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We present analytic and numerical results on several models of one-dimen&itnatlassical

lattices with the goal of determining the origins of anomalous heat transport and the conditions for
normal transport in these systems. Some of the recent results in the literature are reviewed and
several original “toy” models are added that provide key elements to determine which dynamical
properties are necessary and which are sufficient for certain types of heat transport. We demonstrate
with numerical examples that chaos in the sense of positivity of Lyapunov exponents is neither
necessary nor sufficient to guarantee normal transport in 1D lattices. Quite surprisingly, we find that
in the absence of momentum conservation, even ergodicity of an isolated system is not necessary

for the normal transport. Specifically, we demonstrate clearly the validity of the Fourier law in a
pseudo-integrable particle chain. ZD05 American Institute of Physics

[DOI: 10.1063/1.1868532

The study of how heat is transported through solids has a
history dating back to antiquity and culminating, in the
regime of classical physics, in the Fourier law of heat
conduction, which asserts that the flux of heat (the “heat
current”) is proportional to a constant times the gradient
of the temperature. This “normal transport” of heat cor-
responds to “diffusion” of the heat through the system
and is observed in most physical systems. In some math-
ematical models and in certain specially prepared experi-
ments, one can observe “anomalous” transport of heat.
Strictly speaking, one uses the term anomalous transport
to describe anything that is not “normal,” up to and in-
cluding the case in which the heat propagates ballistically
through through the system. Numerous prior studies
have sought to understand the origins of both normal and
anomalous transport and to isolate key features of the
systems that lead to each type of transport. A particularly
important set of studies developed from the original
Fermi—Pasta—Ulam (FPU) study of the (supposed) equi-
partition of energy in a one-dimensional chain of coupled
nonlinear classical oscillators. Just as the study of the
time evolution of the FPU system revealed the surprising
result that there was no apparent evolution towards eq-
uipartition but instead a tendency towards the recurrence
of the initial state, so the study of transport in FPU-like
systems revealed that their thermal conductivity was in-
deed anomalous. In the present article, we explore sys-
tematically the conditions that lead to normal or anoma-
lous conductivity in classical, one-dimensional chains
(“lattices”). We find an interesting interplay among the
consequences of translation invariance (momentum con-
servation), nonlinearity, complete integrability, and de-
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terministic chaos, and demonstrate the particularly sur-
prising result that chaos is neither necessary nor
sufficient for normal conductivity in these systems.

[. INTRODUCTION

The related issues of thermalization, transport, and heat
conduction in one-dimensiondllD) classical lattices have
been sources of continuing intergéand frustration for sev-
eral generations of physicists, particularly since the pioneer-
ing computational study of Fermi, Pasta, and Ul&rfPU)
revealed the remarkable “little discove?yfhat even in a
strongly nonlinear 1D lattice recurrences of the initial state
prevented the equipartition of energy and consequent ther-
malization. The complex of questions that has developed
from the FPU work involves the interrelations among equi-
partition of energy(the questions like: Is there equipartition?
In which modes}; local thermal equilibrium{Does the sys-
tem reach a well-defined temperature locally? If so, what is
it?), and the transport of energy/hd&toes the system obey
Fourier's/Ficke’s heat law? If not, what is the nature of the
abnormal transporj? Review articles spread over nearly
three decades have provided snapshots of the understanding
(and confusionat different stages of this odyss&y.

In this article, we will explore a subset of these questions
dealing with the transport of energy/heat in 1D classical lat-
tices. In particular, we will focus on the many studies that
have attempted to verify the validity of Fourier’s law of heat
conduction

J)=-«kVT (1)

in 1D classical lattices or “chains.”
Here, k is the transport coefficient of thermal conductiv-
ity and is supposed to be amtensiveobservable, i.e., inde-
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pendent of the size of the system. Strictly speakings well sary and sufficient for normal conductivitkg ~ «, ~ L°),
defined only for a system thateysFourier’'s law and for Ref. 8, a claim that has been countered by strong numeri-
which alinear temperature gradient is established. Further, cal evidence for anomalous conductivity in FPU chains
since in generak is a function of temperature, the relative  (kg~ x ~ ~L?® where a=0.379;***2 (2) the diatomic
temperature variation across the chain should be smalt for  Toda chain, where initial results claiming~ L% Ref. 13

to be truly constant. have recently been refuted by a study showing 0.4,

In the literature, the dependencexdit.) on the size. of Ref. 14;(3) the Frenkel-Kontorova model, which shows
the system has also been used to characterizéltigree of (at least for low temperaturksc~ x ~L°, Ref. 15; and
anomalous transport. However, the definition soffor an ¢ noninterable models with hard-core potentidl the
anomalous conductor, where iternal temperature gradi-  “ding-a-ling” modef® and (2) the “ding-dong” modet,

ent may be established, is highly ambiguous. Usually, one both showing convincingly thakg~ r ~ L°.
defines it as«g(L) =JL/AT whereAT is the total tempera-

ture drop between the two thermal baths. In this article we This bgv_wlde_zrmg array Of. results has recently be_en
shall call such a definition ot a global thermal conductiv- greatly clarified in a series of independent but overlapping

ity, in contrast to another definition of the so-calllextal studies. The numerical studies of Hu, Li, and Zftaand of

4 .
thermal conductivity, =J/ VT, which may depend on the Hatand” show thatoverall momentum conservati@ppears

e . . ) . to a key factor in anomalous transport in 1D lattices. Lepri
position in the lattice, sincET=dT(x)/dx and is unique only 411819 Zmd Hatan®' have argued t?]at the anomalous (terl?ams-

in the case of a linear themperaturg PTOﬁ'e- We note that thSort in momentum conserving systems can be understood in
global and local thermal conductivities are proportl_onal,termS of low frequency, long-wavelength “hydrodynamic
na?ely IK'-:.fC';]G wherec does not f(_jlept_'-:nd onl_ the _Sl_tl_e i modes” that exist in typical momentum conserving systems
e_m /ony f|1 the temper_attére profi ed IS scdalng, . (XI)I and thathydrodynamic arguments may explain the exponents
=r(x/L) where 7({) again does not depend dn We wi observed in FPY* and diatomic Tod¥' lattices. Later on,

confront these subtle distinctions at several points in the ens.,aral othe papers appeared which tried to formalize the

suing discussion. , o statement that momentum conservation implies anomalous
To place our work in the larger context, it is useful to transpor12°‘22

recall that the issues of equipartition/thermal equilibration | the present article, we review these recent results and
and heat conduction/energy flow, although clearly relatedgyiend them on several fronts, using numerical simulations
can in fact be studied separately. For instance, although & several different models. First, we present a counterexam-
integrable system will never reach a thermal equilibrium enyje showing that converse of the earlier statement is not true:
semble unless it is started in one, the concept of “solitorhame|y, anomalous conductivity doemt imply that the
statistical mechanics” is not an oxymoron: assuming that the,gdel is momentum conserving. Second, we present con-
system is in a thermal equilibrium ensemble, one can studyincing numerical data showing that chaos is neither neces-
what other aspects of statistical mechanics remain valid an@ary nor sufficient for normal conductivity, providing coun-
in particular, what role solitons play in the response of theterexamples to prior clairr18s.FinaIIy, we present some
system to external perturbations. Similarly, the study of ther{hopefully well-motivatedl speculations on the necessary and
mal transpor(Fourier's/Ficke’s heat layy is the search for a sufficient conditions fomormal conductivity in 1D lattice
nonequilibrium steady statén which heat flows across the systems.
system, and the flow is typically analyzesssumingthe The class of models we study is described by the quite
Green—Kubo formalism of linear resporisig terms of cor-  general 1D classical lattice Hamiltonian with single-particle
relation functions in the thermal equilibriufgrand canoni-  and two-particle interactions
cal) state, independent of whether a particular system can
actually reach this state. Indeed, systems exhibiting “anoma- 2
lous conductivity” are precisely those in which this analysis  H= "> L U2an) + VP o(Gner = ) |- (2
doesnot lead to Fourier’s law. n L2m,

We shall focus here on heat conduction but will attempt
to make clear whenever our results imp@stdepend onthe
existence of equipartition and local thermal equilibrium.

