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We present analytic and numerical results on several models of one-dimensionals1Dd classical
lattices with the goal of determining the origins of anomalous heat transport and the conditions for
normal transport in these systems. Some of the recent results in the literature are reviewed and
several original “toy” models are added that provide key elements to determine which dynamical
properties are necessary and which are sufficient for certain types of heat transport. We demonstrate
with numerical examples that chaos in the sense of positivity of Lyapunov exponents is neither
necessary nor sufficient to guarantee normal transport in 1D lattices. Quite surprisingly, we find that
in the absence of momentum conservation, even ergodicity of an isolated system is not necessary
for the normal transport. Specifically, we demonstrate clearly the validity of the Fourier law in a
pseudo-integrable particle chain. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1868532g

The study of how heat is transported through solids has a
history dating back to antiquity and culminating, in the
regime of classical physics, in the Fourier law of heat
conduction, which asserts that the flux of heat (the “heat
current”) is proportional to a constant times the gradient
of the temperature. This “normal transport” of heat cor-
responds to “diffusion” of the heat through the system
and is observed in most physical systems. In some math-
ematical models and in certain specially prepared experi-
ments, one can observe “anomalous” transport of heat.
Strictly speaking, one uses the term anomalous transport
to describe anything that is not “normal,” up to and in-
cluding the case in which the heat propagates ballistically
through through the system. Numerous prior studies
have sought to understand the origins of both normal and
anomalous transport and to isolate key features of the
systems that lead to each type of transport. A particularly
important set of studies developed from the original
Fermi–Pasta–Ulam (FPU) study of the (supposed) equi-
partition of energy in a one-dimensional chain of coupled
nonlinear classical oscillators. Just as the study of the
time evolution of the FPU system revealed the surprising
result that there was no apparent evolution towards eq-
uipartition but instead a tendency towards the recurrence
of the initial state, so the study of transport in FPU-like
systems revealed that their thermal conductivity was in-
deed anomalous. In the present article, we explore sys-
tematically the conditions that lead to normal or anoma-
lous conductivity in classical, one-dimensional chains
(“lattices”). We find an interesting interplay among the
consequences of translation invariance (momentum con-
servation), nonlinearity, complete integrability, and de-

terministic chaos, and demonstrate the particularly sur-
prising result that chaos is neither necessary nor
sufficient for normal conductivity in these systems.

I. INTRODUCTION

The related issues of thermalization, transport, and heat
conduction in one-dimensionals1Dd classical lattices have
been sources of continuing interestsand frustrationd for sev-
eral generations of physicists, particularly since the pioneer-
ing computational study of Fermi, Pasta, and UlamsFPUd
revealed the remarkable “little discovery”1 that even in a
strongly nonlinear 1D lattice recurrences of the initial state
prevented the equipartition of energy and consequent ther-
malization. The complex of questions that has developed
from the FPU work involves the interrelations among equi-
partition of energysthe questions like: Is there equipartition?
In which modes?d, local thermal equilibriumsDoes the sys-
tem reach a well-defined temperature locally? If so, what is
it?d, and the transport of energy/heatsDoes the system obey
Fourier’s/Ficke’s heat law? If not, what is the nature of the
abnormal transport?d. Review articles spread over nearly
three decades have provided snapshots of the understanding
sand confusiond at different stages of this odyssey.2–8

In this article, we will explore a subset of these questions
dealing with the transport of energy/heat in 1D classical lat-
tices. In particular, we will focus on the many studies that
have attempted to verify the validity of Fourier’s law of heat
conduction

kJl = − k ¹ T s1d

in 1D classical lattices or “chains.”
Here,k is the transport coefficient of thermal conductiv-

ity and is supposed to be anintensiveobservable, i.e., inde-adElectronic mail: dkcampbe@bu.edu
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pendent of the size of the system. Strictly speaking,k is well
defined only for a system thatobeysFourier’s law and for
which a linear temperature gradient is established. Further,
since in generalk is a function of temperature, the relative
temperature variation across the chain should be small fork
to be truly constant.

In the literature, the dependence ofksLd on the sizeL of
the system has also been used to characterize thesdegree ofd
anomalous transport. However, the definition ofk for an
anomalous conductor, where nointernal temperature gradi-
ent may be established, is highly ambiguous. Usually, one
defines it askGsLd;JL/DT whereDT is the total tempera-
ture drop between the two thermal baths. In this article we
shall call such a definition ofkG a global thermal conductiv-
ity, in contrast to another definition of the so-calledlocal
thermal conductivitykL=J/ ¹T, which may depend on the
position in the lattice, since¹T=dTsxd /dx and is unique only
in the case of a linear themperature profile. We note that the
global and local thermal conductivities are proportional,
namelykL=ckG wherec does not depend on the sizeL, if
and only if the temperature profile is scaling, i.e.,Tsxd
=tsx/Ld where tszd again does not depend onL. We will
confront these subtle distinctions at several points in the en-
suing discussion.

To place our work in the larger context, it is useful to
recall that the issues of equipartition/thermal equilibration
and heat conduction/energy flow, although clearly related,
can in fact be studied separately. For instance, although an
integrable system will never reach a thermal equilibrium en-
semble unless it is started in one, the concept of “soliton
statistical mechanics” is not an oxymoron: assuming that the
system is in a thermal equilibrium ensemble, one can study
what other aspects of statistical mechanics remain valid and,
in particular, what role solitons play in the response of the
system to external perturbations. Similarly, the study of ther-
mal transportsFourier’s/Ficke’s heat lawd, is the search for a
nonequilibrium steady statein which heat flows across the
system, and the flow is typically analyzedassumingthe
Green–Kubo formalism of linear response,9 in terms of cor-
relation functions in the thermal equilibriumsgrand canoni-
cald state, independent of whether a particular system can
actually reach this state. Indeed, systems exhibiting “anoma-
lous conductivity” are precisely those in which this analysis
doesnot lead to Fourier’s law.

We shall focus here on heat conduction but will attempt
to make clear whenever our results impactsor depend ond the
existence of equipartition and local thermal equilibrium.

Previous studies have led to bewildering array of partial
results and conjectures:

• harmonic chains,10 showing kG,L1, a result understood
by the stability of linear Fourier modes, absence of mode–
mode coupling, with the rigorous consequence that no
thermal gradient can be formed in the system;

• integrable models,3 kG,L1, a result understood by the
presence ofnonlinearstable modessthe solitonsd and com-
plete interability;3

• nonintegrable models with smooth potentials:s1d the FPU
models, leading eventually to claim that chaos was neces-

sary and sufficient for normal conductivityskG,kL,L0d,
Ref. 8, a claim that has been countered by strong numeri-
cal evidence for anomalous conductivity in FPU chains
skG,kL, ,La, where a<0.37d;11,12; s2d the diatomic
Toda chain, where initial results claimingkG,L0, Ref. 13
have recently been refuted by a study showinga<0.4,
Ref. 14; s3d the Frenkel–Kontorova model, which shows
sat least for low temperaturesd kG,kL,L0, Ref. 15; and

• noninterable models with hard-core potentialss1d the
“ding-a-ling” model16 and s2d the “ding-dong” model,17

both showing convincingly thatkG,kL,L0.

This bewildering array of results has recently been
greatly clarified in a series of independent but overlapping
studies. The numerical studies of Hu, Li, and Zhao15 and of
Hatano14 show thatoverall momentum conservationappears
to a key factor in anomalous transport in 1D lattices. Lepriet
al.18,19 and Hatano14 have argued that the anomalous trans-
port in momentum conserving systems can be understood in
terms of low frequency, long-wavelength “hydrodynamic
modes” that exist in typical momentum conserving systems
and thathydrodynamic arguments may explain the exponents
observed in FPU18,19 and diatomic Toda14 lattices.Later on,
several othe papers appeared which tried to formalize the
statement that momentum conservation implies anomalous
transport.20–22

In the present article, we review these recent results and
extend them on several fronts, using numerical simulations
of several different models. First, we present a counterexam-
ple showing that converse of the earlier statement is not true:
namely, anomalous conductivity doesnot imply that the
model is momentum conserving. Second, we present con-
vincing numerical data showing that chaos is neither neces-
sary nor sufficient for normal conductivity, providing coun-
terexamples to prior claims.8 Finally, we present some
shopefully well-motivatedd speculations on the necessary and
sufficient conditions fornormal conductivity in 1D lattice
systems.

