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Abstract

A new model for computer simulation of solids, composed of bonded particles,
is proposed. Vectors rigidly connected with particles are used for description of
deformation of a single bond. The expression for potential energy of the bond
and corresponding expressions for forces and moments are proposed. Formulas,
connecting parameters of the model with longitudinal, shear, bending and tor-
sional stiffnesses of the bond, are derived. It is shown that the model allows
to describe any values of the bond stiffnesses exactly. Two different calibration
procedures depending on bond length/thickness ratio are proposed. It is shown
that parameters of model can be chosen so that under small deformations the
bond is equivalent to either Bernoulli-Euler or Timoshenko rod or short cylinder
connecting particles. Simple expressions, connecting parameters of V-model with
geometrical and mechanical characteristics of the bond, are derived. Computer
simulation of dynamical buckling of the straight discrete rod and half-spherical
shell is carried out.

Keywords: bond, discrete element method, distinct element method, DEM,
particle dynamics, molecular dynamics, granular matter, discrete rod, discrete
shell.

1 Introduction

Discrete (or Distinct) Element Method (DEM) [1] is widely used for computer simula-
tion of solid and free-flowing materials. Similarly to classical molecular dynamics [2, 3],
in the framework of DEM the material is represented by the set of many interacting
rigid body particles (granules). Equations of particles motion are solved numerically.
In free-flowing materials the particles interact via contact forces, dry and viscous fric-
tion forces, electrostatic forces etc. Simulation of solids requires additional interpar-
ticle interactions, allowing to describe stability, elasticity, strength and other intrinsic
properties that distinguish solids from free-flowing materials. In practice for simula-
tion of granular solids particles are connected by so-called bonds [4, 5], transmitting
both forces and moments. Moments are especially important for simulation of thin
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structures [6]. The bonds can be considered either as a model of interaction between
different parts of one material, represented by the particles, or a model of some addi-
tional material, connecting particles (for example, glue [4] or cement [7]). According
to the review, presented in paper [5], only several models, proposed in literature, al-
lows to describe all possible deformations of the bond (stretching/compression, shear,
bending, and torsion). Bonded-particle model (BPM), proposed in paper [4], is widely
used for simulation of deformation and fracture of solids, in particular, rocks [8, 9, 10]
and agglomerates [11]. Simulation of diametrical compression of circular particle com-
pounds is considered in paper [8]. Compression of spherical and cubic specimens is
investigated in paper [9]. Fluid-rock interaction is considered in paper [10]. Impact
of a granule with a rigid wall is considered in paper [11]. Several drawbacks of BPM,
in particular, in the case of coexistence of bending and torsion of the bond, are dis-
cussed in paper [5]. It is noted that the main reason for the drawbacks is incremental
algorithm, used in the framework of BPM. Also is should be noted that BPM con-
tains only two independent parameters, describing bond stiffnesses, while, in general,
the bond has four independent stiffnesses (longitudinal, shear, bending and torsional).
Timoshenko rod connecting particles’ centers is used as a model of a bond in paper [6].
The model has clear physical meaning and is applicable for thin, long bonds under
small deformations. However it has low accuracy for the description of short bonds,
connecting particles’ surfaces. For example, the model [6] is not accurate in the case
of glued particles. Also the generalization of the model for the case of large nonlinear
deformations of the bond is not straightforward. Another approach, based on decom-
position of relative rotation of particles, is proposed in paper [5]. Forces and moments
are represented as functions of angles, describing relative turn of the particles. It is
shown that method [5] is more accurate form computational point of view than incre-
mental procedure of BPM. Though the formalism proposed in paper [5] is correct from
mathematical point of view, it has a drawback. It is evident from the paper that if
particles rotate in the same direction and there is no relative translation, then forces
and moments are equal to zero. The reason is that in the paper it is assumed that
forces and moments depend only on relative position and orientation of the particles,
while, in general, the dependence on the orientation of the particles with respect to
the bond should also be taken into account.

In the present paper forces and moments, caused by the bond, are derived from
the potential energy. This approach is used in classical molecular dynamics for both
material points [2] and rigid bodies [3]. The approach for construction of potential
energy of interactions between rigid bodies is proposed in paper [12]. Initially it was
applied to simulation of molecular liquids [3]. In papers [13, 14] similar ideas are ap-
plied to crystalline solids. In particular, analytical description of elastic properties of
graphene is carried out in paper [14]. Potentials for modeling of nonlinear interactions
between rigid bodies in two and three dimensional cases are proposed, for example, in
papers [15, 16] and [17]. In the present paper similar ideas are used for development of
simple vector-based model (further referenced to as V-model) of elastic bonds in solids.
Combination of approaches, proposed in works [13, 18] and [3, 12], is used. Equations
describing interactions between two rigid bodies in the general case are summarized.
General expression for potential energy of the bond is represented via vectors rigidly
connected with bonded particles. The vectors are used for description of different types
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of bond’s deformation. The expression for potential energy corresponding to tension/-
compression, shear, bending and torsion of the bond is proposed. Forces and moments
acting between particles are derived from the potential energy. Two approaches for
calibration of V-model parameters for bonds with different length/thickness ratios are
presented. Simple analytical formulas connecting geometrical and elastic characteris-
tics of the bond with parameters of V-model are derived. Main aspects of numerical
implementation of the model are discussed. Two numerical examples are given.