Previous studies have led to bewildering array of partial
results and conjectures:

Here, the particles moving in 1D have “absolute” coordinates
X,=hat+q, wherea is the average lattice spacing and the
Irelative coordinates,, designate the particles’ displacements
from their equilibrium (averagg positions. We will either
consider the particles to be on a ring with periodic boundary
« harmonic chains? showing kg~L%, a result understood conditions (in this casexy=x,+Na, qy=0qy), or we will
by the stability of linear Fourier modes, absence of mode-place the system between two thermal reserv@itpossibly
mode coupling, with the rigorous consequence that ndlifferent temperaturesy coupling the edge particles 1 and
thermal gradient can be formed in the system; N to canonical stochastic “heat” baths. To present our ana-
« integrable modeld, kg~L%, a result understood by the Iytic results in the most general context, we will consider
presence ofonlinearstable modeéthe solitongand com-  arbitrary “disorder”: the massesy,, can depend on lattice
plete interability® stiten, as can both then-sitepotentialU2® (which represents
+ nonintegrable models with smooth potentidfs: the FPU  a “phonon-fixed lattice” interactigrand theinterparticle po-
models, leading eventually to claim that chaos was necegential V", ,, (=“phonon—phonon” interaction
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We begin our detailed discussion in Sec. Il with a survey 1.3}
of several different modelémostly previously studigdthat
fit into the general class described by the Hamiltonian in Eq.
(2). The models are presented in a general sense of increas
ing “normality,” starting with (highly pathological linear/
harmonic chains, moving tgstill pathological integrable = 1 e e
models, and finally treatingsupposedly “normal” chaotic
models. Already from this survey we obtain two important
results. First, we show that momentum conservation is not
necessaryfor anomalous transport. The harmoroptical
chain, which does not conserve momentum but does exhibit o7} = . . .
anomalous transport, provides one clear example of this, ant 1205 Lo 2‘; N=40
an integrable model first introduced by Izergin and Korepin
provides another. Second, by reviewing recent results in thElG. 1. Temperature profile for the lineaptical chain with the parameter

FPU chain, which is known to exhibit chaos but also clearly”=0-25 and with reservoir temperaturég=1.3, Tz=0.7. The size of the

. . lattice here ifN=40. As discussed in the text, this profile is the same as for
displays anomalous conductivity, we can conclude that chao$e jinear acoustic chain discussed in Ref. 10.
is not sufficient for normal conductivity, in constrast to pre-
vious claims? In Sec. I, we discuss some of the recent the-
oretical work on the relation between the total momentunA. Linear models
conservation and anomalous heat transport. We show that The linear acoustic chain
one can relate momentum conservation to the divergence of
a particular form of the Kubo formula corresponding to a
nonequillibrium system of spatially uniform density. How-
ever, uniform pressure, as required by the stationary stat
produces the gradient of the densitgr gradient of the
chemical potentialwhich drives the ballistic current in the u°q) =0, VP(q) = %wzqz’ (3)

oposite direction to the temperature gradient. The two ballis-

tic contributions thus cancel and the resulting next order tern{’ hich are placed between two heat baths at temperalyres

i 10 . L.
typically gives anomalous superdiffusive transport. In secnd Ty. Riederet al.™ show that the transport is ballistic,

Il we define and study the family of “bing-bang” models with the average heat curreditwhich is proportional to the
which are constructed by considering purélgrd-wall po- " differenceof the temperatures of the two heat baths and in-

tentialsU°sandVP. The bing-bang models are in fact equiva- dependent of the size of the system

lent to N-dimensional polyhedral billiards, which have van- J=YTy-Ty). (4)
ishing Lyapunov exponents and therefore zero Kolmogorov— )

Sinai entropy. Hence, the bing-bang models are never chaotit1€y @lso calculate the temperature profiie j=1,2.. N,

in a sense of positive Lyapunov exponents. Nonetheless, waroving that it is asymp'FoncaIIy flatl at the value of the aver-
present convincing numerical evidencenarmal (diffusive) ~ 29€ temperatureT(0<j/N<1)—3(Ty+To), as N—o=.

heat transport in @pseudo-integrab)enonchaotic but mo- However, close to the boundaries of the system the tempera-

mentum nonconserving bing-bang model with an on-site pogure profile exhibits exponentially attenuated jumps to satisfy

tential. This demonstrates thelhaos at least in the sense of the boundary conditions. Surprisingly, these jumps are in the

exponential instability of generic trajectories, is not neces-.OpIOOSIte direction from the temperatures of the correspond-

sary for the validity of the Fourier law. Taken together with ing heat baths(se(-_:‘ Fig. J‘ The_refore,_ n tr_1e lllnear,
. - momentum-conservin@coustig chain we findxkg=L". But
the results from Sec. |, this shows the surprising result that . I ;
: . . note that since the temperature profile is exponentially close
chaos is neither necessary nor sufficient for normal conduct— :
L . . . o a flat profile,x ocexp(col).
tivity in 1D classical lattices. In Sec. IV we summarize our
results and conclude by discussing possible precise necessary _ ) _
and sufficient conditions for normal and anomalous trans#- 1€ linear optical chain
port. Particularly in light of recent discussions on the role of
on-site potential and total momentum conservation in heat
conduction:>?% it is natural to pose the following simple
question: what happens to the analysis of Riesteal. if a
harmonic (quadrati¢ on-site potential is added, thereby
Il. PARTIAL SURVEY OF PREVIOUS MODEL STUDIES breaking the momentum conservation of the model but re-
taining its linearity? Remarkably, we have been unable to
As this article is not a review of the very broad topic of find a previous reference in which this question was studied,
anomalous transpoﬁz,3 the ensuing survey of previous so we present the results briefly here. The model is effec-
model studies is not intended to be exhaustive, but ratheively a discretized massive Klein—~Gordon system or linear
merely illustrative, of the variety of models and results. optical chain, with

0.9

One of the first and few rigorous results on the issue of
thermal conductivity is due to Rieder, Lebowitz, and L18b,
who studied a lineafacousti¢ chain of N (equa) harmoni-
%ally coupled particles, where
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u°sq) = %QZ 2 ViP(g)= %w2q2_ (5) mode) which has the following properties: it preserves the
integrability of the continuum limit and it has an on-site

The formalism of Ref. 10 applies to the general class 0fpotential[sin¢(for unimodular complex fieldor sinhé (for
linear chains, so it can be applied to the case of the lineafeg fielg]. The classical Hamiltionian formulation of the
on-site potentia(5). Because the analysis is straightforward, model has been described in detail by Tarasov in Ref. 29. For
we merely quote the results here. The momentoncon-  simplicity, we consider here the case of real field variables
servinglinear optical chain also exhibits ballistiagg~ L) ¢J¢(t), j € 7, which corresponds in the continuum limit to the
heat transport. Indeed, this optical model behaves in esseginn-Gordon model with a confining anharmonic on-site po-
tially the same way as the acoustic chain. The general shapgntial. Unfortunately, the model cannot be cast exactly in the
of the temperature profilgEq. (4.2) of Ref. 10l and the ex-  ygyal kinetic plus potential energy form () except as an
pression of the heat currefiEq. (4.6) of Ref. 10 remain  gpproximation to leading order in lattice discretenésse
exactly the same, the only difference being that the dimengtep. Nonetheless, the model provides important insight into
sionless parameter>w? of the linear acoustic chafiis  tne question of the role of)° in anomalous conductivity.

replaced by Referring to Ref. 29, we find that the Hamiltonian of the
02 discrete IK-SG model reads
v=vt—;, (6) P
® H=>h, hy,=hi+h, (8)
n

for the linear optical chain. Note that this simple analysis
already provides a nontrivial result: anomalous transport

+ - - .
. . —1C0S6— ¢, SINS COSS— ¢, Sin o
doesnot imply momentum conservation, so that momentum  hif= (Gnzs b1 (¢ n )

n -+ + -
conservation is not a necessary condition for anomalous (1+ Grag ) (L + 1 6by)
transport. >

We should note that linear chains are also highly patho- + sin 25"

logical in the additional sense that many of their dynamical
properties depend on the spectral properties of model of thehere the parametef is related to dattice spacingA via
heat baths. This is a simple consequence of the existence Af=2 sin 25. For the real field variables ¢, the Poisson
time conserved normal modes. It has been pointed out ibracket is defined as

Ref. 24, that in the case of the linear chain with disordered

masses, one can obtain super diffusive-0, diffusive a {drr oot =

dnr(br cOSS— b, SIN 8)2 S,

=0, or even subdiffusivea<0, behavior for different 4 cos D
choices of heat baths. . o

