374

Solving the system of partial differential equations (22) 375

with boundary conditions (23) one obtains an expression for 376

the magnitude of the shear force Q, acting in the beam, and 377

shear stiffness: 378

Q= κGA(w′ − θ ) = cDuj , cD = 12κAEJ

a[κAa2 + 24J (1 + ν)]
.

(24)

Let us consider bending of the beam under the following 379

boundary conditions: 380

w(0) = 0, θ (0) = ϕi, w(a) = 0, θ (a) = ϕj . (25)

Solving the system of equations (22) with boundary conditions 381

(25) and calculating the magnitude of the torque M , acting in 382

the middle of the beam, one obtains 383

M = EJθ ′
(

a

2

)
= EJ

a
(ϕj − ϕi). (26)

Formula (26) gives the expression for the bending stiffness of 384

the bond. Thus, the stiffnesses of a Timoshenko beam has form 385

cA = EA

a
, cD = 12κAEJ

a[κAa2 + 24J (1 + ν)]
,

(27)

cB = EJ

a
, cT = GJp

a
.

Finally, using formulas (27) one obtains the relation between 386

parameters of the V model and the Timoshenko beam: 387

B1 = EA

a
, B2 = −2EJ [κAa2 − 12J (1 + ν)]

a[κAa2 + 24J (1 + ν)]
,

(28)

B3 = 6κAEJa

κAa2 + 24J (1 + ν)
, B4 = GJp

a
.

Note that in the limit κ → ∞ formulas (28) exactly coincide 388

with analogous formulas (21), obtained using Bernoulli-Euler 389

beam theory. If formula (28) is used for the calibration, then for 390

small deformation the V model is equivalent to Timoshenko 391

beam connecting particles. 392

C. Calibration for short bonds 393

Generally speaking, the approach for calibration described 394

above is applicable for relatively long and thin bonds with 395

length/thickness ratio larger than unity. In the case of short 396

bonds, shown, for example, in Fig. 1, the models based 397
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FIG. 4. Particles connected by a short cylinder.

on elasticity theory should be used for calibration. Let us398

consider a simple qualitative model, based on elasticity theory.399

Assume that particles are connected by a short cylinder with400

equilibrium length a as is shown in Fig. 4. Note that, in general,401

parameters Ri,Rj are not equal to particles’ radii (the particles402

can even be in contact with each other). Let us derive the403

relations between the parameters of the bond and its stiffnesses.404

Longitudinal stiffness cA is, by definition, the proportionality405

coefficient between force and elongation of the bond. In the406

case of tension the force Fij is caused by the normal stress σ ,407

acting in the bond. The following relation is satisfied:408

Fij · eij =
∫

(A)
σdA, (29)

In the case of a short bond, rigidly attached to the particles,409

the strain state of the bond is approximately uniaxial with410

the strain equal to (uj − ui)/a, where ui,uj are particles’411

displacements. Then the normal stress σ can be represented412

using Hooke’s law σ ≈ (λ + 2μ)(uj − ui)/a, where λ,μ are413

the Lamé coefficients for the bond. Substituting this formula414

into Eq. (29) one obtains415

Fij · eij = (λ + 2μ)A

a
(uj − ui)

= (1 − ν)EA

(1 + ν)(1 − 2ν)a
(uj − ui), (30)

Therefore, the longitudinal stiffness of the bond has the form416

cA = (1 − ν)

(1 + ν)(1 − 2ν)

EA

a
. (31)

One can see that longitudinal stiffness (31) differs from the417

first formula from (27) by a factor of (1 − ν)/[(1 + ν)(1 −418

2ν)]. Note that for nearly incompressible bonding materials419

the difference is crucial.420

Let us derive the expression for the shear stiffness cD .421

Consider pure shear of the bond. Assume that position of422

particle i is fixed and particle j has a displacement uj k,423

where k is orthogonal to the line connecting particles in the424

undeformed state. Orientations of both particles are fixed. In425

this case the force Fij is caused by shear stresses τ acting426

inside the bond. Integrating the stresses over the cross section427

let us represent Fij · k in the following form:428

Fij · k =
∫

(A)
τdA. (32)