2 Pair interactions between rigid bodies: the gen-

eral case

Let us consider the approach for description of pair potential interactions between rigid
bodies in the general case [3, 12, 14, 18]. In literature the formalism is referenced to
as moment interactions [14, 17]. In the present paper moment interactions are applied
for description of elastic bonds between particles in solids.

Consider a system consisting of two interacting rigid body particles, marked by
indexes i and j. In the general case particles interact via forces and moments depending
on their relative position, relative orientation, and orientation with respect to the vector
connecting the particles. Let us introduce the following designations: Fij, Mij are force
and moment acting on particle i from particle j. Moment Mij is calculated with respect
to center of mass of particle i. In paper [14] it is shown that Fij, Mij satisfy Newton’s
Third law, its analog for moments, and equation of energy balance:

Fij = −Fji, Mij + Mji − rij × Fij = 0, U̇ij = Fij · ṙij −Mij · ωi −Mji · ωj,
(1)

where rij
def
= rj − ri; ri, rj are radius vectors of particles i and j; ωi,ωj are angular

velocities; Uij is internal energy of the system.
Assume that interactions between particles are potential and internal energy Uij de-

pends on particles’ relative position, relative orientation, and orientation with respect
to rij. Relative position of the particles can be described by vector rij. Therefore Uij

should be a function of rij. In order to introduce the dependence of Uij on particles’
orientation the approach, initially proposed for liquids in paper [12] and applied for
solids in paper [17], is used. Let us describe the orientation of particle i via the set
of vectors {nk

i }k∈Λi
, rigidly connected with the particle, where Λi is a set of indexes.

Hereinafter lower index corresponds to particle’s number, upper index corresponds to
vector’s number. Maximum amount of vectors is not limited and does not influence
the general considerations. Since orientation of the particles is determined by vec-
tors {nk

i }k∈Λi
, {nm

j }m∈Λj
, it follows that internal energy has form

Uij = U(rij, {nk
i }k∈Λi

, {nm
j }m∈Λj

). (2)

Let us derive the relation between forces, moments and potential energy Uij. Substi-
tuting formula (2) into equation of energy balance (1) and assuming that forces Fij

and moments Mij are independent on linear and angular velocities of the particles, one
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can show that

Fij = −Fji =
∂U

∂rij
, Mij =

∑
k∈Λi

∂U

∂nk
i

× nk
i , Mji =

∑
m∈Λj

∂U

∂nm
j

× nm
j . (3)

If internal energy (2) is known, then forces and moments are calculated using formu-
las (3). Note that function U must satisfy material objectivity principle, i.e. must
be invariant with respect to rigid body rotation. If objectivity principle is satisfied,
then forces and moments, calculated using formulas (3), satisfy Newton’s Third law for
moments automatically. Therefore U must be a function of some invariant arguments.
For instance, the following invariant values can be used: rij, eij · nk

i , eji · nm
j ,n

k
i · nm

j ,

|eij ×nk
i |, |nk

i ×nm
j |, etc., where eij

def
= rij/rij, k ∈ Λi,m ∈ Λj. In practice the first four

expressions from the list are sufficient as the remaining invariants can be represented
via their combination. These expressions has simple geometrical meaning. The first
one is a distance between the particles. The second and the third invariants (eij ·nk

i and
eji ·nm

j ) describe orientation of particles i and j with respect to vector rij. The fourth
invariants nk

i ·nm
j describe relative orientation of the particle. Thus in the general case

the potential of interaction between rigid bodies is represented in the following form

Uij = U(rij, {eij · nk
i }k∈Λi

, {eji · nm
j }m∈Λj

, {nk
i · nm

j }k∈Λi,m∈Λj
). (4)

In general, sets Λi,Λj may contain any number of vectors. However from computational
point of view it is reasonable to minimize this number.

3 Vector-based model of a single bond

Let us use moment interactions for description of elastic deformation of the bond. Note
that, in general, the particle can be bonded with any number of neighbors. However
the behavior of the bonds is assumed to be independent. Therefore for simplicity only
two bonded particles i and j are considered. Assume that the bond connects two
points that belong to the particles. The points lie on the line connecting the particles’
centers in the initial (undeformed) state. For example, the points can coincide with
particles centers. Let us denote distance from the points to particles’ centers of mass
as Ri, Rj respectively (see figure 1). For example, in the case, shown in figure 1, the
points lie on particles’ surfaces and values Ri, Rj coincide with particles’ radii. Let
us introduce orthogonal unit vectors n1

i ,n
2
i ,n

3
i and n1

j ,n
2
j ,n

3
j , rigidly connected with

particles i and j respectively. Lower indexes correspond to particles’ numbers, upper
indexes correspond to vectors’ numbers. Assume that in the undeformed state the
following relations are satisfied:

n1
i = −n1

j = eij, n2
i = n2

j , n3
i = n3

j . (5)