{¢n, bt = {bns bt = 0. 9
B. Nonlinear but integrable models The field variables can be transformed to conventiddis-
1. The Toda lattice cretized canonical fieldsu(x), u,=u(x,) and canonical mo-

As an example of a nonlinear but integrable momentum-mem]tJrn fl(at[dw(x), Ta=7(X), Pn=mpA, andx,=nA, by the
conserving model, we consider the celebrated Togdranstormation

lattice > for which 1 1)
_ ex IEU” COSd + ex iiu” siné 1
U@ =0, VP(q)=exd-q). (N 4= exp( p )

V1 + cosltu,)sin 26 47"

Mokross and Biittnéf have shown by numerical simulation
that the temperature profile is almost flat and that the heat (10)
current is proportional to the difference of the bath tempera-

tures (4). Hence they find numerical evidence for ballistic ~ {Un:Pm} = Sam-

. 1 .
heat transport, withg(L) L, andKL_(L) mexp(gOL), for th_'s In fact, the discrete Hamiltoniaf®) can be written explicitly
integrable and momentum-conservingut nonlinear chain. o 5, expansion ia of the continuum sinh-Gordon Hamil-
For a discussion of the role of solitons in this anomaloustonian -

transport, see Ref. 3, and for the propagation of shock waves,

1 1
see Ref. 27. H=>, Haﬂﬁ + é(un+l —Up1)?+ coshun]A
n
2. The Izergin—Korepin discrete sine-Gordon model 1
The natural class of models to consider next is a nonlin- *3 cosh{u,) m,A% + O(AS)}- (11

ear but integrable chain that does not conserve momentum,

i.e., hasU®(q) # 0. There are not many known models with Izergin and Korepin have shown that the earlier discretized
such properties. However, one such model has been prginh-Gordon mode(8) is completely solvable by the method
posed by Izergin and Kore;ﬁ?ﬂn the context of ultraviolet of inverse scattering, and hence, they have explicitly demon-
regularization of integrable quantum field theories in 1+ 1strated its integrability.

dimensions. They introduced a spatially discrete version of We have used the earlier exact completely integrable
the famous sith)-Gordon modekwe shall call this IK-SG model(8) in order to check the nature of energy transport in
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= . 1 1
/// UO = 0, le - = 2 + — 4, 13
100 19 (@ =207+ Ad (13

several groups have shown by careful numerical analyses
that despite strongly chaotic behavi@haracterized by al-
most everywhere positive Lyapunov expongntee model
exhibits power-law divergence of thermal conductivity in
thermodynamic limit, k. ~L?%, with @«=0.4. Hatano has
showrt* that for the diatomic Toda cha[same as7) but for
different(dimerized massesin,,=m, # My, =My | there ex-

ists practically the same scaling wiii=0.4 as for FPU
Slobpz(l] B i models. More recently, a similar scaling has been shown for
*V : two other models: namely, for 1D chains wher&(q) has
- 4 the form of Lennard-Jones or Morse potent?élihese re-
sults suggests possible universality of the scaling exponent
a=0.4 (perhaps 2/5of the divergence of thermal conduc-
FIG. 2. The width,a(t) = \(S,n?h,)/(,hy), of a pulse spreading from an tivity for strongly chaotic, momentum conserving lattices.
initial single-site disturbance as a function of time in the IK-SG model for This universality has been partially explained by Hatdno

two different values of parametbrtans. The initial excitation is delta-like using hydrodynamic arguments or by Leptial.7'18'19 using
with ¢5=2,¢5=3,¢5=0,n#0. A finite lattice of lengthN=800 with peri- ode-couplin theor§/2
odic boundary conditions has been used in the simulation. The line Withm upling )
slope 1 is used to guide the eye: the figure provides clear evidence of ~HOwever, recently Narayan and RamaSWéhWC)posed

ballistic transporter(t) ~t. another “thermodynamic” approach to mode—mode coupling
theory, which using a mapping to Burgers equation and the
. . . renormalization group predicts the universal exponent for the

an IK-SG lattice. Since we have not found any natural intui-

. ) . . - divergence of heat conductivity to he=1/3. It should be
tive way of coupling the variableg, (for n=1,N) to the  \optigneq that there exist other models with no on-site po-

hggt baths, we have dgmded to study -the propaggtlon of &ntial which should conform to 1D hydrodynamics in the
initially Iocah;ed pulse in an aUtgnqmo('SOIated Iatt|ce_ Pf thermodynamic limit, for example diatomic hard-point gas in
v?ry Iarge sizeN a“?' .V.V'th per|.0.d|c poundza_ry conditions 1D, which seems to have a smaller exponenDepending
0= qS'N. We start by initially excmng field variables at only on the range and type of simulatii®3%one finds values in
one site(say n=ny=N/2) and +settlng all the others to the the rangew e [0.25,0.35.
grounql state(vacugn) value d’ﬁfnozo' The'n we meas.ure, On the other hand, there exist certain momentum con-
numerically, after time, the spatial spreading of the distur- geying particle chains which seem to exhibit normal heat
bance conduction to a very high numerical accuracy. This is the
1 case for the so-called rotator modef® with no on-site po-
Oz(t):EE (n-ng’’hy(t), E=2hyt)=const. (12)  tential U=0, and cosine interparticle potential®(q)
. " =V, cosg. This model has a characteristic feature, namely it
For the numerical integration we use the adaptive step-sizeéannot support a nonvanishing pressure, and thus the
fourth order Runge—Kutta algorithm from Ref. 30. Clearly, infinite-wavelength phonons cannot carry any energy
for diffusive energy transport, one would finet(t)st'/?, current?® but it is not clear why it should be excluded from
whereas forballistic transport,o(t)=t. In Fig. 2 we show the universality argumenfé. Thus there remain still un-
results of two numerical experiments with different values ofsettled issues in connection to the heat transport in momen-
the lattice parametefs or A); both show very clearly that tum conserving though chaotic lattices. For some recent
(independent of the lattice paramétére transport is ballis- progress see, e.g., Refs. 37 and 38.
tic, o(t) ot. In any case, note that the existence of anomalous con-
This strongly suggests that integrability alofiee exis- ductivity in models that exhibit strong chaos proves that
tence of an infinite number of independent conserved quarehaos is not sufficient for normal conductivity, refuting ear-
tities in one-to-one correspondence with the set of degrees dier claims? In Sec. 11l we shall show the still more surpris-
freedon) is enough to yield anomalouén fact, ballistig ing result that chaos is also not necessary for normal conduc-
heat transport, irrespective of the presence of on-site poteitivity.
tial. This provides a second illustration, this time in a non-
linear context, of the result that momentum conservation is

width
o
1

b=05 ——

1 10 100

not necessary for anomalous transport.

C. Chaotic models with smooth potentials

1. Chaotic but momentum conserving: The FPU
models

In a series of recent studigg?181°

FPU g chain’® for which

of the celebrated

2. Chaotic but momentum nonconserving:
The Frenkel-Kontorova model

Apart from a few more or less artificial models, such as
ding-a-ling® and ding-dony chains, which combine smooth
and hard-core potentials, only one chaotic momentum non-
conserving model with a smooth potential has been studied
recently: namely, the Frenkel-KontorowaK) chain, with

Downloaded 13 Oct 2013 to 128.148.252.35. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions



015117-6 T. Prosen and D. K. Campbell Chaos 15, 015117 (2005)

U°(q) =Uycosq, VP(q) = %qZ_ (14) oneself into the frame where the total momentum is zero.
_ . . However, the formulation of Ref. 20 was based on a
The numerical results of Hu, Li, and Zhdeestablish con-  glightly nonstandard, though thermodynamically completely

vincingly that this model exhibitsiormal heat transport—  equivalent heat current, namely the so-calkttice current
k_~ L°—providedthat the temperature is low enough: spe-

cifically, the thermal energi~kgT) must be smaller than the .
amplitude of the on-site potential barrigd, in Eq. (14)]. J= Z Ins (18)
However, for temperatures well abolk/kg, the mean free n=0

path of the phonons becomésxponentially large, so the wherej, is the heat current density,is given by

Fourier law is no longer simple to observe numerically. Very

N-1

recently, Ref. 39 reports on extensive numerical simulations Jn={hns12 M-t (19)
which appears to confirm the normal heat transport in FK
chain even for temperatures abovg/kg. p / /
P §lke = an [Vis12(0ne1 = An) + Vio1/2(Gn = A1) - (20)
n