The class of models we study is described by the quite
general 1D classical lattice Hamiltonian with single-particle
and two-particle interactions

H ; o
n
F pn

2

2mn
+ Un

ossqnd + Vn+1/2
ip sqn+1 − qndG . s2d

Here, the particles moving in 1D have “absolute” coordinates
xn=na+qn, wherea is the average lattice spacing and the
relative coordinatesqn designate the particles’ displacements
from their equilibrium saveraged positions. We will either
consider the particles to be on a ring with periodic boundary
conditions sin this casexN;x0+Na, qN;q0d, or we will
place the system between two thermal reservoirssat possibly
different temperaturesd by coupling the edge particles 1 and
N to canonical stochastic “heat” baths. To present our ana-
lytic results in the most general context, we will consider
arbitrary “disorder”: the masses,mn, can depend on lattice
stiten, as can both theon-sitepotentialUn

os swhich represents
a “phonon-fixed lattice” interactiond and theinterparticlepo-
tential Vn+1/2

ip s5“phonon–phonon” interactiond.
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We begin our detailed discussion in Sec. II with a survey
of several different modelssmostly previously studiedd that
fit into the general class described by the Hamiltonian in Eq.
s2d. The models are presented in a general sense of increas-
ing “normality,” starting with shighly pathologicald linear/
harmonic chains, moving tosstill pathologicald integrable
models, and finally treatingssupposedlyd “normal” chaotic
models. Already from this survey we obtain two important
results. First, we show that momentum conservation is not
necessaryfor anomalous transport. The harmonicoptical
chain, which does not conserve momentum but does exhibit
anomalous transport, provides one clear example of this, and
an integrable model first introduced by Izergin and Korepin
provides another. Second, by reviewing recent results in the
FPU chain, which is known to exhibit chaos but also clearly
displays anomalous conductivity, we can conclude that chaos
is not sufficient for normal conductivity, in constrast to pre-
vious claims.8 In Sec. II, we discuss some of the recent the-
oretical work on the relation between the total momentum
conservation and anomalous heat transport. We show that
one can relate momentum conservation to the divergence of
a particular form of the Kubo formula corresponding to a
nonequillibrium system of spatially uniform density. How-
ever, uniform pressure, as required by the stationary state,
produces the gradient of the densitysor gradient of the
chemical potentiald which drives the ballistic current in the
oposite direction to the temperature gradient. The two ballis-
tic contributions thus cancel and the resulting next order term
typically gives anomalous superdiffusive transport. In Sec.
III we define and study the family of “bing-bang” models,
which are constructed by considering purelyhard-wall po-
tentialsUos andVip. The bing-bang models are in fact equiva-
lent to N-dimensional polyhedral billiards, which have van-
ishing Lyapunov exponents and therefore zero Kolmogorov–
Sinai entropy. Hence, the bing-bang models are never chaotic
in a sense of positive Lyapunov exponents. Nonetheless, we
present convincing numerical evidence ofnormal sdiffusived
heat transport in aspseudo-integrabled nonchaotic but mo-
mentum nonconserving bing-bang model with an on-site po-
tential. This demonstrates thatchaos, at least in the sense of
exponential instability of generic trajectories, is not neces-
sary for the validity of the Fourier law. Taken together with
the results from Sec. I, this shows the surprising result that
chaos is neither necessary nor sufficient for normal conduc-
tivity in 1D classical lattices. In Sec. IV we summarize our
results and conclude by discussing possible precise necessary
and sufficient conditions for normal and anomalous trans-
port.

II. PARTIAL SURVEY OF PREVIOUS MODEL STUDIES

As this article is not a review of the very broad topic of
anomalous transport,7,23 the ensuing survey of previous
model studies is not intended to be exhaustive, but rather
merely illustrative, of the variety of models and results.

A. Linear models

1. The linear acoustic chain

One of the first and few rigorous results on the issue of
thermal conductivity is due to Rieder, Lebowitz, and Lieb,10

who studied a linearsacousticd chain ofN sequald harmoni-
cally coupled particles, where

Uossqd = 0, Vipsqd = 1
2v2q2, s3d

which are placed between two heat baths at temperaturesT1

and TN. Riederet al.10 show that the transport is ballistic,
with the average heat currentJ which is proportional to the
differenceof the temperatures of the two heat baths and in-
dependent of the size of the system

J = gsTN − T1d. s4d

They also calculate the temperature profileTj, j =1,2. . .N,
proving that it is asymptotically flat at the value of the aver-
age temperatureTs0, j /N,1d→ 1

2sTN+T0d, as N→`.
However, close to the boundaries of the system the tempera-
ture profile exhibits exponentially attenuated jumps to satisfy
the boundary conditions. Surprisingly, these jumps are in the
opposite direction from the temperatures of the correspond-
ing heat bathsssee Fig. 1d. Therefore, in the linear,
momentum-conservingsacousticd chain we findkG=L1. But
note that since the temperature profile is exponentially close
to a flat profile,kL~expsc0Ld.

2. The linear optical chain

Particularly in light of recent discussions on the role of
on-site potential and total momentum conservation in heat
conduction,15,20 it is natural to pose the following simple
question: what happens to the analysis of Riederet al. if a
harmonic squadraticd on-site potential is added, thereby
breaking the momentum conservation of the model but re-
taining its linearity? Remarkably, we have been unable to
find a previous reference in which this question was studied,
so we present the results briefly here. The model is effec-
tively a discretized massive Klein–Gordon system or linear
optical chain, with

FIG. 1. Temperature profile for the linearoptical chain with the parameter
ñ=0.25 and with reservoir temperaturesTL=1.3, TR=0.7. The size of the
lattice here isN=40. As discussed in the text, this profile is the same as for
the linear acoustic chain discussed in Ref. 10.

015117-3 Heat transport in 1D classical lattices Chaos 15, 015117 ~2005!
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Uossqd = 1
2V2q2, Vipsqd = 1

2v2q2. s5d

The formalism of Ref. 10 applies to the general class of
linear chains, so it can be applied to the case of the linear
on-site potentials5d. Because the analysis is straightforward,
we merely quote the results here. The momentumnoncon-
serving linear optical chain also exhibits ballisticskG,L1d
heat transport. Indeed, this optical model behaves in essen-
tially the same way as the acoustic chain. The general shape
of the temperature profilefEq. s4.2d of Ref. 10g and the ex-
pression of the heat currentfEq. s4.6d of Ref. 10g remain
exactly the same, the only difference being that the dimen-
sionless parametern~v2 of the linear acoustic chain10 is
replaced by

ñ = n +
V2

v2 , s6d

for the linear optical chain. Note that this simple analysis
already provides a nontrivial result: anomalous transport
doesnot imply momentum conservation, so that momentum
conservation is not a necessary condition for anomalous
transport.

We should note that linear chains are also highly patho-
logical in the additional sense that many of their dynamical
properties depend on the spectral properties of model of the
heat baths. This is a simple consequence of the existence of
time conserved normal modes. It has been pointed out in
Ref. 24, that in the case of the linear chain with disordered
masses, one can obtain super diffusivea.0, diffusive a
=0, or even subdiffusivea,0, behavior for different
choices of heat baths.

B. Nonlinear but integrable models

1. The Toda lattice

As an example of a nonlinear but integrable momentum-
conserving model, we consider the celebrated Toda
lattice,2,25 for which

Uossqd = 0, Vipsqd = exps− qd. s7d

Mokross and Büttner26 have shown by numerical simulation
that the temperature profile is almost flat and that the heat
current is proportional to the difference of the bath tempera-
tures s4d. Hence they find numerical evidence for ballistic
heat transport, withkGsLd~L1, andkLsLd~expsc0Ld, for this
integrable and momentum-conservingbut nonlinear chain.
For a discussion of the role of solitons in this anomalous
transport, see Ref. 3, and for the propagation of shock waves,
see Ref. 27.