Following the idea, described in the previous paragraph, let us represent the po-

tential energy of the bond as a function of vector Dij
def
= rij + Rjn

1
j − Rin

1
i and

vectors nk
i ,n

m
j , k,m = 1, 2, 3. Vector Dij connects the “bonded” points with radius
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Figure 1: Two bonded particles in the undeformed state (left) and deformed state
(right). Here and below a is an equilibrium distance.

vectors ri + Rin
1
i , rj + Rjn

1
j (see figure 1). Let us consider the following form for

potential energy U of the bond:

U = UL (Dij) + UB(n1
i · n1

j ,dij · n1
i ,dji · n1

j) + UT

(
{nk

i · nk
j ,dij · nk

i ,dji · nk
j}k=2,3

)
,

Dij = |Dij|, dij = Dij/Dij.
(6)

Note that potential energy (6) satisfies objectivity principle, i.e it is invariant with
respect to rotation of the system as a rigid body. Let us describe the connection
between functions UL, UB, UT and different kinds of deformation of the bond, shown in
figure 2. Function UL describes stretching/compression, function UB describes bending
and shear of the bond. Arguments dij · n1

i ,dji · n1
j change in the case of bending and

shear. Argument n1
i · n1

j changes only in the case of bending and is invariant with
respect to shear. Function UT changes in the case of both torsion and bending. The

Figure 2: Different kinds of deformation of the bond and corresponding change in
vectors, connected with the particles. Dashed lines show initial state of the particles.

following expressions for functions UL, UB, UT from formula (6) are proposed in the
present paper:

UL(s) =
B1

2
(s− a)2, UB(s1, s2, s3) = −B2

2
s2

1 −
B3

2

(
s2

2 + s2
3

)
,

UT ({s1k, s2k, s3k}k=2,3) = −B4

4

∑
k=2,3

(s1k + s2ks3k)2(1 + s2
2k)(1 + s2

3k),
(7)

where a is an equilibrium length of the bond (see figure 1); Bm,m = 1, .., 4, are
parameters of the model. Functions (7) are the simplest with independent longitudinal,
shear, bending, and torsion stiffnesses (see paragraph 4.1). Note that the number of
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parameters of V-model is equal to the number of bond stiffnesses. Further it is shown
that the behavior of the bond under small deformations can be described exactly by
fitting parameters of the model. For brittle materials, such as rocks [4], it is sufficient
as critical deformations are usually small. On the other hand it is shown below that
V-model has reasonable behavior at finite deformations (see paragraph 6). Thus very
flexible structures can be considered as well. Also V-model can be generalized for
nonlinear case, changing expressions for UL, UB, UT and introducing new parameters
into the potential. The generalization can be important, in particular, for simulation
of polymer bonds [7]. Note that analogous generalization of existing models, such as
BPM [4], is not so straightforward.

Consider formulas (7). While expressions for UL and UB are relatively simple, the
expression for UT is not. Let us describe the idea, underlining function UT , in more

details. Hereinafter denote ñk
i

def
= nk

i −dijdij ·nk
i . Vector ñk

i lies in the plane, orthogonal
to the bond. Evidently vectors ñk

i /|ñk
i |, ñk

j/|ñk
j |, k = 2, 3 change only in the case of

torsion, i.e. rotation around dij. Therefore the potential energy UT , describing torsion
of the bond, can be represented in the form UT ({ñk

i · ñk
j/|ñk

i ||ñk
j |}k=2,3). However this

expression contains singularity in the case |ñk
i | = 0 or |ñk

j | = 0. Though the singularity
corresponds to very large deformations of the bond, it is still not desired. In order to
avoid the singularity the following arguments of function UT are used (see formula (7)
for UT )

(ñk
i ·ñk

j )
2

|ñk
i |2|ñk

j |2
(1− (dij · nk

i )4)(1− (dji · nk
j )4) =

(
nk
i · nk

j + dijdij · ·nk
i n

k
j

)
(1 + (dij · nk

i )2)(1+

+(dji · nk
j )2), k = 2, 3.

(8)
In general, expressions (8) are not invariant with respect to bending as well as UT , given
by formula (7). However further it is shown that in the case of small deformations UT

does not contribute to bending stiffness (see formula (19)).
Using formulas (3) and (7), one can obtain the following formulas for Fij and Mij:

Fij = B1 (Dij − a) dij −
B3

Dij

dij ·
(
n1
i ñ

1
i + n1

j ñ
1
j

)
+

1

Dij

∑
k=2,3

(
∂UT

∂s2k

ñk
i −

∂UT

∂s3k

ñk
j

)
,

Mij = Rin
1
i×Fij−n1

i ·
[
B2n

1
jn

1
j +B3dijdij

]
×n1

i +
∑
k=2,3

(
∂UT

∂s1k

nk
j +

∂UT

∂s2k

dij

)
×nk

i ,

(9)
where ñk

i = nk
i − nk

i · dijdij. The expressions for partial derivatives ∂UT/∂smk,m =
1, 2, 3, k = 2, 3 are the following:

∂U

∂s1k

= −B4

2
(s1k + s2ks3k)(1 + s2

2k)(1 + s2
3k),

∂U

∂s2k

= −B4

2
(s1k + s2ks3k)(1 + s2

3k)(s3k + s1ks2k + 2s3ks
2
2k),

∂U

∂s3k

= −B4

2
(s1k + s2ks3k)(1 + s2

2k)(s2k + s1ks3k + 2s2ks
2
3k), k = 2, 3.