. MOMENTUM CONSERVATION AND ANOMALOUS

TRANSPORT {,} is the usual canonical Poisson bracket. Note that this form

of j,, does correspond to the intuitive definition that the time
In this section we discuss some interesting and importantate of change of the energy at locatiorwhich should be

connections between momentum conserving lattices angiven by the (neb force ~[V;,1/(0ne1=0n)+ V) 1/(0n

anomalous heat transport in 1D which follow from consider-—0,-1)] times the velocityp,/2m,. More importantly, the

ing Kubo formula and the linear response theory. current densityj, by construction satisfies the continuity
In the absence of an on-site potential, the general Hamilequation

tonian of Eq.(2) becomes

N-1 1 ~Por12=jner = Jn- (21
Huc= 2 | 2= Pa+ ViryGnes = Gn) |, (15 ) o )
n=0 L 2My Since the usual derivation of linear response and Kubo for-

mula are based on threal-space heat currentm):En%mnvﬁ,
wherev,=p,/m, is the velocity ofnth particle, one needs to
rederive carefully the linear response formalism for the lat-
tice current. This has been done in Ref. 22. Now, we wish to
stress that the lattice curreditand the real-space curref

. T . o are only equivalent if the center of mass motion is zero,
depending on the individual coordinates. Thitc is in- precisely as required by the arguments of Refs. 21 and 23. In

variant under translatiorsg, — q,,+b for arbitrary b, and this . 2 ;
: . other words, adding a nonvanishing center-of-mass motion to
spatial translational symmetry corresponds to total momen-

. . L the currentd,,, does not change the lattice currdntStill, as
tum conservation. As before, we consider tfirite) system .
; . s shown in Ref. 22 the Kubo formuld7) does not refer to the
to be defined on a system of length=Na with periodic

boundary condition&y, py) = (do. py), Where the actual par- proper perturbation of the equilibrium state so it does not
ficle positions are _r’]\‘é +T] 0> F0% describe the steady heat current between two heat baths.
n— n:

We may write the Hamiltonian in Eq(15) as Hyc . This rgsult is qw_te interesting and consistent W|th.Fhe
_yN-1 . L . interpretation given in Refs. 21 and 23. The unmodified
=2 ohn+1/2 Wherehy, 1, is the Hamiltonian density

Kubo formula(17), with the curren{19), is the correct one if
P21 p one considers a particular kind of nonequillibrium initial
Pni1/2= am.. T2 +Vii1/2(Gnes = Gn)- (16)  state, namely such with spatially uniform densityor uni-
nrl " form chemical potential This we call theisochoric initial
Our aim is to estimate, the coefficient of thermal con- state, and in such a case we find rigorotftiat
ductivity. Using the standard Kubo formula expression #or

of linear responsésee, e.g., Ref. 40 EJT dK I3y, = t—°¢2T (22)
LJo am’ '

whereV,,1,5(q) is an arbitrary(generally nonlinearinterpar-
ticle interaction and the subscript “MC” stands for momen-
tum conserving. As in Eq(2) the interparticle potential,
Vii12(0ne1—0n), @nd the massesy,, may depend on the site
label n. However, there is nowo on-site potentiallJ°¥q,),

BT
K= T'[‘l 1'21 EJ_T diI()I)g, (17 5o the transport is ballistic.

However, such a state cannot approximatgeady state
then one can show, from very elementary argum%‘htbat of a large piece of the lattice between two heat baths at
k=0 provided the thermodynamic pressupe(i.e., average sligthly different temperatures. In such a physical situation, a
force between an arbitrary pair of particlés nonvanishing. steady state is formed where tpeessureis constant along
Here( ), denotes a canonical phase space average at invertige system and not thiensity Typically, in colder regions of
temperature 8. The approach of Ref. 20 has been the lattice, the density is larger and vice versa. This we call
criticized-* by the claim that the heat current of the Kubo the case ofisobaric initial state. Then, due to nonuniform
formula (17) needs a modification for the case of a systemdensity, a gradient of chemical potential is established as
with Gallilean invariance: Namely, the center of mass motionwell, which drives the heat current in the opposite direction.
should be subtracted from the current, or one should pufo leading order irL, the contributions to the heat current
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due to the temperature and chemical potential gradients cation of quantum mechanical wavethat eventually hit the
cel each other. The difference of the two currents still pro-(hypencorners, edges, etc., either in the finite future or in the
duces the anomalous transport, since it decreasds*as finite past. The simplest singulginfinitely unstablé orbits
This has been demonstrated in a numerical experiment witbf this type are those that contaliti} three particle collisions
high accurac;%2 The modified Kubo formula referring to the or (ii) simultaneous collisions of a pair of particles and one

isobaric situatiorf? reads of the walls.
T Our main goal in studying such physically pathological
k= lim lim EJ dt{(J(1)J) g + HV(1)I) 5}, (23) systems is to gain insight into the extent to which the prop-
T Lo L) 1 erties of exponential instability and metric cha@sich our

bing-bang models do not possgsse necessary to produce

whereV=2yu, is the sum of all particles’ velocities, normal transport(or perhaps anomalous transport with a
Although we have learned that the issue of anomaloug ~. o P P! P ANSP
universal” exponenty if the total momentum is conserved

transport cannot be resolved easily solely only on the baSi?he insights gained in previous studies of models with

of momentum conservation, it is clear from this analysis that . .
the momentum conservation is a key attribute of the prob‘l?;thmo?'ca,l,’la hg“j‘ di wgll £otentla_lj—suchl as. the
lem. It is also interesting to observe that in the case of van, mg-a(; I_ngt_f_ art1_ f'n%'] ong _tprfvcli eoarrlﬁ N T;]Ot'\;]a' g
ishing pressurgb=0 the isochoric and isobaric situations are lon and justilication for the current study. ©n the other hand,

. . . our results on decay of correlatiofand, hence, perhaps on
described by identical Kubo formulds?) and (23). the mixing property of nonhyperbolic(nonchaoti¢ systems

IV. CHAOS AND NORMAL TRANSPORT: with many de_grees of freedom should s.tlmulate development
THE BING-BANG MODEL of new tools in ergodic theory to deal with such systems in a
rigorous way.

The relationship between “chaos” and normal transport  With respect to the global dynamical proerties we define
has been the subject of considerable interest, and it has eveo subclasses of bing-bang models.

been claimelithat chaos is both necessary and sufficient the (i) Pseudo-integrable bing-bang (PIBB) models in
existence of normal transport. We have already shown thaghich the masses of all particles are eq(sat to unity m,
there exist models that exhibit both chaotic behavior and-1. The pseudo-integrability of the model is easy to under-
anomalous transport, so chaos is clearly not sufficient foktand as follows. Upon interaction with interparticle potential
normal transport. In this section, we establish the perhapg(q,,,—q,) (interparticle collisions the particlesn and n
more surprising result that chaos is also netessaryfor  +1 just exchange their momenta/velocities, and upon inter-
normal transport. We demonstrate this result using numericalction with the on-site potentidl(q,) (collisions with a
studies of a 1D lattice model which, while exhibiting no static hard wall the momentum/velocity of the particiejust
chaos at all in the strict mathematical sense, nonetheless exhanges sign. Therefore, the dynamics in momentum space
hibits normal conductivity. acts as a discrete grouig,)Nx Sy, and any symmetric func-
We call the particular class of many-body 1D classicaltion of the squares of momentép?, ... ,p3) is an invariant
lattices we study in this section tiidng-bangmodels. As we  of motion. In fact,N independent analytic invariants of mo-
shall see, they are manifestly nonchaotic in the sense of havron |k can be Systematica”y eva|uated; they are the Symmet-

ing Lyapunov exponents that are almost everywhere vanisttic homogeneous polynomials @pﬁ};
ing, but they are are also nonintegrable. The bing-bang mod-

els have infinite hard wall forms for both theterparticle | :i 2 = 3
potentials\V'P(qg), and the on-site potentiald®Y(q). If we fix 1 = P 12
the units such that the average lattice spacing is equal to
unity, a=1, then the generdhomogenousbing-bang model
would depend, apart from the massag on a triple of pa-
rametersh,c,d € R* which determine the potentials via k
0, —1<q=<b, = > Hpﬁl- (25