2. The Izergin–Korepin discrete sine-Gordon model

The natural class of models to consider next is a nonlin-
ear but integrable chain that does not conserve momentum,
i.e., hasUossqdÞ0. There are not many known models with
such properties. However, one such model has been pro-
posed by Izergin and Korepin28 in the context of ultraviolet
regularization of integrable quantum field theories in 1+1
dimensions. They introduced a spatially discrete version of
the famous sinshd-Gordon modelswe shall call this IK–SG

modeld which has the following properties: it preserves the
integrability of the continuum limit and it has an on-site
potentialfsinf sfor unimodular complex fieldd or sinhf sfor
real fielddg. The classical Hamiltionian formulation of the
model has been described in detail by Tarasov in Ref. 29. For
simplicity, we consider here the case of real field variables
f j

±std, j PZ, which corresponds in the continuum limit to the
sinh-Gordon model with a confining anharmonic on-site po-
tential. Unfortunately, the model cannot be cast exactly in the
usual kinetic plus potential energy form ofs2d except as an
approximation to leading order in lattice discretenessssee
laterd. Nonetheless, the model provides important insight into
the question of the role ofUos in anomalous conductivity.
Referring to Ref. 29, we find that the Hamiltonian of the
discrete IK–SG model reads

H = o
n

hn, hn = hn
+ + hn

−, s8d

hn
± =

sfn71
+ cosd − fn±1

− sinddsfn
− cosd − fn

+ sindd
s1 + fn±1

− fn
+ds1 + fn71

+ fn
−d

+
2

sin 2d
,

where the parameterd is related to alattice spacingD via
D=2 sin 2d. For the real field variablesfn

±, the Poisson
bracket is defined as

hfn
−,fm

+ j =
1

4 cos 2d
fn

+fn
−sfn

+ cosd − fn
− sindd2dnm,

hfn
+,fm

+ j = hfn
−,fm

− j = 0. s9d

The field variables can be transformed to conventionalsdis-
cretizedd canonical fields,usxd, un=usxnd and canonical mo-
mentum fieldpsxd, pn=psxnd, pn=pnD, andxn=nD, by the
transformation

fn
± =

expS7
1

2
unDcosd + expS±

1

2
unDsind

Î1 + coshsundsin 2d
expS1

4
pnD,

s10d

hun,pmj = dnm.

In fact, the discrete Hamiltonians8d can be written explicitly
as an expansion inD of the continuum sinh-Gordon Hamil-
tonian as

H = o
n
HF1

2
pn

2 +
1

8
sun+1 − un−1d2 + coshunGD

+
1

2
coshsundpnD2 + OsD3dJ . s11d

Izergin and Korepin have shown that the earlier discretized
sinh-Gordon models8d is completely solvable by the method
of inverse scattering, and hence, they have explicitly demon-
strated its integrability.

We have used the earlier exact completely integrable
models8d in order to check the nature of energy transport in
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an IK–SG lattice. Since we have not found any natural intui-
tive way of coupling the variablesfn

± sfor n=1,Nd to the
heat baths, we have decided to study the propagation of an
initially localized pulse in an autonomoussisolatedd lattice of
very large sizeN and with periodic boundary conditions
f0

± ;fN
±. We start by initially exciting field variables at only

one sitessay n=n0=N/2d and setting all the others to the
ground statesvacuumd value fnÞn0

± =0. Then we measure,
numerically, after timet, the spatial spreading of the distur-
bance

s2std =
1

E
o
n

sn − n0d2hnstd, E = o
n

hnstd = const. s12d

For the numerical integration we use the adaptive step-size
fourth order Runge–Kutta algorithm from Ref. 30. Clearly,
for diffusive energy transport, one would findsstd~ t1/2,
whereas forballistic transport,sstd~ t. In Fig. 2 we show
results of two numerical experiments with different values of
the lattice parametersd or Dd; both show very clearly that
sindependent of the lattice parameterd the transport is ballis-
tic, sstd~ t.

This strongly suggests that integrability alonesthe exis-
tence of an infinite number of independent conserved quan-
tities in one-to-one correspondence with the set of degrees of
freedomd is enough to yield anomaloussin fact, ballisticd
heat transport, irrespective of the presence of on-site poten-
tial. This provides a second illustration, this time in a non-
linear context, of the result that momentum conservation is
not necessary for anomalous transport.

C. Chaotic models with smooth potentials

1. Chaotic but momentum conserving: The FPU
models

In a series of recent studies11,12,18,19of the celebrated
FPU b chain,1,8 for which

Uossqd = 0, Vipsqd =
1

2
q2 +

1

4
bq4, s13d

several groups have shown by careful numerical analyses
that despite strongly chaotic behaviorscharacterized by al-
most everywhere positive Lyapunov exponentsd, the model
exhibits power-law divergence of thermal conductivity in
thermodynamic limit, kL,La, with a<0.4. Hatano has
shown14 that for the diatomic Toda chainfsame ass7d but for
differentsdimerizedd masses,m2n=m2Þm2n+1=m1g there ex-
ists practically the same scaling witha<0.4 as for FPU
models. More recently, a similar scaling has been shown for
two other models: namely, for 1D chains whereVipsqd has
the form of Lennard–Jones or Morse potentials.31 These re-
sults suggests possible universality of the scaling exponent
a<0.4 sperhaps 2/5d of the divergence of thermal conduc-
tivity for strongly chaotic, momentum conserving lattices.
This universality has been partially explained by Hatano14

using hydrodynamic arguments or by Lepriet al.7,18,19using
mode-coupling theory.32

However, recently Narayan and Ramaswamy21 proposed
another “thermodynamic” approach to mode–mode coupling
theory, which using a mapping to Burgers equation and the
renormalization group predicts the universal exponent for the
divergence of heat conductivity to bea=1/3. It should be
mentioned that there exist other models with no on-site po-
tential which should conform to 1D hydrodynamics in the
thermodynamic limit, for example diatomic hard-point gas in
1D, which seems to have a smaller exponenta. Depending
on the range and type of simulation22,33,34one finds values in
the rangeaP f0.25,0.35g.

On the other hand, there exist certain momentum con-
serving particle chains which seem to exhibit normal heat
conduction to a very high numerical accuracy. This is the
case for the so-called rotator model,35,36 with no on-site po-
tential Uos;0, and cosine interparticle potentialVipsqd
=V0 cosq. This model has a characteristic feature, namely it
cannot support a nonvanishing pressure, and thus the
infinite-wavelength phonons cannot carry any energy
current,20 but it is not clear why it should be excluded from
the universality arguments.21 Thus there remain still un-
settled issues in connection to the heat transport in momen-
tum conserving though chaotic lattices. For some recent
progress see, e.g., Refs. 37 and 38.

In any case, note that the existence of anomalous con-
ductivity in models that exhibit strong chaos proves that
chaos is not sufficient for normal conductivity, refuting ear-
lier claims.8 In Sec. III, we shall show the still more surpris-
ing result that chaos is also not necessary for normal conduc-
tivity.

2. Chaotic but momentum nonconserving:
The Frenkel–Kontorova model

Apart from a few more or less artificial models, such as
ding-a-ling16 and ding-dong17 chains, which combine smooth
and hard-core potentials, only one chaotic momentum non-
conserving model with a smooth potential has been studied
recently: namely, the Frenkel–KontorovasFKd chain, with

FIG. 2. The width,sstd;Îsonn
2hnd / sonhnd, of a pulse spreading from an

initial single-site disturbance as a function of time in the IK–SG model for
two different values of parameterb=tand. The initial excitation is delta-like
with f0

+=2,f0
−=3,fn

±=0,nÞ0. A finite lattice of lengthN=800 with peri-
odic boundary conditions has been used in the simulation. The line with
slope 1 is used to guide the eye: the figure provides clear evidence of
ballistic transport,sstd, t.

015117-5 Heat transport in 1D classical lattices Chaos 15, 015117 ~2005!
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Uossqd = U0 cosq, Vipsqd = 1
2q2. s14d

The numerical results of Hu, Li, and Zhao15 establish con-
vincingly that this model exhibitsnormal heat transport—
kL,L0—provided that the temperature is low enough: spe-
cifically, the thermal energys,kBTd must be smaller than the
amplitude of the on-site potential barrierfU0 in Eq. s14dg.
However, for temperatures well aboveU0/kB, the mean free
path of the phonons becomessexponentiallyd large, so the
Fourier law is no longer simple to observe numerically. Very
recently, Ref. 39 reports on extensive numerical simulations
which appears to confirm the normal heat transport in FK
chain even for temperatures aboveU0/kB.

III. MOMENTUM CONSERVATION AND ANOMALOUS
TRANSPORT

In this section we discuss some interesting and important
connections between momentum conserving lattices and
anomalous heat transport in 1D which follow from consider-
ing Kubo formula and the linear response theory.

In the absence of an on-site potential, the general Hamil-
tonian of Eq.s2d becomes

HMC = o
n=0

N−1F 1

2mn
pn

2 + Vn+1/2sqn+1 − qndG , s15d

whereVn+1/2sqd is an arbitrarysgenerally nonlineard interpar-
ticle interaction and the subscript “MC” stands for momen-
tum conserving. As in Eq.s2d the interparticle potential,
Vn+1/2sqn+1−qnd, and the masses,mn, may depend on the site
label n. However, there is nowno on-site potential,Uossqnd,
depending on the individual coordinates. Thus,HMC is in-
variant under translationsqn→qn+b for arbitrary b, and this
spatial translational symmetry corresponds to total momen-
tum conservation. As before, we consider thesfinited system
to be defined on a system of lengthL=Na with periodic
boundary conditionssqN,pNd;sq0,p0d, where the actual par-
ticle positions arexn=na+qn.