Assume that the stress distribution over the cross section429

is uniform and τ ≈ Guj/a. Substituting this formula into430

formula (32) and comparing the result with formula (14) one431

obtains the following expression for shear stiffness: 432

cD = GA

a
. (33)

One can see that the expression for shear stiffness (33) and the 433

second formula from (27), derived using Timoshenko beam 434

theory, are qualitatively different. However, it is notable that 435

the formulas coincide in the limit of vanishing length/thickness 436

ratio, if shear coefficient κ = 1. Analogous derivations for 437

bending and torsional stiffnesses of the bond lead to the 438

following results: 439

cB = (1 − ν)

(1 + ν)(1 − 2ν)

EJ

a
, cT = GJp

a
. (34)

Finally, using formulas (18) and (34) one obtains expressions, 440

connecting the parameters of the V model with bond charac- 441

teristics: 442

B1 = (1 − ν)EA

(1 + ν)(1 − 2ν)a
, B2 = G

[
2(1 − ν)

1 − 2ν

J

a
− Aa

4

]
,

(35)

B3 = GAa

2
, B4 = GJp

a
.

Thus, in the case of short bonds formulas (35) can be used to 443

calibrate the V model. 444

V. NUMERICAL IMPLEMENTATION OF THE V MODEL 445

Let us describe the numerical procedure for simulation 446

of solids using the V model. Consider the system of N 447

particles, connected by bonds. Other types of interactions are 448

not considered in the present paragraph. The system of motion 449

equations has the classical form 450

mi r̈i =
∑
j �=i

Fij , �iω̇i =
∑
j �=i

Mij , (36)

where mi,�i are the mass and the moment of inertia of the 451

particle (for simplicity, it is assumed that all particles have 452

spherical inertia tensor). If particles i and j are bonded, then 453

force Fij and torque Mij , caused by the bond, are calculated 454

using formulas (8). Otherwise, they are equal to zero. The 455

system (36) is solved together with the kinematic equations 456

connecting linear and angular velocities with positions and 457

orientations of the particles. For example, let us determine 458

the turn of particle i from initial orientation to current one by 459

rotational tensor Pi . Then kinematic formulas are 460

ṙi = vi , Ṗi = ωi × Pi . (37)

Numerical integration of Eqs. (36) and (37) gives current 461

positions and orientations of the particles at every time step. 462

As was discussed, forces and torques between particles i 463

and j are calculated using vectors nk
i ,n

k
j ,k = 1,2,3, connected 464

with the particles. The vectors are introduced according to 465

formula (5) at moment t∗, when the bond is created, and 466

corotate with the particles. Consider the simplest approach 467

for calculation of their current coordinates. Let us introduce 468

the basis, consisting of orthogonal unit vectors xm
i ,m = 1,2,3, 469

rotating with particle i. Then current orientation of vectors xm
i 470

is determined as follows: 471

xm
i (t) = Pi(t) · xm

i (0). (38)
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Let us use coordinates of vectors nk
i ,k = 1,2,3 in the comoving472

basis xm
i ,m = 1,2,3 for calculation of current orientation of473

the vectors nk
i ,k = 1,2,3. Then at each time step vectors474

xm
i ,m = 1,2,3 are rotated using Eq. (38) and vectors nk

i475

are determined using their coordinates nk
i · xm

i ,m,k = 1,2,3,476

stored in RAM:477

nk
i =

3∑
m=1

(
nk

i · xm
i

)
xm

i . (39)