Vip - 24 Isn<...<nesL I=1
@ {oo, otherwise, 29 " b

Papa,

lsn<m<L

Therefore, any orbit of a PIBB model lies on an invariant
0, -csg=d, surface of dimensiolN in 2N-dimensional phase space, and
the system isiot ergodicon the entire energy surface. How-
ever, the invariant surface is not a simpletorus as in the
In fact, for a lattice ofN particles, the bing-bang model can case of a completely integrable system, but is an object of
be identified with the motion of a point billiard particle in- (vastly) increasingly complex topology & increases.
side anN-dimensional polytope. Since the boundary consists  This is precisely the defining property of pseudo-
solely of (N-1)-dim. flat hyperplanes—i.e., <¢q,<b,-c  integrable systems: namely, that there should exist a suffi-
<(1—-9,<d—(almos} any orbit is marginally stable, i.e., cient number of independent conservation laws for integra-
parabolic with zero asymptotic Lyapunov exponent. How- bility but that the topology of invariant surfaces is more
ever, there is an infinite sébf vanishing Lebesgue measure complicated than that di-dimensional tori. This can only
in the full phase spageof very unstable orbitéwhich may  happen in the cases with singularities in the system: for in-
also be called “diffractive” since they would produce diffrac- stance, planar billiards in the shape of a polygon with angles

UXa) ={

o, otherwise.
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that are rational multiples of are the most commonly stud- 10
ied class of(two-dimensional pseudo-integrable systerffs.

In the case of our PIBB models, the dimensionality of
the phase spacd\2can be arbitrarily large and increasihg
brings in new aspects and questions on dynamics that to th
best of our awareness have not yet been considered in th,, &

1]
literature. S
Our analysis below suggests that the topology of invari- § .

ant surfaces can become arbitrarily complex as one ap:
proaches the thermodynamic limht— « and that then such
invariant surfaces can more and more densely and uniformly o
cover the entire energy surface, so that at the end, statistice
mechanics cannot distinguish the system from a truly ergodic
(and mixing one. We suggestbut cannot provethat the 0
topological genus of the invariant surfaces in our PIBB lat-

tices increases faster than any powerNofSince it is not
essential to our current discussion, we shall leave the rigoIFIG. 3. Typical trajectories of the individual particles in a MC—PIBB model
ous characterization of topology of invariant surfaces ofwith constant unit masses and size9. The ordinate shows particle posi-

P . : ; ions [x,(t)] where for clarity the odah particle trajectories are plotted with
hlgh dimensional PIBB models as a very interesting Operiull lines while the evem trajectories are dashed. The wallsxat0 andx

math'gmaticallpro.blem. =10 act as thermal baths at temperatirel.
(ii) Ergodic bing-bang (EBB) models. We have good

heuristic argument&and strong numerical evidenc® sup-

port the conjecture that the generic bing-bang model withperiodic boundary conditions whefé+1=1. The thermal
different massem, (which should be generic, perhaps satis-bath is realized as a walsee, e.g., Ref. 43vhich works in
fying some irrationality conditionsis ergodig since it cor-  the following way: when the edge partidieith label 1 orN)
responds to the motion insidé-dimensional polyhedral bil- hits the reservoir, it collides inelastically so that the new
liard. For example, it is rigorously known in the momentum(being independent from the old oni given
mathematical literaturésee, e.g., Ref. 41 for a recent review, with the probability distribution

and references thergithat the set of ergodic polygonal bil- 2

liards (N=2) is (at leas} a dense set in the set of all polygo- dP/dpy o PynexpL= P/ (2My T R)]- (26)

nal billiards with a fixed number of vertices. It seems fairly The velocity (momentum prefactor takes into account the
obvious that the same result should apfgyen more likely  fact that the faster particles collide with the wall more often
in higher dimension&l> 2. An even stronger result has been than the slow ones, so that the resulting velo¢ityomen-
suggested recently:, namely that the generic polygonal biltum) distribution of the near-bath particles is indeed canoni-
liard in the plane(e.g., triangular billiard with all angles cal Maxwellian(Gaussian

having irrational ratio with ) is truly a mixing dynamical Typical trajectories of the individual particles are shown

system and therefore exhibits fast decay to statistical equilibin Fig. 3 for the MC—-PIBB model and in Fig. 4 for the
rium from (almosi any initial state*

With respect to the key issue of total momentum conser-
vation, we will study bothmomentum conserving bing-bang 10
models(MC-PIBB or MC-EBB which are characterized by
c,d=e (or saying that U°=0); and momentum non-
conserving bing-bang mode(®NC—-PIBB or MNC-EBB,
for which translational invariance is broken and generally at
least one of parametecrsd is finite. 8

positions

A. Momentum conserving bing-bang models

In this subsection we study two variants of momentum-
conserving bing-bang models, one pseudo-integradie— 2
PIBB) and one ergodi€MC—EBB). Although they both be-
have as anomalous heat conductors, in accordance with th
theorem proved in Sec. Il, we study both in order to show the
subtle but important differences that are a consequence o
qualitatively different positions in theergodic hierarchy
(pseudo-integrability versus ergodidity FIG. 4. Typical trajectory of a MC-EBB model with mass ratig/m,

In our numerical simulations we will study eithéj an =0.382 and sizd.=9. As in Fig. 3, the ordinate shws particle positions

. . [x,(t)] where for clarity the oda particle trajectories are plotted with full
open bing-bang lattice _petween tWO.thermal baths at.temITnes while the evem trajectories are dashed. The wallsxat0 andx=10
peraturesT; and Tg, or (ii) a closed bing-bang lattice with act as thermal baths at temperatiire1.
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FIG. 5. Scaling of temperature profiléeemperature vs/N for different FIG. 6. Scaling of temperature profilgeemperature v/N for different
system sizedN) in a MC—PIBB model with thermal baths at temperatures system sized\) in a MC-EBB model with mass ration,/m;=0.382. All
T.=0.5,Tg=1.0. The triple of steep curves refers to a system with symmet-other parameters are the same as in Fig. 5. Note that here a nonvanishing
ric interparicle potentiab=1.0 (so_that the pressure vanishewhile the  temperature gradient is established even in the nonsymmetrichcea®

triple of horizontal curvesat T=VT Tg, SO zero temperature gradient over with nonvanishing pressure.

the bulk of the chainrefers tob=2.5 (and a nonvanishing pressire

. . . . pressure, establishes a “nonflé&hd nonlineartemperature
MC-EBB model, in order to give a reader an |mpre55|onproﬁ|e_

about the complex geometry of the orbits in bing-bang mod- From our general theorem of Sec. II, we know that all
els despite their manifest nonchaoticity. In both cases, MC+hese momentum conserving bing-bang models should ex-
PIBB and MC-EBB, the models are put between two heahjpit anomalous conductivity. Using our extensive data on
reservoirs at the same temperatlije=Tg=T=1. In the fol-  |54ices of different sizes, we can confirm this by calculating
lowing we will present results of numerical simulations of for each of the models the dependence of the thermal con-
heat conduction in a nonequillibrium stationary state with theductivity «(L) on the sizeL of the system. To account for the
bath temperature$, =1 andTg=2. We measure the average onserved nonlinearity in the temperature gradients across the
heat fluxJ(L) through the system as the function of the sizeqysiom we have determined “average” temperature gradients
L(=N, sincea=1) and the kinetic temperature profile VT with least squares linear fit of temperature profiles in the
2 range n=N/4...3N/4. Since the temperature profiles are
T = @ scaling (27), any other choice would just redefine by a
2m, constant factofindependent of the size). In Fig. 7 we plot
k(L) for both lattices(MC—PIBB and MC-EBB and find
significant agreement with the intermediate power-law be-
bavior

First, we observe that temperature profile is typically a non
linear function(non-constan¥T), although it has a scaling
propery: namely, the local temperature for a given system i
only a function of the scaled coordinatéN and reservoir
temperatures

100_ | . e i
Tn = 'T(n/N,TL, TR) . (27) 1 A

In Figs. 5 and 6, we show the sets of rescaled temperaturt
profiles (for different lattice sizesfor the two models, MC—
PIBB, and MC—-EBB, respectively. However, note that in the 1 Xxfr
light of the theorem of the previous section, it may be also= ] Pr
important to distinguish the cases, (0f the symmetric inter- < xd‘
particle potential with zero pressuf®=1,4=0), and (ii)
nonsymmetric case with nonvanishing pressubet1,¢
#0). We find that for both model$MC—-PIBB and MC- e m2/mi1=0.382  +
EBB), at zero pressuré=0, b=1, a nonflat but also nonlin- P 2 SNG40 e
ear temperature profile is established. However, for nonvan- 10 47 3.00 LY(0.39) -
ishing pressurep=2.5, the MC-PIBB model exhibits a )P S

vanishing temperature gradient, which is consistent with 100 1000
completely ballistic transpofbehavior similar to that found L

for the integrable models whereas the MC—EBB model, rg. 7. The finite-size thermal conductivitfL) vs sizeL for the MC—EBB
which is “more ergodic,” even in the case of nonvanishing(m,/m;=0.382p=1) and MC—PIBB(m,/m;=1,b=1) models.
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0.4 B L

k(L) o LO4, (28) L-512 ——
This result is in agreement with the existing results on non- 1% flgg N
integrable, momentum-conserving lattices in  the R slope=-0.78 -~

literaturé™***81%3%and provides further support for the con-
jecture that there may be some form of universality present 17
in these model$**® Clearly this is an important question ]
worthy of further study.