We may write the Hamiltonian in Eq.s15d as HMC

=on=0
N−1hn+1/2, wherehn+1/2 is the Hamiltonian density

hn+1/2 =
pn+1

2

4mn+1
+

pn
2

4mn
+ Vn+1/2sqn+1 − qnd. s16d

Our aim is to estimatek, the coefficient of thermal con-
ductivity. Using the standard Kubo formula expression fork
of linear responsessee, e.g., Ref. 40d:

k = lim
T→`

lim
L→`

b

L
E

−T

T

dtkJstdJlb, s17d

then one can show, from very elementary arguments,20 that
k=` provided the thermodynamic pressuref si.e., average
force between an arbitrary pair of particlesd is nonvanishing.
Herek lb denotes a canonical phase space average at inverse
temperature b. The approach of Ref. 20 has been
criticized21,23 by the claim that the heat current of the Kubo
formula s17d needs a modification for the case of a system
with Gallilean invariance: Namely, the center of mass motion
should be subtracted from the current, or one should put

oneself into the frame where the total momentum is zero.
However, the formulation of Ref. 20 was based on a

slightly nonstandard, though thermodynamically completely
equivalent heat current, namely the so-calledlattice current

J = o
n=0

N−1

jn, s18d

where jn is the heat current density,15 is given by

jn = hhn+1/2,hn−1/2j s19d

=
pn

2mn
fVn+1/28 sqn+1 − qnd + Vn−1/28 sqn − qn−1dg. s20d

h,j is the usual canonical Poisson bracket. Note that this form
of jn does correspond to the intuitive definition that the time
rate of change of the energy at locationn which should be
given by the snetd force ,fVn+1/28 sqn+1−qnd+Vn−1/28 sqn

−qn−1dg times the velocitypn/2mn. More importantly, the
current densityjn by construction satisfies the continuity
equation

d

dt
hn+1/2 = jn+1 − jn. s21d

Since the usual derivation of linear response and Kubo for-
mula are based on thereal-space heat current Jrs=on

1
2mnvn

3,
wherevn=pn/mn is the velocity ofnth particle, one needs to
rederive carefully the linear response formalism for the lat-
tice current. This has been done in Ref. 22. Now, we wish to
stress that the lattice currentJ and the real-space currentJrs

are only equivalent if the center of mass motion is zero,
precisely as required by the arguments of Refs. 21 and 23. In
other words, adding a nonvanishing center-of-mass motion to
the currentJrs, does not change the lattice currentJ. Still, as
shown in Ref. 22 the Kubo formulas17d does not refer to the
proper perturbation of the equilibrium state so it does not
describe the steady heat current between two heat baths.

This result is quite interesting and consistent with the
interpretation given in Refs. 21 and 23. The unmodified
Kubo formulas17d, with the currents19d, is the correct one if
one considers a particular kind of nonequillibrium initial
state, namely such with aspatially uniform densitysor uni-
form chemical potentiald. This we call theisochoric initial
state, and in such a case we find rigorously20 that

b

L
E

0

T

dtkJstdJlb ù
t0

am̄
f2T, s22d

so the transport is ballistic.
However, such a state cannot approximate asteady state

of a large piece of the lattice between two heat baths at
sligthly different temperatures. In such a physical situation, a
steady state is formed where thepressureis constant along
the system and not thedensity. Typically, in colder regions of
the lattice, the density is larger and vice versa. This we call
the case ofisobaric initial state. Then, due to nonuniform
density, a gradient of chemical potential is established as
well, which drives the heat current in the opposite direction.
To leading order inL, the contributions to the heat current

015117-6 T. Prosen and D. K. Campbell Chaos 15, 015117 ~2005!

Downloaded 13 Oct 2013 to 128.148.252.35. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions



due to the temperature and chemical potential gradients can-
cel each other. The difference of the two currents still pro-
duces the anomalous transport, since it decreases asLa−1.
This has been demonstrated in a numerical experiment with
high accuracy.22 The modified Kubo formula referring to the
isobaric situation22 reads

k = lim
T→`

lim
L→`

b

L
E

−T

T

dthkJstdJlb + fkVstdJlbj, s23d

whereV=onvn is the sum of all particles’ velocitiesvn.
Although we have learned that the issue of anomalous

transport cannot be resolved easily solely only on the basis
of momentum conservation, it is clear from this analysis that
the momentum conservation is a key attribute of the prob-
lem. It is also interesting to observe that in the case of van-
ishing pressuref=0 the isochoric and isobaric situations are
described by identical Kubo formulass17d and s23d.

IV. CHAOS AND NORMAL TRANSPORT:
THE BING-BANG MODEL

The relationship between “chaos” and normal transport
has been the subject of considerable interest, and it has even
been claimed8 that chaos is both necessary and sufficient the
existence of normal transport. We have already shown that
there exist models that exhibit both chaotic behavior and
anomalous transport, so chaos is clearly not sufficient for
normal transport. In this section, we establish the perhaps
more surprising result that chaos is also notnecessaryfor
normal transport. We demonstrate this result using numerical
studies of a 1D lattice model which, while exhibiting no
chaos at all in the strict mathematical sense, nonetheless ex-
hibits normal conductivity.

We call the particular class of many-body 1D classical
lattices we study in this section thebing-bangmodels. As we
shall see, they are manifestly nonchaotic in the sense of hav-
ing Lyapunov exponents that are almost everywhere vanish-
ing, but they are are also nonintegrable. The bing-bang mod-
els have infinite hard wall forms for both theinterparticle
potentialsVipsqd, and the on-site potentialsUossqd. If we fix
the units such that the average lattice spacing is equal to
unity, a=1, then the generalshomogenousd bing-bang model
would depend, apart from the massesmn, on a triple of pa-
rametersb,c,dPR+ which determine the potentials via

Vipsqd = H0, − 1 ø q ø b,

`, otherwise,
J s24d

Uossqd = H0, − c ø q ø d,

`, otherwise.
J

In fact, for a lattice ofN particles, the bing-bang model can
be identified with the motion of a point billiard particle in-
side anN-dimensional polytope. Since the boundary consists
solely of sN−1d-dim. flat hyperplanes—i.e., −1øqnøb,−c
øqn+1−qnød—salmostd any orbit is marginally stable, i.e.,
parabolic with zero asymptotic Lyapunov exponent. How-
ever, there is an infinite setsof vanishing Lebesgue measure
in the full phase spaced of very unstable orbitsswhich may
also be called “diffractive” since they would produce diffrac-

tion of quantum mechanical wavesd that eventually hit the
shyperdcorners, edges, etc., either in the finite future or in the
finite past. The simplest singularsinfinitely unstabled orbits
of this type are those that contain:sid three particle collisions
or sii d simultaneous collisions of a pair of particles and one
of the walls.

Our main goal in studying such physically pathological
systems is to gain insight into the extent to which the prop-
erties of exponential instability and metric chaosswhich our
bing-bang models do not possessd are necessary to produce
normal transportsor perhaps anomalous transport with a
“universal” exponenta if the total momentum is conservedd.
The insights gained in previous studies of models with
pathological, hard wall potentials—such as the
“ding-a-ling”16 and “ding-dong”17—provide ample motiva-
tion and justification for the current study. On the other hand,
our results on decay of correlationssand, hence, perhaps on
the mixing propertyd of nonhyperbolicsnonchaoticd systems
with many degrees of freedom should stimulate development
of new tools in ergodic theory to deal with such systems in a
rigorous way.

With respect to the global dynamical proerties we define
two subclasses of bing-bang models.

sid Pseudo-integrable bing-bang (PIBB) models in
which the masses of all particles are equalsset to unityd mn

=1. The pseudo-integrability of the model is easy to under-
stand as follows. Upon interaction with interparticle potential
Vsqn+1−qnd sinterparticle collisionsd the particlesn and n
+1 just exchange their momenta/velocities, and upon inter-
action with the on-site potentialUsqnd scollisions with a
static hard walld the momentum/velocity of the particlen just
changes sign. Therefore, the dynamics in momentum space
acts as a discrete groupsC2dN3SN, and any symmetric func-
tion of the squares of momentafsp1

2, . . . ,pN
2d is an invariant

of motion. In fact,N independent analytic invariants of mo-
tion Ik can be systematically evaluated; they are the symmet-
ric homogeneous polynomials ofhpn

2j:

I1 = o
n=1

L

pn
2, I2 = o

1øn,møL

pn
2pm

2 ,

]

Ik = o
1øn1,. . .,nkøL

p
l=1

k

pnl

2 . s25d

Therefore, any orbit of a PIBB model lies on an invariant
surface of dimensionN in 2N-dimensional phase space, and
the system isnot ergodicon the entire energy surface. How-
ever, the invariant surface is not a simpleN torus as in the
case of a completely integrable system, but is an object of
svastlyd increasingly complex topology asN increases.