Note that nk
i · xm

i ,k,m = 1,2,3 does not depend on time and478

therefore can be calculated only at t = t∗. The described479

procedure allows us to avoid rotation of all vectors, connected480

with the particle, using Eq. (38).481

Consider the calculation of forces and torques caused by482

the bonds. At every time step one should go over all the bonds483

and calculate corresponding forces and torques. Therefore484

in computer code, written in object-oriented programming485

language, it is convenient to introduce a class “Bond.” In486

general, the element of this class contains the following487

parameters: pointers to bonded particles, initial length of488

the bond a, parameters Bm,m = 1, . . . ,4, and coordinates of489

vectors nk
i ,n

k
j ,k = 1,2,3 in the comoving coordinate systems.490

For storage of the bonds it is also convenient to introduce a491

class for bond list. For example, in C++ language it can be492

implemented using std::map.493

Thus, the algorithm for computer simulation using the V494

model is the following. At every time step, do the following.495

(1) Create new bonds if required. Calculate parameters of496

the bonds. Add created bonds to the list.497

(2) Check if the particles are bonded using list of the bonds.498

For each pair of bonded particles, get bond parameters and499

calculate current vectors nk
i ,n

k
j , k = 1,2,3, and length of the500

bond Dij .501

(3) Calculate forces and torques between the particles using502

(8).503

(4) Calculate linear and angular velocities at the next time504

step.505

(5) Calculate positions and orientations of the particles and506

coordinates for vectors xk
i ,k = 1,2,3 at the next time step.507

VI. EXAMPLES508

In general, using the V model one can simulate mechanical509

behavior of any solid consisting of (or represented by) bonded510

particles. However, accurate description of the bonds is espe-511

cially important for computer simulation of thin rodlike [24]512

or shell-like granular structures [25]. The structures are widely513

used in the chemical industry and pharmaceutics. In particular,514

the review on synthesis and application of shell-like polymer515

particles is given in Ref. [25]. In the present paper simulation516

of mechanical behavior of the simplest thin structures is carried517

out in order to test the applicability of the V model. Modeling518

of more complex and realistic structures is a subject for future519

work.520

For simplicity, assume that all particles have the same mass521

m and radius R. The bonds connect particles’ centers and522

have circular cross section with diameter db. The Bernoulli-523

Euler model is used for the calibration. Let us represent all524

values via three dimensional parameters: equilibrium bond525

length a [26], particle mass m, and longitudinal stiffness 526

of the bond cA. In computer code these parameters can be 527

set equal to unity. All other parameters are represented via 528

a,m,cA and dimensionless values. In particular, the following 529

dimensionless parameters are used: 530

Ea

cA

= 4

π

(
a

db

)2

,
A

a2
= π

4

(
db

a

)2

,
J

a4
= π

64

(
db

a

)4

,

B1

cA

= 1,
B2

cAa2
= −1

8

(
db

a

)2

,
B3

cAa2
= 3

8

(
db

a

)2

, (40)

B4

cAa2
= 1

16(1 + ν)

(
db

a

)2

.