Our numerical data also permit us to study two other Vv
major issues related to the anomalous conductivity and more
generally to the applicability of the concepts of statistical
mechanics to these systems. First, we can examine the cor 0.1 4
sistency of the above(L), which we have determined by ]
studying numerically a nonequilibrium steady state, with the
behavior ofx as determined by applying the Kubo formula
to a large but finite system. To perform this consistency (a) t
check, we have computed the temporal current—current auto
correlation function,C(t)=(J()J)4/L, and spatiotemporal . e ——
current—current  autocorrelation  function, S(x=m, t) L=128 -
=(jm(1)jo(0))g. The homogeneity in space and time imply 1 N slope=-0.60
that all the averages are invariant under the space and tim 0
shifts, (Fn(t))5=(Fo(0))4, so the temporal correlation func-
tion can be writen as the spatial integral of the spatiotempor-o
tal one 5

Jit)>/L

A
=
v
N-1

C(t) = > Sm). (29)
m=0

We assume that the tails of the current—current autocorrela 13
tion function are mainly governed by the acoustic sound
wave propagation which moves ballistically with a group
sound velocitycg=dx/dt. This will be clearly revealed for (b) 1 ;
the models studied here by inspecting the full spatiotemporal
correlationS(x, t) later. 5 e
In order to describe(L) for a finite sistem of sizé& by =128 ----—--
the conventional Kubo formula, we need to integi@te) up
to a finite time ty~t, =L/csxL, since for the ultimate
asymptotic result, the thermodynamic linhit— has to be
taken prior to the time,— oo limit. Therefore, divergence of
k(L)L? is consistent with a slow power-law decay of
current—current autocorrelation function

<J(t)J>/L

C(t) = 1), (30) TS SR

In Fig. 8 we show temporal correlation functioft) 14 o
for three different modelsia) for MC—PIBB with vanishing
pressure(b=1); (b) for MC-EBB with vanishing pressure
(b=1); and (c) for MC-EBB with nonvanishing pressure J C ""'10 T ""1'00 T "'1"000
(b=2.5. Only the casdb) is clearly consistent with the de- (c) t
cay C(t) «t"%69whereas for the cad@) (MC—PIBB) the de-
cay of correlations seems to be slightly fas@(t)~t%78
(although the power may approach 0.60Nas> ), and the
bumps where the sound-wave collides with its symmetric
C0p3l/< abflter trgr;sverr]smg the hl\ileI Olfzg:; s_y;,tem are. qr:'!lte Irel-:IG. 8. The current—current temporal autocorrelation functitJ) 4/ L (at
markable an Ort_ e cqs_ec)( - wit _nonvan's ing temperatureT=1) for: (a) the pseudointegrablém,/m;=1) momentum-
pressurg we obtain a finite plateau fdZ(t), in accordance conserving bing-bang model with periodic boundary conditions and vanish-
with our theorem of Sec. Il. ing pressurep=1.0; (b) the ergodic momentum-conserving bing-bang lat-

From these results we conclude that the finite-size relalice (M/m.=0.382 with vanishing pressureh=1.0; and(c) the ergodic
. e momentum-conserving lattice with nonvanishing presga.5. In each
tion (30) appears to break down when eitiigrthe pressure

; P . ) i case, three different system sizes are shown. Note that the dotted lic)e in
is nonvanishing of(ii) the autonomous dynamics is noner- indicates the lower bound from the theorem from Sec. II.
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FIG. 9. The spatiotemporal correlation functigm,t)=(j(t)jo(0))4 for the same three cases as in Fig. 8. Note the apparent ballistic propagation. Regions
between contours of equidistantly spaced bakmgarithm InS(x=m,t) are shaded with 20 different and uniformly increasing levels of greyness in the range
[-10,0].

godic (pseudo-integrable or even integrableowever, it ap- Icg
pears to hold if the pressure is vanishing and the dynamicsis "~ oL’
ergodic, and of course even more so if dynamics is ergodic

and chaofic, as demonstrated by Refs. 18 and 19. We belieye, , \ e excite the long wavelength acoustic eigenmodes by
that our results indicate that EBB models are mixing as wellg; 16 thermal excitation of the reservoirs? We explore this
aIthough' |'F is very difficult to m'ake any precise statements, ,astion in Fig. 1() by plotting the total displacemexq, of
about mixing based on numerical results on the decay ofye migdle particlgiin units of unit mean particle spacings
time correlations of just one or the few observables, like,—n/2 of 2 MC—EBB chain of sizé\=400 which is simply
C. N put between the heat reservoirs at unit temperalyreTg

Further insight into the nature of the anomalous conduc=1 \we observe a nearly periodic signal with a frequency
tivity comes from studying the full spatiotemporal correla- ;, =0 0204, corresponding to a very clear and pronounced
tion functionS(x,t). In Fig. 9 we showS(x,t) for the same  gominant excitation of the longest wave-length mogé. In
three cases studied in Fig. 8. Note the clear tongues of bajhe remainder of Fig. 10, we plot the power spectra of the
listic propagation inS(x,t), from which we can easily com- sjgnal, [G.|2(w) and [Gy4(w)|? for the four different cases
pute the sound velocitgs. For the earlier three cases the of [see Figs. 1M)—10e)]: (b) a MC—-EBB chain with van-
observed sound velocity iga) cs=1.75, (b) c;~1.67, and  jshing pressuréb=1), (c) a MC—-EBB chain with nonvanish-
(c) cg=1.63. In addition to the ballistic component, we alsoijng pressureb=2), (d) a MC—PIBB chain with vanishing
observe in all three cases a quite pronounced diffusive compressurgb=1), and(e) a MC—PIBB chain with nonvanish-
ponent ofS(x,t) which is the central enhancemef@round  ing pressuréb=2). In all these cases we observe a dominant
x=0) inside a band whose width spreads diffusivelyxag  excitation of the longest wavelength mdgel and also clear
ot but weaker excitations of higher eigenmodkes 1) with in-

The interpretation of these ballistic modes is clarified byteger multiple frequencies =Iv,, whose power is a rapidly
the following simple but instructive observation and numeri-decreasing function of. The basic acoustic frequencies of
cal experiment. Since there is no on-site potential in our MGhe four cases ardb) 277v,=0.0128,(c) 27v,;=0.0116,(d)
models, they behave macroscopically like a liquid or a gas27v,=0.0135, and(e) 27»,=0.0116, from which we can
When such a systeitfor a large size_=N) is confined be- independently calculate the sound velocitigs:c,=1.63,(c)
tween hard walls or between heat reservoirs, we expect it to;=1.48, (d) c;=1.72, and(e) c,=1.48. Casedd) and (b)
exhibit standing acoustic waves whose frequencies can bexactly correspondexcept for thedifferentboundary condi-
computed directly from the side and the speed of soursd.  tions) to casega) and(b) of Figs. 8 and 9, respectively, and
Since the displacements of the particles must vanish at thedeed the agreement of the sound velocities is very good.
reservoir walls, we also know the appropriate boundary conAnother interesting observation, which we believe is in fact
ditions. Thus we should find the same eigenfrequencies abe physical essence of the “proviso” in our theorem of Sec.
for the acoustic “flute” closed at both ends 1, is that the power spectra of the “acoustic” signals of mod-