This is precisely the defining property of pseudo-
integrable systems: namely, that there should exist a suffi-
cient number of independent conservation laws for integra-
bility but that the topology of invariant surfaces is more
complicated than that ofN-dimensional tori. This can only
happen in the cases with singularities in the system: for in-
stance, planar billiards in the shape of a polygon with angles
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that are rational multiples ofp are the most commonly stud-
ied class ofstwo-dimensionald pseudo-integrable systems.41

In the case of our PIBB models, the dimensionality of
the phase space 2N can be arbitrarily large and increasingN
brings in new aspects and questions on dynamics that to the
best of our awareness have not yet been considered in the
literature.

Our analysis below suggests that the topology of invari-
ant surfaces can become arbitrarily complex as one ap-
proaches the thermodynamic limitN→` and that then such
invariant surfaces can more and more densely and uniformly
cover the entire energy surface, so that at the end, statistical
mechanics cannot distinguish the system from a truly ergodic
sand mixingd one. We suggestsbut cannot proved that the
topological genus of the invariant surfaces in our PIBB lat-
tices increases faster than any power ofN. Since it is not
essential to our current discussion, we shall leave the rigor-
ous characterization of topology of invariant surfaces of
high-dimensional PIBB models as a very interesting open
mathematical problem.

sii d Ergodic bing-bang (EBB) models. We have good
heuristic argumentssand strong numerical evidenced to sup-
port the conjecture that the generic bing-bang model with
different massesmn swhich should be generic, perhaps satis-
fying some irrationality conditionsd is ergodic, since it cor-
responds to the motion insideN-dimensional polyhedral bil-
liard. For example, it is rigorously known in the
mathematical literaturessee, e.g., Ref. 41 for a recent review,
and references thereind that the set of ergodic polygonal bil-
liards sN=2d is sat leastd a dense set in the set of all polygo-
nal billiards with a fixed number of vertices. It seems fairly
obvious that the same result should applyseven more likelyd
in higher dimensionsN.2. An even stronger result has been
suggested recently:, namely that the generic polygonal bil-
liard in the planese.g., triangular billiard with all angles
having irrational ratio with pd is truly a mixing dynamical
system and therefore exhibits fast decay to statistical equilib-
rium from salmostd any initial state.42

With respect to the key issue of total momentum conser-
vation, we will study bothmomentum conserving bing-bang
modelssMC–PIBB or MC–EBBd which are characterized by
c,d=` sor saying that Uos=0d; and momentum non-
conserving bing-bang modelssMNC–PIBB or MNC–EBBd,
for which translational invariance is broken and generally at
least one of parametersc,d is finite.

A. Momentum conserving bing-bang models

In this subsection we study two variants of momentum-
conserving bing-bang models, one pseudo-integrablesMC–
PIBBd and one ergodicsMC–EBBd. Although they both be-
have as anomalous heat conductors, in accordance with the
theorem proved in Sec. II, we study both in order to show the
subtle but important differences that are a consequence of
qualitatively different positions in theergodic hierarchy
spseudo-integrability versus ergodicityd.

In our numerical simulations we will study eithersid an
open bing-bang lattice between two thermal baths at tem-
peraturesTL and TR, or sii d a closed bing-bang lattice with

periodic boundary conditions whereN+1;1. The thermal
bath is realized as a wallssee, e.g., Ref. 43d which works in
the following way: when the edge particleswith label 1 orNd
hits the reservoir, it collides inelastically so that the new
momentumsbeing independent from the old oned is given
with the probability distribution

dP/dp1,N ~ p1,Nexpf− p1,N
2 /s2m1,NTL,Rdg. s26d

The velocity smomentumd prefactor takes into account the
fact that the faster particles collide with the wall more often
than the slow ones, so that the resulting velocitysmomen-
tumd distribution of the near-bath particles is indeed canoni-
cal MaxwelliansGaussiand.

Typical trajectories of the individual particles are shown
in Fig. 3 for the MC–PIBB model and in Fig. 4 for the

FIG. 3. Typical trajectories of the individual particles in a MC–PIBB model
with constant unit masses and sizeL=9. The ordinate shows particle posi-
tions fxnstdg where for clarity the oddn particle trajectories are plotted with
full lines while the evenn trajectories are dashed. The walls atx=0 andx
=10 act as thermal baths at temperatureT=1.

FIG. 4. Typical trajectory of a MC–EBB model with mass ratiom2/m1

=0.382 and sizeL=9. As in Fig. 3, the ordinate shws particle positions
fxnstdg where for clarity the oddn particle trajectories are plotted with full
lines while the evenn trajectories are dashed. The walls atx=0 andx=10
act as thermal baths at temperatureT=1.
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MC–EBB model, in order to give a reader an impression
about the complex geometry of the orbits in bing-bang mod-
els despite their manifest nonchaoticity. In both cases, MC–
PIBB and MC–EBB, the models are put between two heat
reservoirs at the same temperatureTL=TR=T=1. In the fol-
lowing we will present results of numerical simulations of
heat conduction in a nonequillibrium stationary state with the
bath temperaturesTL=1 andTR=2. We measure the average
heat fluxJsLd through the system as the function of the size
Ls=N, sincea=1d and the kinetic temperature profile

Tn =
kpn

2l
2mn

.

First, we observe that temperature profile is typically a non-
linear functionsnon-constant¹Td, although it has a scaling
propery: namely, the local temperature for a given system is
only a function of the scaled coordinaten/N and reservoir
temperatures

Tn = tsn/N,TL,TRd. s27d

In Figs. 5 and 6, we show the sets of rescaled temperature
profilessfor different lattice sizesd for the two models, MC–
PIBB, and MC–EBB, respectively. However, note that in the
light of the theorem of the previous section, it may be also
important to distinguish the cases, ofsid the symmetric inter-
particle potential with zero pressuresb=1,f=0d, and sii d
nonsymmetric case with nonvanishing pressuresbÞ1,f
Þ0d. We find that for both modelssMC–PIBB and MC–
EBBd, at zero pressuref=0, b=1, a nonflat but also nonlin-
ear temperature profile is established. However, for nonvan-
ishing pressure,b=2.5, the MC–PIBB model exhibits a
vanishing temperature gradient, which is consistent with
completely ballistic transportsbehavior similar to that found
for the integrable modelsd, whereas the MC–EBB model,
which is “more ergodic,” even in the case of nonvanishing

pressure, establishes a “nonflat”sand nonlineard temperature
profile.

From our general theorem of Sec. II, we know that all
these momentum conserving bing-bang models should ex-
hibit anomalous conductivity. Using our extensive data on
lattices of different sizes, we can confirm this by calculating
for each of the models the dependence of the thermal con-
ductivity ksLd on the sizeL of the system. To account for the
observed nonlinearity in the temperature gradients across the
system, we have determined “average” temperature gradients
¹T with least squares linear fit of temperature profiles in the
range n=N/4 . . .3N/4. Since the temperature profiles are
scaling s27d, any other choice would just redefinek by a
constant factorsindependent of the sizeLd. In Fig. 7 we plot
ksLd for both latticessMC–PIBB and MC–EBBd and find
significant agreement with the intermediate power-law be-
havior

FIG. 5. Scaling of temperature profilesstemperature vsx/N for different
system sizesNd in a MC–PIBB model with thermal baths at temperatures
TL=0.5,TR=1.0. The triple of steep curves refers to a system with symmet-
ric interparicle potentialb=1.0 sso that the pressure vanishesd, while the
triple of horizontal curvessat T=ÎTLTR, so zero temperature gradient over
the bulk of the chaind refers tob=2.5 sand a nonvanishing pressured.

FIG. 6. Scaling of temperature profilesstemperature vsx/N for different
system sizesNd in a MC–EBB model with mass ratiom2/m1=0.382. All
other parameters are the same as in Fig. 5. Note that here a nonvanishing
temperature gradient is established even in the nonsymmetric caseb=2.5
with nonvanishing pressure.