(10)

Thus formulas (9), (10) are used for calculation of forces and moments, required, in
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particular, for computer simulation.

4 Parameters calibration

4.1 Bond stiffnesses

Let us choose parameters of V-model in order to describe elastic properties of the bond
in the case of small deformations exactly. Following the idea, proposed in paper [14],
let us introduce stiffnesses of the bond. Consider the force Fij and moment

M
def
= Mij −

(
Rin

1
i + Dij/2

)
× Fij, (11)

calculated with respect to the center of the bond, defined by vector ri +Rin
1
i + Dij/2.

According to the results of paper [14], under small deformations Fij and M can be
represented in the following form

Fij = A ·
(

uj − ui − (Riϕi +Rjϕj)× dij +
1

2
Dij × (ϕi + ϕj)

)
,

M = G · (ϕj −ϕi),

(12)

where A, G are stiffness tensors; ui, ϕi are displacement and vector of small turn of
particle i. In paper [14] it is shown that in the case of transversally symmetrical bonds,
considered in the present paper, the stiffness tensors have form

A = cAdijdij + cD(E− dijdij), G = cB(E− dijdij) + cTdijdij, (13)

where E is a unit tensor. The values cA, cD, cB, cT are further referenced to as longitudi-
nal, shear, bending, and torsional stiffness respectively. One can see from formulas (12),
(13) that the stiffnesses completely determine the behavior of the bond in the case of
small deformations.

Let us derive the relations between parameters of potential (7) and bond stiffnesses.
First consider the expression (9) for force Fij in the case of pure tension:

Fij = B1 (Dij − a) eij = B1 (|rij −Ri −Rj| − a) eij. (14)

Therefore according to formula (12) longitudinal stiffness of the bond cA is equal to B1.
Let us determine the relation between shear stiffness cD and parameter B3. Consider
the following deformation of the bond. Assume that position of particle i is fixed and
particle j has a displacement ujk, where k is orthogonal to the line connecting particles
in the undeformed state. Orientations of both particles are fixed. In this case the first
formula from (12) has form

Fij · k = cDuj. (15)

Let us expand the expression (9) for Fij into series, assuming that |uj/a| � 1 and
neglecting the second order terms. In this case the projection of Fij on vector k has
form (15). Omitting the derivation let us present the final expression for cD:

cD =
2B3

a2
. (16)
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Let us obtain analogous relation for bending stiffness of the bond cB. Assume that
vector Dij remains fixed in the equilibrium state, while the particles are rotated by
vectors of small turn ϕi,ϕj. In this case vectors nk

i ,n
m
j in the current (deformed)

configuration can be calculated as follows

nk
i ≈ nk

i (0) + ϕi × nk
i (0), nk

j ≈ nk
j (0) + ϕj × nk

j (0), k = 1, 2, 3. (17)

Here zero denotes initial configuration, for example, n1
i (0) = −n1

j(0) = eij(0). This
deformation corresponds to bending of the bond. Substituting (9), (17) into (11) and
leaving the first order terms only, one obtains:

M ≈
[(

B3

2
+B2

)
(E− dijdij) +B4dijdij

]
·(ϕj −ϕi), (18)

The expressions for bending stiffness cB and torsion stiffness cT follows from the com-
parison of formula (18) with the second formula from (12). As a result the following
simple formulas connect parameters of V-model and bond stiffnesses:

cA = B1, cD =
2B3

a2
, cB =

B3

2
+B2, cT = B4. (19)

It follows from formulas (19) that choosing parameters Bm,m = 1, .., 4 one can fit any
values of the stiffnesses. Therefore linear elastic behavior of the bond can be described
exactly. Note that no assumptions about bond’s length/thickness ratio are made.

Thus if stiffnesses of the bond are known, then calculation of V-model parameters
is straightforward. In principle, the stiffnesses can be measured, performing the experi-
ments on tension, shear, bending and torsion for the system of two bonded particles. In
this case formulas (19) are sufficient for calibration. However if the body, for example,
agglomerate, contains many bonds with different geometrical characteristics, then ex-
perimental calibration is practically impossible. Therefore additional model connecting
the stiffnesses with geometrical and physical characteristics of the bond, such as bond
length, shape, cross section area, elastic moduli of bonding material, etc., is required.
Evidently the behavior of the bond strongly depends on bond’s length/thickness ra-
tio. Therefore models used for calculation of the stiffnesses should be different for the
different ratios. Two procedures for long and short bonds are proposed below.