1=1,2,3.... (31)
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FIG. 10. Thermal excitation of acoustic modéa) the time dependence of the displacemayit) of the particle in the middlen=L/2 of the diatomic
(m,/m;=0.382 p=1.0) bing-bang lattice of siz& =400 between thermal reservoirs in equilibrid =Tg=1); (b) the power spectrum of the same sigfal
n=L/2, full curve) and for the displacements at the one-quarter of the dimaih/4, dashed curyedotted vertical lines denote integer multiples of the basic
acoustic frequency(c) the same plot as ith) but for the MC—-EBB withb=2 (nonvanishing pressure(d) the same plot as ith) but for the MC-PIBB with
b=1 (vanishing pressujeand (e) the same plot as itb) but for the MC—PIBB withb=2 (nonvanishing pressure

els with non-vanishing pressure show a pdak in Fig. lisions) with the reservoirs. Therefore, the velocity
10(c)], or at least relatively large powéas in Fig. 10d)], at  distribution at the siten inside the PIBB chain is equal to a
zero frequency, whereas models with vanishing pressurnear combination of two Maxwellians with temperatuiigs
have practically vanishing power at zero frequency. In otheandTg, the coefficients being just the probabilities that given
words: the zero-frequency mode, which is a rigid displacevelocity has been injected from the left/right. Strictly speak-
ment of all particlegat least in a large local domain, since a ing, for this argumeﬁf to be completely justified, we must
global rigid displacement is prohibited by the boundary con-assume that the diffusion rate of fixed velocit{es “veloci-
ditions), can support energy transport only if the pressure igons”) is (at least to some good approximatiandependent
nonvanishing. of the actual value of the velocity. This is indeed the case, for
Let us turn now to the second general issue related to thexample, if we assume completely uncorrelated random
anomalous conductivity and more generally to the applicawalks for the individual velocities—velocitons. But this as-
bility of the concepts of statistical mechanics to these syssumption may be really justified only for strongly chaotic
tems: namely, is the nonequilibrium state in which we studysystems, like the Lorentz gé%‘,4gwhereas for Pl systems we
the heat transport a state lafcal thermal equilibriu® To  can consider it just as a qualitative argument that suggests
study the question of the existence of local thermal equilibthe absence of local thermal equilibrium.
rium in both PIBB and EBB models in the nonequilibrium The results of studying the moments of the local velocity
stationary state witlT  =1,Tg=2, we analyze the velocity/ distributions in the MC-EBB and MC-PIBB models are
momentum distribution across the system and compare it tshown in Fig. 11. The reader should observe very convincing
the ideal Maxwellian local thermal equilibrium for the MC—EBB model, while for
2 MC-PIBB model we have notable deviations, as anticipated
dP/dp, = exfd - py/(2m,Ty)]. by the qualitative argument presented earlier.
To simplify this comparison, we factor out the local tempera-

ture by comparing the normalized higher moments B. Momentum nonconserving bing-bang models
<pﬁm> The two 1D bing-bang models studied in the previous
Mam(n) = (pA™ (32 subsection exhibited both translation invariaticementum
n conservatioh and the absence of metric chaos. Hence, the
with the Gaussian valugd35'°=(2m-1)!1. result that they also exhibited anomalous transport is not

That we cannot expect to find local thermal equilibrium surprising, given previous results and discussion of Sec. Il.
in a pseudo-integrabld”l) model is shown by the following Nonetheless, our numerics were useful in establishing that
argument"f4 the momenta of particles in the pseudo-the anomalous transport can be viewed as arising from the
integrable lattice cannot change due to interacticcwli- sound-wave ballistic tongues in spatiotemporal current—
siong with other particles but only due to interactiof@I|-  current autocorelation functio(x,t). Further, our simula-
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FIG. 11. Moments of the velocity distributiortd ,(m)=(pa) s/ (Pa)5 for
n=4, 6, and 8 for two different momentum conserving bing-bang lattices of
size L=3200 with T, =0.5, Tg=1.0. The results for the EBB modélith

FIG. 12. A typical trajectory of MNC—-PIBB chaifL=9). As in Fig. 3, the
ordinate shows particle positiofis,(t)] where for clarity the odah particle

_ S . P trajectories are plotted with full lines while the eventrajectories are
m,/m;=0.382, plotted as solid linggre essentially indistinguishable from dashed. The walls at=0 andx=10 act as thermal baths at temperaflire
those of the Gaussian modéll,,=(2n—-1)!!], plotted as dotted lingsshow- -1 ’ B B P

ing that local thermal equilibrium is established in the MC-EBB model, ~ "

whereas the results for the MC—PIBB modeashed linesdeviate substan-

tially from the Gaussian model, showing that local thermal equilibrium is o ) o

not established, as anticipated by the heuristic argument presented in tHéire profile is established, as shown in Fig. 13, except for the

text. edge particlesi=1 andn=N, which are in contact with the
reservoirs. At the reservoirs, we observe a strong drop in
temperature arising from manner in which the particles are
tions also established results—perhaps somewhat surprisingpupled to the heat bath: in particular, fast particles are more
given the complete absence of metric chaos in the bing-bankkely than slow ones to collide again with the reservoirs
models—thati) instead of behaving like integrable systems,before they “transmit” their velocity to the rest of the chain.
the momentum-conserving bing-bang models exhibited thépart from this effect, which can be essentially avoided by
same scaling ok(L) as the generic nonintegrable, and evendefining “renormalized reservoirs” which include of@ a
strongly chaotic, models like the FPU lattice; a@l that in ~ few) particles near to the reservoir, the transport in the
the MC—EBB model, local thermal equilibrium is establishedMNC-PIBB is completelynormat a linear thermal gradient
in the conducting stationary steady state. Taken together witi$ established and(L) is independent of. And this normal
previous resultgfor instance, those on the FPU sysieimat  transport behavior occurs despite the fact that the autono-
chaos is not sufficient to produce normal conductivity, ourmous MNC-PIBB system has no metric chaos and is not
new results show that the relationship between metric chaogven ergodic! We should note, however, that due to pseudo-
(positive Lyapunov exponents, positive Kolmogorov—Sinaiintegrability of MNC—-PIBB, local thermal equilibrium is not
entropy and “statistical mechanical” behavior—including
normal transport, local thermal equilibrium, it etc.—is per- , , , ,

haps less direct than previously anticipated. 104 L=282 —— |
In this subsection, by studying a momentum non- Letat ;

conserving bing-bang model, we further weaken the link be- 1.1 - L=36 -

tween metric chaos and normal statistical behavior by estab 0.5 +0.5(x/L) —--

lishing numerically that a model in which metric chaos is 17

absent(in the strict sensenonetheless exhibits normal con-

ductivity: that is, we show by &numerical counterexample
that chaos is alsoot necessaryor normal conductivity.

For simplicity and clarity, we focus on a single momen-
tum non-conserving bing-bang model—the “the less er- 0.7 4
godic” pseudo-integrable chaiiMNC—PIBB) chain—which '
is defined by the relation@4) with b=c=d=1, andm,=1. 06 +
Physically, this corresponds to a chain of equal mass point

0.8

particles that collide elastically and are each subject to a 0.5 0

hard-wall, confining on-site potential. A typical trajectory of ' oL

such a model of with nine particlébl=9) is depicted in Fig.

12. FIG. 13. The scaling ofinear temperature profiles] vs x/L, for MNC—

. . PIBB chain for different sizek. The dashed-dotted straight line is drawn to
When the MNC-PIBB lattice is placed between heatyige the eye. The temperatures of stochastic heat bath are andTx

baths, with temperaturé,=1 andT,=2, a linear tempera- =2.
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FIG. 14. Convergence of the thermal conductivity.) to its L-independent
asymptotic value for the MNC—PIBB model. In the simulatiofisz1, and +
Tr=2.

40

established in nonequilibrium heat-flow simulation. Instead,
the local velocity distribution has been found to be a linear
combination of two Maxwellians at different temperatures.

In Fig. 14 we show the convergence @&fL) to its
L-independent asymptotic value; the figure shows that the
convergence has occurred already for lattice sizesl00.

We have done conducted three additional numerical ex-
periments to confirm and clarify the normal heat transport in
this MNC-PIBB model. First, in Fig. 15, we show the mag-
nitude of current-current autocorrelation  function
[(3(t)J) 6|/ L for MNC—PIBB lattices of several different sizes =5 3 35 = =5
N. We observe a rapitperhaps exponentiainitial decay of x
the _correlat|on$over t.hr.ee decadgand afterwards a slower, FIG. 16. The spatiotemporal correlation functism, )= (in(0jo(0)) for
oscillatory decay(so it integrates out anthopefully) does the same parameters as in previous Fig. 15 and using the same graphical
not produce a divergence in the Kubo formula even if itSpresentation as in Fig. 9. Note the apparent diffusive propagation. The su-
envelope may not decay exponentially perimosed full curve i$=0.09¢.