FIG. 7. The finite-size thermal conductivityksLd vs sizeL for the MC–EBB
sm2/m1=0.382,b=1d and MC–PIBBsm2/m1=1,b=1d models.
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ksLd ~ L0.4. s28d

This result is in agreement with the existing results on non-
integrable, momentum-conserving lattices in the
literature11,14,18,19,31and provides further support for the con-
jecture that there may be some form of universality present
in these models.14,15 Clearly this is an important question
worthy of further study.

Our numerical data also permit us to study two other
major issues related to the anomalous conductivity and more
generally to the applicability of the concepts of statistical
mechanics to these systems. First, we can examine the con-
sistency of the aboveksLd, which we have determined by
studying numerically a nonequilibrium steady state, with the
behavior ofk as determined by applying the Kubo formula
to a large but finite system. To perform this consistency
check, we have computed the temporal current–current auto-
correlation function,Cstd;kJstdJlb /L, and spatiotemporal
current–current autocorrelation function, Ssx=m,td
=k jmstd j0s0dlb. The homogeneity in space and time imply
that all the averages are invariant under the space and time
shifts, kFmstdlb=kF0s0dlb, so the temporal correlation func-
tion can be writen as the spatial integral of the spatiotempor-
tal one

Cstd = o
m=0

N−1

Ssm,td. s29d

We assume that the tails of the current–current autocorrela-
tion function are mainly governed by the acoustic sound
wave propagation which moves ballistically with a group
sound velocitycs=dx/dt. This will be clearly revealed for
the models studied here by inspecting the full spatiotemporal
correlationSsx,td later.

In order to describeksLd for a finite sistem of sizeL by
the conventional Kubo formula, we need to integrateCstd up
to a finite time t0, tL;L /cs~L, since for the ultimate
asymptotic result, the thermodynamic limitL→` has to be
taken prior to the timet0→` limit. Therefore, divergence of
ksLd~La is consistent with a slow power-law decay of
current–current autocorrelation function

Cstd ~ t−s1−ad. s30d

In Fig. 8 we show temporal correlation functionsCstd
for three different models:sad for MC–PIBB with vanishing
pressuresb=1d; sbd for MC–EBB with vanishing pressure
sb=1d; and scd for MC–EBB with nonvanishing pressure
sb=2.5d. Only the casesbd is clearly consistent with the de-
cay Cstd~ t−0.60 whereas for the casesad sMC–PIBBd the de-
cay of correlations seems to be slightly fasterCstd, t−0.78

salthough the power may approach 0.60 asN→`d, and the
bumps where the sound-wave collides with its symmetric
copy after transversing the half of the system are quite re-
markabled and for the casescd sMC–EBB with nonvanishing
pressured, we obtain a finite plateau forCstd, in accordance
with our theorem of Sec. II.

From these results we conclude that the finite-size rela-
tion s30d appears to break down when eithersid the pressure
is nonvanishing orsii d the autonomous dynamics is noner-

FIG. 8. The current–current temporal autocorrelation functionkJstdJlb /L sat
temperatureT=1d for: sad the pseudointegrablesm2/m1=1d momentum-
conserving bing-bang model with periodic boundary conditions and vanish-
ing pressure,b=1.0; sbd the ergodic momentum-conserving bing-bang lat-
tice sm2/m1=0.382d with vanishing pressure,b=1.0; andscd the ergodic
momentum-conserving lattice with nonvanishing pressureb=2.5. In each
case, three different system sizes are shown. Note that the dotted line inscd
indicates the lower bound from the theorem from Sec. II.
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godic spseudo-integrable or even integrabled; however, it ap-
pears to hold if the pressure is vanishing and the dynamics is
ergodic, and of course even more so if dynamics is ergodic
and chaotic, as demonstrated by Refs. 18 and 19. We believe
that our results indicate that EBB models are mixing as well,
although it is very difficult to make any precise statements
about mixing based on numerical results on the decay of
time correlations of just one or the few observables, like
Cstd.

Further insight into the nature of the anomalous conduc-
tivity comes from studying the full spatiotemporal correla-
tion functionSsx,td. In Fig. 9 we showSsx,td for the same
three cases studied in Fig. 8. Note the clear tongues of bal-
listic propagation inSsx,td, from which we can easily com-
pute the sound velocitycs. For the earlier three cases the
observed sound velocity is:sad cs<1.75, sbd cs<1.67, and
scd cs<1.63. In addition to the ballistic component, we also
observe in all three cases a quite pronounced diffusive com-
ponent ofSsx,td which is the central enhancementsaround
x=0d inside a band whose width spreads diffusively asxdiff

~Ît.
The interpretation of these ballistic modes is clarified by

the following simple but instructive observation and numeri-
cal experiment. Since there is no on-site potential in our MC
models, they behave macroscopically like a liquid or a gas.
When such a systemsfor a large sizeL=Nd is confined be-
tween hard walls or between heat reservoirs, we expect it to
exhibit standing acoustic waves whose frequencies can be
computed directly from the sizeL and the speed of soundcs.
Since the displacements of the particles must vanish at the
reservoir walls, we also know the appropriate boundary con-
ditions. Thus we should find the same eigenfrequencies as
for the acoustic “flute” closed at both ends

nl =
lcs

2L
, l = 1,2,3 . . . . s31d

Can we excite the long wavelength acoustic eigenmodes by
simple thermal excitation of the reservoirs? We explore this
question in Fig. 10sad by plotting the total displacementqn of
the middle particlesin units of unit mean particle spacingsd
n=N/2 of a MC–EBB chain of sizeN=400 which is simply
put between the heat reservoirs at unit temperatureTL=TR

=1. We observe a nearly periodic signal with a frequency
n1=0.0204, corresponding to a very clear and pronounced
dominant excitation of the longest wave-length model =1. In
the remainder of Fig. 10, we plot the power spectra of the
signal, uq̃N/2u2svd and uq̃N/4svdu2, for the four different cases
of fsee Figs. 10sbd–10sedg: sbd a MC–EBB chain with van-
ishing pressuresb=1d, scd a MC–EBB chain with nonvanish-
ing pressuresb=2d, sdd a MC–PIBB chain with vanishing
pressuresb=1d, and sed a MC–PIBB chain with nonvanish-
ing pressuresb=2d. In all these cases we observe a dominant
excitation of the longest wavelength model =1 and also clear
but weaker excitations of higher eigenmodessl .1d with in-
teger multiple frequenciesnl = ln1, whose power is a rapidly
decreasing function ofl. The basic acoustic frequencies of
the four cases are:sbd 2pn1=0.0128,scd 2pn1=0.0116,sdd
2pn1=0.0135, andsed 2pn1=0.0116, from which we can
independently calculate the sound velocities:sbd cs=1.63,scd
cs=1.48, sdd cs=1.72, andsed cs=1.48. Casessdd and sbd
exactly correspondsexcept for thedifferentboundary condi-
tionsd to casessad andsbd of Figs. 8 and 9, respectively, and
indeed the agreement of the sound velocities is very good.
Another interesting observation, which we believe is in fact
the physical essence of the “proviso” in our theorem of Sec.
II, is that the power spectra of the “acoustic” signals of mod-

FIG. 9. The spatiotemporal correlation functionSsm,td=k jmstd j0s0dlb for the same three cases as in Fig. 8. Note the apparent ballistic propagation. Regions
between contours of equidistantly spaced base-e logarithm lnSsx=m,td are shaded with 20 different and uniformly increasing levels of greyness in the range
f−10,0g.
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els with non-vanishing pressure show a peakfas in Fig.
10scdg, or at least relatively large powerfas in Fig. 10sddg, at
zero frequency, whereas models with vanishing pressure
have practically vanishing power at zero frequency. In other
words: the zero-frequency mode, which is a rigid displace-
ment of all particlessat least in a large local domain, since a
global rigid displacement is prohibited by the boundary con-
ditionsd, can support energy transport only if the pressure is
nonvanishing.

Let us turn now to the second general issue related to the
anomalous conductivity and more generally to the applica-
bility of the concepts of statistical mechanics to these sys-
tems: namely, is the nonequilibrium state in which we study
the heat transport a state oflocal thermal equilibrium? To
study the question of the existence of local thermal equilib-
rium in both PIBB and EBB models in the nonequilibrium
stationary state withTL=1,TR=2, we analyze the velocity/
momentum distribution across the system and compare it to
the ideal Maxwellian

dP/dpn ~ expf− pn
2/s2mnTndg.

To simplify this comparison, we factor out the local tempera-
ture by comparing the normalized higher moments

M2msnd =
kpn

2ml
kpn

2lm s32d

with the Gaussian valuesM2m
gauss=s2m−1d!!.