4.2 Calibration for long bonds: Bernoulli-Euler and Timo-
shenko rod theories

Assume that bonds are relatively long (length/thickness ratio is larger than unity). In
this case elastic rod, connecting particles, can be used as bond model. Comparison of
V-model with the results of rod theory is used as a theoretical basis for calibration.
Bernoulli-Euler and Timoshemko rod models are considered [20]. Note that in contrast
to paper [6], in the framework of V-model the bonds, connecting, for example, particle
surfaces can be considered. This fact is important for simulation of solids, composed
of glued particles, for example, ceramic-polymer composites [7].

Let us derive the relation between parameters of V-model and massless Bernoulli-
Euler rod connecting particles (the rod connects points with radius-vectors ri + Rin

1
i

8



and rj +Rjn
1
j). Assume that the rod has equilibrium length a, constant cross section,

and isotropic bending stiffness. The expressions for longitudinal, shear, bending and
torsional stiffnesses of Bernoulli-Euler rod are obtained in paper [19]:

cA =
EA

a
, cD =

12EJ

a3
, cB =

EJ

a
, cT =

GJp
a
, (20)

where E,G,A, J, Jp are Young’s modulus, shear modulus, cross section area, moment
of inertia, and polar moment of inertia of the cross section respectively. For example,
for the rod with circular cross section

J =
πd4

b

64
, Jp = 2J, A =

πd2
b

4
, (21)

where db is a diameter of the rod. Using formulas (19) and (20) one obtains the
expressions, connecting parameters of the potential with characteristics of the rod

B1 =
EA

a
, B2 = −2EJ

a
, B3 = −3B2, B4 =

GJp
a
. (22)

Formula (22) can be used for calibration of parameters of the potential (7) in the
case of long bonds. If parameters are determined by formula (22), then under small
deformations V-model is equivalent to Bernoulli-Euler rod connecting particles. Note

that in this case values B̃m
def
= Bma,m = 1, .., 4, do not depend on the equilibrium

bond length a. Therefore B̃m are the same for bonds with different length, but equal
cross section and elastic properties. Using this fact one can reduce the number of
parameters, stored in RAM, in computer simulation of systems with bonds of different
length.

Bernoulli-Euler model provides simple theoretical basis for calibration. However
if length and thickness of the bond are comparable, then Bernoulli-Euler model is no
longer applicable [20]. In this case more accurate models are required. Calibration
using Timoshenko model [20] is described below.

Consider Timoshenko rod of length a and constant cross section with spherical
inertia tensor. Let us derive the expressions, connecting parameters of the rod with
its stiffnesses. Longitudinal and torsional stiffnesses are determined by formulas (20),
i.e. cA = EA/a, cT = GJp/a. Without loss of generality the derivation of expressions
for shear and bending stiffnesses is carried out in two dimensional case. Consider
pure shear of the rod. Corresponding system of equilibrium equations and boundary
conditions for the rod has form [20]:

w′′(s)− θ′(s) = 0, θ′′(s) +
kA

2J(1 + ν)
(w′(s)− θ(s)) = 0, (23)

w(0) = 0, θ(0) = 0, w(a) = uj, θ(a) = 0, (24)

where ν is Poisson’s ratio of material of the bond; w(s) and θ(s) are deflection and
angle of turn for the cross section with coordinate s; k is dimensionless shear coef-
ficient [20]. In general shear coefficient k depends on the shape of the cross section
and length/thickness ratio for the rod. Usually k is obtained comparing the results of
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rod theory with predictions of elasticity theory. Shear coefficients for rods with differ-
ent cross sections are derived in paper [21]. For example, the following expression is
proposed for the rods with circular cross section:

k =
6(1 + ν)2

7 + 12ν + 4ν2
. (25)

On the other hand k can be considered as additional fitting parameter. Solving the
system of partial differential equations (23) with boundary conditions (24) one obtains
an expression for absolute value of the shear force Q, acting in the rod and shear
stiffness:

Q = kGA(w′ − θ) = cDuj, cD =
12kAEJ

a(kAa2 + 24J(1 + ν))
. (26)

Let us consider bending of the rod under the following boundary conditions

w(0) = 0, θ(0) = ϕi, w(a) = 0, θ(a) = ϕj. (27)

Solving system of equations (23) with boundary conditions (27) and calculating the
moment M , acting in the middle of the rod, one obtains

M = EJθ′
(a

2

)
=
EJ

a
(ϕj − ϕi) . (28)

Formula (28) gives the expression for bending stiffness of the bond. Thus the stiffnesses
of Timoshenko rod has form:

cA =
EA

a
, cD =

12kAEJ

a(kAa2 + 24J(1 + ν))
, cB =

EJ

a
, cT =

GJp
a
. (29)

Finally using formulas (29) one obtains the relation between parameters of V-model
and Timoshenko rod:

B1 =
EA

a
, B2 = −2EJ(kAa2 − 12J(1 + ν))

a(kAa2 + 24J(1 + ν))
, B3 =

6kAEJa

kAa2 + 24J(1 + ν)
, B4 =

GJp
a
.