One can see that in this case the dimensionless parameters of 531

the bond depends only on Poisson’s ratio ν and the ratio db/a. 532

A. Quasistatical and dynamical buckling of a discrete beam 533

Consider the simplest thin structure, a notably straight 534

discrete beam, directed along the x axis and consisting of N 535

bonded particles. Assume that the bonds connect particles’ 536

centers. First let us simulate quasistatical buckling of the 537

beam under compression using the following procedure. Initial 538

velocities of the particles are randomly distributed in the circle 539

with radius v0. Initial angular velocities are set equal to zero. 540

Every T∗ time units the uniform deformation ε∗ is applied 541

to the discrete beam. After every deformation equations of 542

particles motion (36) are integrated using leap-frog algorithm 543

[3]. Translational degrees of freedom of the ends of the discrete 544

beam remain fixed. The procedure is repeated until buckling. 545

During the simulation compressive force acting in the beam is 546

calculated and averaged with period T∗. The following values 547

of the parameters are used: 548

N = 10,
R

a
= 0.4,

�

ma2
= 64 × 10−3,

v0

v∗
= 10−6,

�t

T0
= 10−2,

db

a
= 0.2, ν = 0.2,

B1

cA

= 1,

(41)
B2

cAa2
= −5 × 10−3,

B3

cAa2
= 15 × 10−3,

B4

cAa2
= 2.08 × 10−3, ε∗ = −10−7,

T∗
T0

= 10,

where � is particle’s moment of inertia; �t is a time step; T0 = 549

2π
√

m/cA is a period of small vibrations of one particle on the 550

spring with stiffness cA; v∗ = a
√

cA/m is a velocity of long 551

waves in one-dimensional chain, composed of particles with 552

mass m, connected by springs with stiffness cA and equilibrium 553

length a. 554

As a result the following value of critical compressive force 555

is obtained: f/(cAa) = 3.19 × 10−4. The resulting value is 556

only 4% higher than the static Euler critical force fE/(cAa) = 557

π2EJ/(cAa3) = 3.05 × 10−4. Note that in the framework of 558

the Bernoulli-Euler model the critical force depends on the 559

length and bending stiffness of the beam. Therefore, the 560

bending stiffness of the discrete beam, composed of particles, 561

within 4% accuracy coincides with the bending stiffness of the 562

Bernoulli-Euler beam. 563

Consider the dynamical buckling of the same discrete 564

beam. In addition to the V model, linear viscous forces 565
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FIG. 5. Dynamical buckling of the discrete beam. Numbers in
the figure are corresponding moments of time. Particles radii equal
to 0.5a are used for visualization.

proportional to particles velocities are introduced. Denote566

viscosity coefficient as b. Initial velocities of the particles567

are randomly distributed inside the sphere with radius v0. In568

order to simplify visualization of the results z components of569

the velocities for all particles are set equal to zero [27]. Initial570

angular velocities are equal to zero. Let the ends of the beam571

move toward each other with constant velocities ve until the572

distance between the ends becomes equal to a (see Fig. 5;573

t/T0 = 1559). Then x components of the velocities of the574

beam ends are released and y − ,z− components remain equal575

to zero. The following values of dimensionless parameters576

are used in addition to parameters (41): ve/v∗ = 10−3,b/b0 =577

26 × 10−4, where b0 = 2
√

mcA is a critical value of friction578

for a two particle system. The motion of the discrete beam is579

shown in Fig. 5. One can see the buckling and postbuckling580

behavior of the discrete beam. At time t/T0 = 33 shape of581

the discrete beam corresponds to the third buckling mode of582

Bernoulli-Euler beam. The excitation of higher-order modes583

of instability is typical for fast dynamical buckling. At the584

moment t/T0 = 1559 x components of velocities of the beam585

ends are released and the beam performs strongly nonlinear586

free vibrations, converging to its initial straight configuration587

(t/T0 > 1845). Therefore, there is no plastic deformation.588

Thus, the V model allows us to simulate large elastic589

deformations of discrete rods including large displacements590

and rotations of the particles. In the case of small deformations591

considered above, the behavior of the discrete beam is in a good592

agreement with Bernoulli-Euler beam theory.593

B. Discrete half-spherical shell under the action of point force594

Let us simulate the dynamical buckling of the discrete595

half-spherical shell under the action of constant point force,596

acting along the axis of central symmetry. The shell can be597

considered as the simplest model of porous polymer particles,598

described in the review [25]. Let us generate relatively uniform599

distribution of particles on the half-sphere [28]. First, the circle600

with radius Rc of the half-sphere is created. The number of601

particles lying on the circle is calculated as the nearest integer602

value to 2πRc/a. These particles are uniformly distributed603

on the circle and remain fixed during creation of the initial604

FIG. 6. The initial (left) and final (right) distributions of the
particles on the half-sphere. Bottom view. Particles of radii 0.125a

are used for the visualization.

configuration. The other particles are generated randomly on 605

the half sphere. The restriction that particles cannot be closer 606

than 0.4a to each other is used. Note that in this case a is 607

a length scale of the problem. In general it is not equal to 608

equilibrium bond length. The resulting random distribution of 609

the particles is shown in Fig. 6 (left). Then the dynamics of 610

translational motion of the particles interacting via repulsive 611

force Fr
ij only is simulated. The forces are calculated according 612

to the following formula: 613

Fr
ij = −f0

(
a

rij

)8

rij . (42)