That we cannot expect to find local thermal equilibrium
in a pseudo-integrablesPId model is shown by the following
argument:44 the momenta of particles in the pseudo-
integrable lattice cannot change due to interactionsscolli-
sionsd with other particles but only due to interactionsscol-

lisionsd with the reservoirs. Therefore, the velocity
distribution at the siten inside the PIBB chain is equal to a
linear combination of two Maxwellians with temperaturesTL

andTR, the coefficients being just the probabilities that given
velocity has been injected from the left/right. Strictly speak-
ing, for this argument44 to be completely justified, we must
assume that the diffusion rate of fixed velocitiessor “veloci-
tons”d is sat least to some good approximationd independent
of the actual value of the velocity. This is indeed the case, for
example, if we assume completely uncorrelated random
walks for the individual velocities—velocitons. But this as-
sumption may be really justified only for strongly chaotic
systems, like the Lorentz gas,44–48whereas for PI systems we
can consider it just as a qualitative argument that suggests
the absence of local thermal equilibrium.

The results of studying the moments of the local velocity
distributions in the MC–EBB and MC–PIBB models are
shown in Fig. 11. The reader should observe very convincing
local thermal equilibrium for the MC–EBB model, while for
MC–PIBB model we have notable deviations, as anticipated
by the qualitative argument presented earlier.

B. Momentum nonconserving bing-bang models

The two 1D bing-bang models studied in the previous
subsection exhibited both translation invariancesmomentum
conservationd and the absence of metric chaos. Hence, the
result that they also exhibited anomalous transport is not
surprising, given previous results and discussion of Sec. II.
Nonetheless, our numerics were useful in establishing that
the anomalous transport can be viewed as arising from the
sound-wave ballistic tongues in spatiotemporal current–
current autocorelation functionSsx,td. Further, our simula-

FIG. 10. Thermal excitation of acoustic modes:sad the time dependence of the displacementqnstd of the particle in the middlen=L /2 of the diatomic
sm2/m1=0.382,b=1.0d bing-bang lattice of sizeL=400 between thermal reservoirs in equilibriumsTL=TR=1d; sbd the power spectrum of the same signals
n=L /2, full curved and for the displacements at the one-quarter of the chainsn=L /4, dashed curved; dotted vertical lines denote integer multiples of the basic
acoustic frequency;scd the same plot as insbd but for the MC–EBB withb=2 snonvanishing pressured; sdd the same plot as insbd but for the MC–PIBB with
b=1 svanishing pressured; and sed the same plot as insbd but for the MC–PIBB withb=2 snonvanishing pressured.
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tions also established results—perhaps somewhat surprising,
given the complete absence of metric chaos in the bing-bang
models—thatsid instead of behaving like integrable systems,
the momentum-conserving bing-bang models exhibited the
same scaling ofksLd as the generic nonintegrable, and even
strongly chaotic, models like the FPU lattice; ands2d that in
the MC–EBB model, local thermal equilibrium is established
in the conducting stationary steady state. Taken together with
previous resultssfor instance, those on the FPU systemd that
chaos is not sufficient to produce normal conductivity, our
new results show that the relationship between metric chaos
spositive Lyapunov exponents, positive Kolmogorov–Sinai
entropyd and “statistical mechanical” behavior—including
normal transport, local thermal equilibrium, it etc.—is per-
haps less direct than previously anticipated.

In this subsection, by studying a momentum non-
conserving bing-bang model, we further weaken the link be-
tween metric chaos and normal statistical behavior by estab-
lishing numerically that a model in which metric chaos is
absentsin the strict sensed nonetheless exhibits normal con-
ductivity: that is, we show by asnumericald counterexample
that chaos is alsonot necessaryfor normal conductivity.

For simplicity and clarity, we focus on a single momen-
tum non-conserving bing-bang model—the “the less er-
godic” pseudo-integrable chainsMNC–PIBBd chain—which
is defined by the relationss24d with b=c=d=1, andmn=1.
Physically, this corresponds to a chain of equal mass point
particles that collide elastically and are each subject to a
hard-wall, confining on-site potential. A typical trajectory of
such a model of with nine particlessN=9d is depicted in Fig.
12.

When the MNC–PIBB lattice is placed between heat
baths, with temperaturesT1=1 andT2=2, a linear tempera-

ture profile is established, as shown in Fig. 13, except for the
edge particlesn=1 andn=N, which are in contact with the
reservoirs. At the reservoirs, we observe a strong drop in
temperature arising from manner in which the particles are
coupled to the heat bath: in particular, fast particles are more
likely than slow ones to collide again with the reservoirs
before they “transmit” their velocity to the rest of the chain.
Apart from this effect, which can be essentially avoided by
defining “renormalized reservoirs” which include onesor a
fewd particles near to the reservoir, the transport in the
MNC–PIBB is completelynormal: a linear thermal gradient
is established andksLd is independent ofL. And this normal
transport behavior occurs despite the fact that the autono-
mous MNC–PIBB system has no metric chaos and is not
even ergodic! We should note, however, that due to pseudo-
integrability of MNC–PIBB, local thermal equilibrium is not

FIG. 11. Moments of the velocity distributionsM2nsmd=kpm
2nlb / kpm

2 lb
n for

n=4, 6, and 8 for two different momentum conserving bing-bang lattices of
size L=3200 with TL=0.5, TR=1.0. The results for the EBB modelswith
m2/m1=0.382, plotted as solid linesd are essentially indistinguishable from
those of the Gaussian modelfMn=s2n−1d!! g, plotted as dotted linesd, show-
ing that local thermal equilibrium is established in the MC–EBB model,
whereas the results for the MC–PIBB modelsdashed linesd deviate substan-
tially from the Gaussian model, showing that local thermal equilibrium is
not established, as anticipated by the heuristic argument presented in the
text.

FIG. 12. A typical trajectory of MNC–PIBB chainsL=9d. As in Fig. 3, the
ordinate shows particle positionsfxnstdg where for clarity the oddn particle
trajectories are plotted with full lines while the evenn trajectories are
dashed. The walls atx=0 andx=10 act as thermal baths at temperatureT
=1.

FIG. 13. The scaling oflinear temperature profiles,T vs x/L, for MNC–
PIBB chain for different sizesL. The dashed-dotted straight line is drawn to
guide the eye. The temperatures of stochastic heat baths areTL=1 andTR

=2.
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established in nonequilibrium heat-flow simulation. Instead,
the local velocity distribution has been found to be a linear
combination of two Maxwellians at different temperatures.

In Fig. 14 we show the convergence ofksLd to its
L-independent asymptotic value; the figure shows that the
convergence has occurred already for lattice sizesL<100.

We have done conducted three additional numerical ex-
periments to confirm and clarify the normal heat transport in
this MNC–PIBB model. First, in Fig. 15, we show the mag-
nitude of current–current autocorrelation function
ukJstdJlbu /L for MNC–PIBB lattices of several different sizes
N. We observe a rapidsperhaps exponentiald initial decay of
the correlationssover three decadesd and afterwards a slower,
oscillatory decaysso it integrates out andshopefullyd does
not produce a divergence in the Kubo formula even if its
envelope may not decay exponentiallyd.

Second, and perhaps more conclusive, is the behavior
observed for the spatiotemporal correlation functionSsx,td
of the MNC–PIBB model, which we show in Fig. 16. In
contrast to the behavior observed in the systems with anoma-
lous heat conductivityssee Fig. 9d, there areno ballistic

tongues here but instead a clearly diffusive pattern emerges.
Third, we can study the behavior of the imaginary test

particlessvelocitionsd that carry constantsfixedd velocity and
which can be clearly defined due to pseudo-integrability of
the many-body model: When the velocitiesvn,vn+1 of a pair
of particlesn andn+1 are exchanged due to the collision, the
velociton hopssby definitiond from siten to siten+1, or vice
versa. Choosing the velociton initially to be at the sitenst
=0d=n0, clearly determines the evolutionnstd is for all times.
If the overall motion of the velociton is diffusive, this pro-
vides an indication of the diffusivesnormald nature of
energy/heat transport in the system. We start by placing a
velociton of velocityv0 somewhere in a large MNC–PIBB
lattice swith periodic boundary conditionsd and with a ca-
nonically thermalized “background,” i.e., the momenta of all
other particles are distributed according to a Gaussian dis-
tributiuon. We then simulate the dynamics, and ask whether
the velociton undergoes a normal diffusive proccess. Ifnstd
labels the real particle that carries a velocityv0 at timet, then
we check for the linear growth

fnstd − ns0dg2
b = Dsv0dt. s33d

In Fig. 17 we showkfnstd−ns0dg2lb as a function of time, for
both an intermediate velocitonv0=1 sthe background tem-

FIG. 14. Convergence of the thermal conductivityksLd to its L-independent
asymptotic value for the MNC–PIBB model. In the simulations,TL=1, and
TR=2.