(30)
Note that in the limit k → ∞ formulas (30) exactly coincides with analogous for-
mulas (22), obtained using Bernoulli-Euler rod theory. If formula (30) is used for
the calibration, then for small deformation V-model is equivalent to Timoshenko rod
connecting particles.

4.3 Calibration for short bonds

Generally speaking the approach described above is applicable for relatively long and
thin bonds with length/thickness ratio larger than unity. In the case of short bonds
the models, based on elasticity theory, should be used for calibration. Let us consider
simple qualitative bond model, based on elasticity theory. Assume that particles are
connected by a short cylinder with equilibrium length a as it is shown in figure 3. Note
that in general parameters Ri, Rj are not equal to particles’ radii (the particles can
even be in contact with each other). Let us derive the relations between parameters
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Figure 3: Particles connected by a short cylinder.

of the bond and its stiffnesses. Longitudinal stiffness cA is, by the definition, the
proportionality coefficient between force and elongation of the bond. In the case of
tension the force Fij is created by the normal stresses σ, acting in the bond. The
following relations are satisfied:

Fij · eij =

∫
(A)

σdA, (31)

In the case of short bond, rigidly attached to the particles, the strain state of the
bond is approximately uniaxial with the strain equal to (uj − ui)/a, where ui, uj are
particles’ displacements. Then the stresses can be represented using Hooke’s law σ ≈
(λ + 2µ)(uj − ui)/a, where λ, µ are Lame coefficients for the bond. Substituting this
formula into equation (31) one obtains

Fij · eij =
(λ+ 2µ)A

a
(uj − ui) =

(1− ν)EA

(1 + ν)(1− 2ν)a
(uj − ui), (32)

Therefore longitudinal stiffness of the bond has form:

cA =
(1− ν)

(1 + ν)(1− 2ν)

EA

a
. (33)

One can see that longitudinal stiffness (33) differs from the first formula from (29) by
a factor of (1 − ν)/((1 + ν)(1 − 2ν)). Note that for nearly incompressible bonding
materials the difference is crucial.

Let us derive the expression for shear stiffness cD. Consider pure shear of the bond.
Assume that position of particle i is fixed and particle j has a displacement ujk, where k
is orthogonal to the line connecting particles in the undeformed state. Orientations of
both particles are fixed. In this case the force Fij is caused by shear stresses τ acting
inside the bond. Integrating the stresses over the cross section let us represent Fij · k
in the following form

Fij · k =

∫
(A)

τdA, (34)

Assume that the stress distribution over the cross section is uniform and τ ≈ Guj/a.
Substituting this formula into formula (34) and comparing the result with formula (15)
one obtains the expression for shear stiffness:

cD =
GA

a
. (35)
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One can see that the expression for shear stiffness (35) and the second formula from (29),
derived using Timoshenko rod theory, are qualitatively different. However it is notable
that the formulas coincides in the limit of vanishing length/thickness ratio, if shear
coefficient k = 1. Analogous derivations for bending and torsional stiffnesses of the
bond lead to the following results:

cB =
(1− ν)

(1 + ν)(1− 2ν)

EJ

a
, cT =

GJp
a
. (36)

Finally using formulas (19), (36) one obtains expressions, connecting the parameters
of V-model with bond characteristics:

B1 =
(1− ν)EA

(1 + ν)(1− 2ν)a
, B2 = G

[
2(1− ν)

1− 2ν

J

a
− Aa

4

]
, B3 =

GAa

2
, B4 =

GJp
a
.

(37)
Thus in the case of short bonds formulas (37) can be used for calibration of V-model.

5 On numerical implementation of V-model

Let us describe the numerical procedure for simulation of solids using V-model (7).
Consider the system of N particles, connected by bonds. Other types of interactions
are not considered in the present paragraph. The system of motion equations has
classical form:

mir̈i =
∑
j 6=i

Fij, Θiω̇i =
∑
j 6=i

Mij, (38)

where mi,Θi are mass and moment of inertia of the particle (for simplicity it is assumed
that all particles have spherical inertia tensor). If particles i and j are bonded, then
force Fij and moment Mij, caused by the bond, are calculated using formulae (9).
Otherwise they are equal to zero. The system (38) is solved in couple with kinematic
equations, connecting linear and angular velocities with positions and orientations of
the particles. For example, let us determine the turn of particle i from initial orientation
to current one by rotational tensor Pi. Then kinematic formulas have form:

ṙi = vi, Ṗi = ωi ×Pi. (39)

Numerical integration of equations (38), (39) gives current positions and orientations
of the particles at every time step.