The restriction ri = Rc, i = 1, . . . ,N is applied during the 614

simulation. The following values of the parameters are used 615

for the simulation: 616

N = 458, Ns = 15 × 103,
v0

v∗
= 0,

�t

T0
= 10−2,

(43)
acut

a
= 2.1,

f0

cA

= 10−2,
b

b0
= 26 × 10−5,

where acut is a cutoff radius; Ns is a number of time steps. 617

The initial and final distributions of the particles are shown 618

in Fig. 6. One can see that the resulting distribution of the 619

particles is much more uniform than the initial one. 620

After creation of the initial configuration the near-neighbor 621

particles are bonded. For the sake of simplicity it is assumed 622

that bonds connect particle centers. The equilibrium length for 623

each bond is set equal to the distance between centers of the 624

particles. Therefore, there is no residual stress in the initial 625

state of the discrete shell. Also, it is assumed that parameters 626

of the V model Bm,m = 1, . . . ,4 are the same for all bonds. 627

Dynamical buckling of the shell under the action of constant 628

point force of magnitude fs is considered. The force is applied 629

along the axis of central symmetry of the shell until complete 630

buckling occurs. In the given example the force vanishes at 631

t/T0 = 3000. Components of displacements of the boundary 632

particles along the symmetry axis are set equal to zero. In 633

order to avoid self-penetration of the shell contact Hertz 634

forces FH
ij are introduced. The forces are calculated using the 635

formula 636

FH
ij =

{
− cH√

a
(2R − rij )

3
2 eij , rij < 2R,

0, rij � 2R,
(44)

where cH is a contact stiffness of the particle. Particle radius 637

R is chosen so that 2R is smaller than the minimum distance 638

between particles in the initial configuration. The following 639
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FIG. 7. Buckling of the discrete half-spherical shell under point
force load. Particle radii equal 0.5a are used for visualization.

values of the parameters are used for the simulation:640

N = 458,
R

a
= 0.35,

�

ma2
= 49 × 10−3,

v0

v∗
= 10−6,

�t

T0
= 10−2,

b

b0
= 26 × 10−4,

db

a
= 0.2, ν = 0.2,

cH

cA

= 1,
fs

cAa
= 10−2,

B1

cA

= 1,
B2

cAa2
= −5 × 10−3,

B3

cAa2
= 15 × 10−3,

B4

cAa2
= 2.08 × 10−3. (45)

The results of the simulation are shown in Fig. 7. Buckling641

and postbuckling behavior of the shell are presented. In the642

places where the shell folds, the bonds undergo extremely large643

rotations and deformation. For example, large deformations644

occur at moment t/T0 = 2680 (see Fig. 7). However, large645

deformations do not lead to any instability or other unphysical646

behavior of the V model.647

Thus, one can conclude that the V model is applicable for648

computer simulation of discrete shells under large displace-649

ments, rotations, and deformations.650

VII. RESULTS AND DISCUSSIONS651

In the present paper a new model for elastic bonds in652

solids is proposed. Vectors rigidly connected with particles653

are used for description of bond deformation. The expression654

for potential energy of the bond as a function of the vectors is655

proposed. Corresponding forces and torques acting between 656

bonded particles are calculated from a potential energy 657

function. This approach guarantees that the forces and torques 658

are conservative and the bonds are perfectly elastic. Dissipative 659

terms can also be added if required. Expressions connecting 660

parameters of the V model with longitudinal, shear, bending, 661

and torsional stiffnesses of the bond are derived in the case 662

of small deformations. It is shown that appropriate choices 663

of the parameters allow us to describe any values of all the 664

bond stiffnesses exactly. Two different calibration procedures 665

depending on bond length/thickness ratio are proposed. In the 666

case of beamlike bonds the comparison with Bernoulli-Euler 667

and Timoshenko beam theories are used for calibration. It 668

is shown that parameters of the V model can be chosen so 669

that under small deformations the bond is equivalent to either 670

Bernoulli-Euler or Timoshenko beam connecting particles. 671

Note that in the framework of the V model the bond may 672

connect any two points belonging to the particles and lying 673

on the line connecting particle centers in the initial state (in 674

particular, particles’ centers or points lying on the surfaces). 675

The model for calibration in the case of short bonds is 676

proposed. In all the cases simple expressions, connecting 677

parameters of the V model with geometrical and mechanical 678

characteristics of the bond, are derived. Two examples of 679

computer simulations using the V model are given. The most 680

challenging structures, notably one layer thin discrete rods 681

and shells, are considered. Computer simulations of dynamical 682

buckling of the straight discrete beam and half-spherical shell 683

are carried out. It is shown that the V model is applicable for 684

description of large elastic deformations of solids composed 685

of bonded particles. 686

Simulation of fracture is not considered in the present paper. 687

However, the V model permits formulating fracture criteria for 688

the bond. For example, the criterion, proposed in Ref. [4], can 689

be directly implemented in the framework of the V model. 690
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