Second, and perhaps more conclusive, is the behavior
observed for the spatiotemporal correlation functix, t)
of the MNC-PIBB model, which we show in Fig. 16. In tongues here but instead a clearly diffusive pattern emerges.
contrast to the behavior observed in the systems with anoma- Third, we can study the behavior of the imaginary test
lous heat conductivitysee Fig. 9, there areno ballistic ~ particles(velocitiong that carry constartfixed) velocity and

which can be clearly defined due to pseudo-integrability of
the many-body model: When the velocities v,,,1 of a pair
: : : : : . : of particlesn andn+1 are exchanged due to the collision, the

] Liléi ....... velociton hopgby definition from siten to siten+1, or vice
1 exp(_t'75322)‘ - I versa. Choosing the velociton initially to be at the sit¢

=0)=n,, clearly determines the evolutiarit) is for all times.

If the overall motion of the velociton is diffusive, this pro-

- vides an indication of the diffusivgdnorma) nature of
energy/heat transport in the system. We start by placing a
velociton of velocityvy somewhere in a large MNC-PIBB
lattice (with periodic boundary conditionsand with a ca-
nonically thermalized “background,” i.e., the momenta of all
other particles are distributed according to a Gaussian dis-
tributiuon. We then simulate the dynamics, and ask whether
C the velociton undergoes a normal diffusive proccess(tlf

* labels the real particle that carries a velogiyat timet, then

we check for the linear growth

[n(t) - n(0)]%=D(vo)t. (33
FIG. 15. The magnitude of the current autocorrelation funckiaft)J)l/L . 2 , .
(at temperaturél=1) for the MNC-PIBB model with periodic boundary In Fig. 17 we show([n(t)-n(0)] >,8 as a function of time, for

conditions for different system sizes. both an intermediate velocitony=1 (the background tem-

0.1 -

RSN TS

0.01 4

0.001 o
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: : : large and if initial condition of on the momentp) has been
v=1,can.backg. ------- . “ ; »
1200 slope=1.31 —— [ chosen with a “canonical measure” for each compommnt
v=10,can.backg. -------- (which is the case with probability 1 in thermodynamic limit
slope=6.32 —— . . . . .
1000 + v=1,m.c.backg. = B then it seems plausible that the dynamics of a single orbit of
slope=0.55 —— the PIBB system on its invariant surface can uniformly cover
v=10,m.c.backg. -—-~ . .
4 8004 slope=117 —— [ the phase-spaces of small subsystems of Nize N with a
EO: canonical measure, just as is the case for a truly ergodic
© 600 covering system. Obviously, these observations require con-
=t siderable further mathematical study to be convincing, but
V. 400 1 we feel that they are well justified as conjectures.
| 7 We close this subsection with one final calculation. Since
200 - the MNC-PIBB model is equivalent to(aultidimensiona)l
i billiard model, we can in this case actually derive the depen-
0 ==y T T T T dence ofx(T) on thetemperatureby a simple scaling analy-

0 100 200 300 400 500 600

X sis, either from Kubo formula, or, more directly, from the

definition k=—j/ VT. The heat current is proportional to the
FIG. 17. Diffusion of velocitons in MNC—PIBB lattice. We show root- average particle energy, i.e (wherev is a typical veloc-
mean-square displacements vs time for velocitons witi andv=10, in ity), times the inverse of the typical time in which a particle

either canonically thermalized background with temperalt#d or in mi-  — geattars with its neighbors and transfers energy: this time is
crocanonically thermalized backgroutall background particles have equal

unit velocities but random signs and initial positipnull lines give the ~ roughly a_/y, Wh_erea is the lattice spacing. Thereforg,
slopes of best linear fits which support the existence of normal diffusion. ~ v for billiard-like models. On the other hand, the tempera-

ture gradientVT=T,,,- T, scales as-v?, so thatkxv, or

perature isST=1) and a fast velocitomy=10. We find normal «(T) ~ \8T. (34
diffusion in both cases, although the diffusion coefficientThe factor of\8 is an approximation obtained from our nu-
D(vo) is obviously an increasing function of velocity. In merical simulations, but the scaling with temperaturexact
Fig. 17 we also study velocitons in a “microcanonically ther-since it is a simple consequence of scaling dynamics of bil-
malized background,” by which we mean that momentaliards. The above result is meaningful, of course, only in the
velocities of the real particles all have values @iith equal  close-to-equilibrium situation where typicéverage tem-
probability of both signs Remarkably, even in this case we perature has a well-defined value Bf
find normal diffusive proccesses for both intermediate and
fast velocitons. V. SUMMARY AND DISCUSSION
We believe all these results provide conclusive numeri-"
cal confirmation of normal diffusive heat transport in the A. Summary
MNC-PIBB lattice, which is neither ergodic nor chaotic but . . . .
. . The analyses, analytic and numerical, described in the
only pseudo-integrable. This strongly supports the result that . 4 .
. : previous sections, have established a several results concern-
metric chaos is not nesseccary to have normal transport | ; .
. : . . ing normal and anomalous heat transport in classical 1D lat-
This result seems quite surprising and indeed paradoxi-

cal, but we believe that the resolution of the seeming paradogéces' We have adduced convincing numerical evidence and

. 22 . . .
lies in the complexity of theN-dimensional invariant sur- several theoretical argume?ﬂsz o justify the claim that

faces in the MNC—PIBB model: namely, these surfaces bet-Otal momentum c-onservatlon Is _sufficient fpr anomglogs
heat transport provided the average pressure is nonvanishing.
eI'here seem to be momentum-conserving models that have

: ) T . > normal conductivity®*® but these models cannot sustain
while dynamics on the invariant surface is probably mixing : : . :
pressure, consistent with heuristic arguments that in such a

(decay of time correlations of arbitrary observapleghich
S . case, the Goldstone modes cannot carry energy.

means that any phase-space distribution function on . .
. , : - S . We have also presented numerical results that convinc-
invariant-surface relaxes into statistical equilibrium. Thus, in. S

o . ' ingly support two other claims:
the thermodynamic limilN— oo, the macroscopic properties
of the dynamics of this complex pseudo-integrable system total momentum conservation it necessary for anoma-
cannot really be distinguished from those of a truly chaotic lous heat transport, as shown by the counterexamples of
system. For example, as we saw in the beginning of this the linearoptical chain and the nonlinear integrable IK-SG
section, the sets of modula of momenta of PIBB lattices are model; and
preserved under time evolution. Hence, the invariant surface metric chaos, defined in the usual sense of having a set of
can be written as a direct producﬁCS‘x Sy) X [-1,b]N, nonzero measure in phase space in which there are positive
WhereCQXSN is the group of all possible permutatioSg Lyapunov exponents and positive Kolmogorov—Sinai en-
and sign exchange<, on a set of initial momenta  tropy, is neither sufficient (as shown by the anomalous
(pP1,P2, ---,pn) and really represents the discrete momentum behavior of the FPU and diatomic Toda modeisr nec-
part of an invariant surface which consists of'N2 essary (as shown by the momentum non-conerving
N-dimensional configurational sheefts1,b]N. When N is pseudo-integrable bing-banMNC-PIBB) mode) for

energy surface as the thermodynamic ligie., asN— ),
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normal(diffusive) heat transport. Furthermore, even ergod-« What happens when systems are drivemlinearly away
icity is not necessary for normal transport, as shown by our from equilibrium? What are the corrections to Kubo
studies of MNC—PIBB models. From our analysis it fol- formula?

lows that perhaps even multidimensional pseudo-

integrability is sufficient, provided the topology of invari- Knowledgeable colleagues, many of whom have contrib-
ant surfaces becomes sufficiently complex inuted to this Focus Issue @fthaoson the Fermi—Pasta—Ulam
thermodynamic limit. problem, can doubtless add still further questions. There is

still much to be found in exploring the rich trove of physi-
As is often the case, these results raise at least as mawmglly relevant and mathematically challenging problems that
questions as they answer, so we phrase the remainder of oias been uncovered in seeking to explain FPU’s remarkable
discussion in terms of several questions. little discovery.1
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