As it was discussed above calculation of forces and moments between particles i
and j require introduction of vectors nk

i ,n
k
j , k = 1, 2, 3. The vectors are introduced

according to formula (5) at moment t∗, when the bond is created, and rotate with the
particle. Consider the simplest way for calculation of their current coordinates. Let us
introduce the basis, consisting of orthogonal unit vectors xm

i ,m = 1, 2, 3, rotating with
particle i. Then current orientation of vectors xm

i is determined as follows

xm
i (t) = Pi(t) · xm

i (0). (40)

Let us use coordinates of vectors nk
i , k = 1, 2, 3 in the comoving basis xm

i ,m = 1, 2, 3 for
calculation of current orientation of the vectors nk

i , k = 1, 2, 3. Then at each time step
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vectors xm
i ,m = 1, 2, 3 are rotated using equation (40) and vectors nk

i are determined
using their coordinates nk

i · xm
i ,m, k = 1, 2, 3, stored in RAM:

nk
i =

3∑
m=1

(
nk
i · xm

i

)
xm
i . (41)

Note that nk
i · xm

i , k,m = 1, 2, 3 does not depend on time and therefore can be calcu-
lated only at t = t∗. The described procedure allows to avoid rotation of all vectors,
connected with the particle, using equation (40). Note that if bonds are created at
different moments of time, then application of equation (40) is not straightforward.

Consider calculation of forces and moments caused by the bonds. At every time
step one should go over all the bonds and calculate corresponding forces and moments.
Therefore in computer code, written in object-oriented programming language, it is
convenient to introduce a class “Bond”. In general, the element of this class contains
the following parameters: pointers to bonded particles, initial length of the bond a, pa-
rameters Bm,m = 1, .., 4, and coordinates of vectors nk

i ,n
k
j , k = 1, 2, 3 in the comoving

coordinate systems. For storage of the bonds it is also convenient to introduce a class
for bond list. For example, in C++ language it can be implemented using std::map.

Thus the algorithm for computer simulation using V-model is the following. At
every time step:
1) Create new bonds if required. Calculate parameters of the bonds. Add created
bonds to the list.
2) Check if the particles are bonded using list of the bonds. For each pair of bonded
particles: get bond parameters, calculate current vectors nk

i ,n
k
j , k = 1, 2, 3 and length

of the bond Dij.
3) Calculate forces and moments between the particles using (9).
4) Calculate linear and angular velocities at the next time step.
5) Calculate positions and orientations of the particles, coordinates for vectors xm

i , k =
1, 2, 3 at the next time step.

6 Examples

In general using V-model one can simulate mechanical behavior of any solid consisting
of (or represented by) bonded particles. However the most challenging problem for all
bond models is computer simulation of one layer thin structures, such as discrete rods
and shells (see figure 4, 6). In order to describe the behavior of the structures ade-
quately bonds should transmit both forces and moments and have, generally speaking,
independent longitudinal, shear, bending, and torsional stiffnesses. Therefore computer
simulation of discrete rods and shells is considered below.

For simplicity assume that all particles have the same mass m and radius R. The
bonds connect particles’ centers and have circular cross section with diameter db.
Bernoulli-Euler model is used for the calibration. Let us represent all values via three
dimensional parameters: equilibrium bond length a2, particle mass m and longitudinal

2In the case of discrete shell considered below the bonds have different lengths. In this case a is
some characteristic length, for example, average bond length.
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stiffness of the bond cA. In computer code these parameters can be set equal to unity.
Then all other parameters can be represented via a,m, cA and dimensionless values. In
particular, the following dimensionless parameters are used:

Ea

cA
=

4

π

(
a

db

)2

,
A

a2
=
π

4

(
db
a

)2

,
J

a4
=

π

64

(
db
a

)4

,
B1

cA
= 1,

B2

cAa2
= −1

8

(
db
a

)2

,

B3

cAa2
=

3

8

(
db
a

)2

,
B4

cAa2
=

1

16(1 + ν)

(
db
a

)2

.

(42)
One can see that the dimensionless parameters of the bond depends only on Poisson’s
ratio ν and the ratio db/a.

6.1 Quasistatical and dynamical buckling of a discrete rod

Consider initially straight discrete rod, directed along x-axis and consisting of n bonded
particles. Assume that the bonds connect particles’ centers. First let us simulate qua-
sistatical buckling of the rod under compression using the following procedure. Initial
velocities of the particles are randomly distributed in the circle with radius v0. Initial
angular velocities are set to zero. Every T∗ time units the uniform deformation ε∗ is
applied to the discrete rod. After every deformation equations of particles motion (38)
are integrated using leap-frog algorithm [3]. Translational degrees of freedom of the
ends of the discrete rod remain fixed. The procedure is repeated until buckling. Dur-
ing the simulation compressive force acting in the rod is calculated and averaged with
period T∗. The following values of the parameters are used:

n = 10,
R

a
= 0.4,

Θ

ma2
= 64 · 10−3,

v0

v∗
= 10−6,

∆t

T0

= 10−2,
db
a

= 0.2,

ν = 0.2,
B1

cA
= 1,

B2

cAa2
= −5 · 10−3,

B3

cAa2
= 15 · 10−3,

B4

cAa2
= 2.08 · 10−3,

ε∗ = −10−7,
T∗
T0

= 10,

(43)
where Θ is particle’s moment of inertia; ∆t is a time step; T0 = 2π

√
m/cA is a period

of small vibrations of one particle on the spring with stiffness cA; v∗ = a
√
cA/m is a

velocity of long waves in one-dimensional chain, composed of particles with mass m,
connected by springs with stiffness cA. As a result the following value of critical com-
pressive force is obtained: f/(cAa) = 3.19 · 10−4. The resulting value is only 4% higher
than static Euler critical force fE/(cAa) = π2EJ/(cAa

3) = 3.05 · 10−4. Note that in
the framework of Bernoulli-Euler model the critical force depends on length and bend-
ing stiffness of the rod. Therefore bending stiffness of the discrete rod, composed of
particles, within 4% accuracy coincides with bending stiffness of Bernoulli-Euler rod.