FIG. 15. The magnitude of the current autocorrelation functionukJstdJlbu /L
sat temperatureT=1d for the MNC–PIBB model with periodic boundary
conditions for different system sizes.

FIG. 16. The spatiotemporal correlation functionSsm,td=k jmstd j0s0dlb for
the same parameters as in previous Fig. 15 and using the same graphical
presentation as in Fig. 9. Note the apparent diffusive propagation. The su-
perimosed full curve ist=0.09x2.
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perature isT=1d and a fast velocitonv0=10. We find normal
diffusion in both cases, although the diffusion coefficient
Dsv0d is obviously an increasing function of velocityv0. In
Fig. 17 we also study velocitons in a “microcanonically ther-
malized background,” by which we mean that momenta/
velocities of the real particles all have values ±1swith equal
probability of both signsd. Remarkably, even in this case we
find normal diffusive proccesses for both intermediate and
fast velocitons.

We believe all these results provide conclusive numeri-
cal confirmation of normal diffusive heat transport in the
MNC–PIBB lattice, which is neither ergodic nor chaotic but
only pseudo-integrable. This strongly supports the result that
metric chaos is not nesseccary to have normal transport.

This result seems quite surprising and indeed paradoxi-
cal, but we believe that the resolution of the seeming paradox
lies in the complexity of theN-dimensional invariant sur-
faces in the MNC–PIBB model: namely, these surfaces be-
come more and more dense and uniformly covering of the
energy surface as the thermodynamic limitsi.e., asN→`d,
while dynamics on the invariant surface is probably mixing
sdecay of time correlations of arbitrary observablesd, which
means that any phase-space distribution function on
invariant-surface relaxes into statistical equilibrium. Thus, in
the thermodynamic limitN→`, the macroscopic properties
of the dynamics of this complex pseudo-integrable system
cannot really be distinguished from those of a truly chaotic
system. For example, as we saw in the beginning of this
section, the sets of modula of momenta of PIBB lattices are
preserved under time evolution. Hence, the invariant surface
can be written as a direct productsC2

N3SNd3 f−1,bgN.
WhereC2

N3SN is the group of all possible permutationsSN

and sign exchangesC2 on a set of initial momenta
sp1,p2, . . . ,pNd and really represents the discrete momentum
part of an invariant surface which consists of 2NN!
N-dimensional configurational sheetsf−1,bgN. When N is

large and if initial condition of on the momentaspd has been
chosen with a “canonical measure” for each componentpn

swhich is the case with probability 1 in thermodynamic limitd
then it seems plausible that the dynamics of a single orbit of
the PIBB system on its invariant surface can uniformly cover
the phase-spaces of small subsystems of sizeN8!N with a
canonical measure, just as is the case for a truly ergodic
covering system. Obviously, these observations require con-
siderable further mathematical study to be convincing, but
we feel that they are well justified as conjectures.

We close this subsection with one final calculation. Since
the MNC–PIBB model is equivalent to asmultidimensionald
billiard model, we can in this case actually derive the depen-
dence ofksTd on thetemperatureby a simple scaling analy-
sis, either from Kubo formula, or, more directly, from the
definition k=−j / ¹T. The heat current is proportional to the
average particle energy, i.e.,v2 swherev is a typical veloc-
ityd, times the inverse of the typical time in which a particle
scatters with its neighbors and transfers energy: this time is
roughly a/v, where a is the lattice spacing. Therefore,jn
,v3 for billiard-like models. On the other hand, the tempera-
ture gradient¹T=Tn+1−Tn scales as,v2, so thatk~v, or

ksTd < Î8T. s34d

The factor ofÎ8 is an approximation obtained from our nu-
merical simulations, but the scaling with temperature isexact
since it is a simple consequence of scaling dynamics of bil-
liards. The above result is meaningful, of course, only in the
close-to-equilibrium situation where typicalsaveraged tem-
perature has a well-defined value ofT.

V. SUMMARY AND DISCUSSION

A. Summary

The analyses, analytic and numerical, described in the
previous sections, have established a several results concern-
ing normal and anomalous heat transport in classical 1D lat-
tices. We have adduced convincing numerical evidence and
several theoretical arguments20–22 to justify the claim that
total momentum conservation is sufficient for anomalous
heat transport provided the average pressure is nonvanishing.
There seem to be momentum-conserving models that have
normal conductivity35,36 but these models cannot sustain
pressure, consistent with heuristic arguments that in such a
case, the Goldstone modes cannot carry energy.

We have also presented numerical results that convinc-
ingly support two other claims:

• total momentum conservation isnot necessary for anoma-
lous heat transport, as shown by the counterexamples of
the linearoptical chain and the nonlinear integrable IK–SG
model; and

• metric chaos, defined in the usual sense of having a set of
nonzero measure in phase space in which there are positive
Lyapunov exponents and positive Kolmogorov–Sinai en-
tropy, is neither sufficient sas shown by the anomalous
behavior of the FPU and diatomic Toda modelsd nor nec-
essary sas shown by the momentum non-conerving
pseudo-integrable bing-bangsMNC–PIBBd modeld for

FIG. 17. Diffusion of velocitons in MNC–PIBB lattice. We show root-
mean-square displacements vs time for velocitons withv=1 andv=10, in
either canonically thermalized background with temperatureT=1 or in mi-
crocanonically thermalized backgroundsall background particles have equal
unit velocities but random signs and initial positionsd. Full lines give the
slopes of best linear fits which support the existence of normal diffusion.
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normalsdiffusived heat transport. Furthermore, even ergod-
icity is not necessary for normal transport, as shown by our
studies of MNC–PIBB models. From our analysis it fol-
lows that perhaps even multidimensional pseudo-
integrability is sufficient, provided the topology of invari-
ant surfaces becomes sufficiently complex in
thermodynamic limit.

As is often the case, these results raise at least as many
questions as they answer, so we phrase the remainder of our
discussion in terms of several questions.

B. What is needed for normal transport?

Our results establish that the full set of conditions
needed to guarantee normal transport in 1D models is more
subtle and less “clean” that previously believed.8 We know
that normal transport for all temperatures requires:

• confining on-site potential,15 or vanishing pressure with
effective means of scattering of long-wavelength Fourier
modes;35,36

• anharmonicity in either on-site or interparticle potential:
this is necessary to exclude the pathological linear sys-
tems;

• absence of integrability: integrable modelsswhich can be
hard to identifya priorid must also clearly be excluded;
and

• an effectivemeans of achieving dynamical mixing in the
thermodynamic limit, although this means can be subtle
and perhaps more topological than dynamical, as the re-
sults for the pseudo-integrable bing-bang model imply.

C. What about dimensionality?

Why do we expect our arguments to be limited to on
dimension? We could develop a formal analysis of the vector
current in twosor higherd dimensions, but intuition gained
from thinking of coupled chains is key. The neighboring
chains provide an environment for a given chain that leads to
an effective on-site potential: this was original motivation for
Frenkel–Kontorova model. Based on hydrodynamic or
mode-coupling arguments,32 one would expect lnL diver-
gence ofk in two dimensions and normal conductivitykL0

in three dimensions. The expected logarithmic divergence in
2D has been confirmed in recent numerical experiments.31

Nonetheless, further studies in explicit lattice models in
higher dimensions will certainly provide additional insights.

D. What are other open issues?

• An outstanding problem in mathematical physics is a rig-
orous proof of what is really necessary and sufficient for
normal conductivity.

• Compelling calculations of the exponents for anomalous
transport. Isk,L1.0 the fastest increase possible? Isa uni-
versal, or are there universality classes? Numerical data
suggesta,0.4 is widespread, but other arguments suggest
a=1/3. Isthere a systematic “universality theory” that can
predicta, as was done for the Feigenbaum constants in the
period doubling transition to chaos?

• What happens when systems are drivennonlinearly away
from equilibrium? What are the corrections to Kubo
formula?

Knowledgeable colleagues, many of whom have contrib-
uted to this Focus Issue ofChaoson the Fermi–Pasta–Ulam
problem, can doubtless add still further questions. There is
still much to be found in exploring the rich trove of physi-
cally relevant and mathematically challenging problems that
has been uncovered in seeking to explain FPU’s remarkable
little discovery.1
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