Consider dynamical buckling of the same discrete rod. In addition to V-model
linear viscous forces proportional to particles velocities are introduces. Denote viscosity
coefficient as b. Initial velocities of the particles are randomly distributed inside the
sphere with radius v0. In order to simplify visualization of the results z-components

14



of the velocities for all particles are set to zero3. Initial angular velocities are equal to
zero. Let the ends of the rod move toward each other with constant velocities ve until
the distance between the ends becomes equal to a (see figure 4, t/T0 = 1559). Then x-
components of the velocities of the rod ends are released and y-, z- components remain
equal to zero. The following values of dimensionless parameters are used in addition to
parameters (43): ve/v∗ = 10−3, b/b0 = 26 · 10−4, where b0 = 2

√
mcA is a critical value

of friction for two particle system. The motion of the discrete rod is shown in figure 4.
One can see buckling and post-buckling behavior of the discrete rod. At time t/T0 = 33

Figure 4: Dynamical buckling of the discrete rod. Numbers in the figure are corre-
sponding moments of time. Particle radii equal 0.5a are used for visualization.

shape of the discrete rod corresponds to the third buckling mode of Bernoulli-Euler
rod. The excitation of high instability mode is typical for fast dynamical buckling. At
the moment t/T0 = 1559 x-components of velocities of the rod ends are released and
the rod performs strongly nonlinear free vibrations, converging to its initial straight
configuration (t/T0 > 1845). Therefore there is no plastic deformations.

Thus V-model allows to simulate large elastic deformations of discrete rods includ-
ing large displacements and rotations of the particles. In the case of small deformations
considered above the behavior of the discrete rod is in a good agreement with Bernoulli-
Euler rod theory.

3Otherwise the buckling is performed in in several planes and the visualization is not so straight-
forward.
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6.2 Discrete half-spherical shell under the action of point force

Consider dynamical buckling of discrete half-spherical shell under the action of constant
point force, acting on the shell along the axis of central symmetry. First let us generate
relatively uniform distribution of particles on the half-sphere. Note that this problem
is identical to mesh generation problem in the framework of, for example, finite element
method (FEM). FEM packages usually use geometrical methods of mesh generation,
such as triangulation. Here in stead of using geometry-based methods let us propose
particle-based approach. First the circle with radius Rc of the half-sphere is created.
The number of particles lying on the circle is calculated as the nearest integer value
to 2π/a. This particles are uniformly distributed on the circle and remain fixed during
creation of the initial configuration. The other particles are generated randomly on
the half-sphere. The restriction that particles can not be closer than 0.4a to each other
is used. Note that in this case a is a length scale of the problem. In general it is not
equal to equilibrium bond length. The resulting random distribution of the particles
is shown in figure 5 (left). Then the dynamics of translational motion of the particles
interacting via repulsive force Fr

ij only is simulated. The forces are calculated according
to the following formula:

Fr
ij = −f0

(
a

rij

)8

rij. (44)

The restriction ri = Rc is applied during the simulation. The following values of the
parameters are used for the simulation:

n = 458, ns = 15 · 103,
v0

v∗
= 0,

∆t

T0

= 10−2,
acut
a

= 2.1,
f0

cA
= 10−2,

b

b0

= 26 · 10−5.

(45)

where acut is a cutoff radius; ns is a number of time steps. The initial and final distri-
butions of the particles are shown in figure 5. One can see that resulting distribution

Figure 5: The initial (left) and final (right) distributions of the particles on the half-
sphere. Bottom view. Particle radius R/a = 1/8 is used for the visualization.

of the particles is much more uniform than the initial one.
After creation of the initial configuration the nearest particles are bonded. For

the sake of simplicity it is assumed that bonds connect particles centers. Equilibrium
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length for each bond is set equal to the distance between corresponding bonded par-
ticles. Therefore there is no residual stresses in the initial state of the discrete shell.
Also it is assumed that parameters of V-model Bm are the same for all bonds. Dy-
namical buckling of the shell under the action of constant point force of magnitude fs
is considered. The force is applied along the axis of central symmetry of the shell until
the complete buckling. In the given example the force vanishes at t/T0 = 3000. Com-
ponents of displacements of the boundary particles along the symmetry axis are set to
zero. In order to avoid self-penetration of the shell contact Hertz forces FH

ij between
particles i, j are introduced. The forces are calculated using formula

FH
ij =

{
− cH√

a
(2R− rij)

3
2 eij, rij < 2R

0, rij ≥ 2R
(46)

where cH is a contact stiffness of the particle. Particle radius R is chosen so that 2R is
smaller than the minimum distance between particles in the initial configuration. The
following values of the parameters are used for the simulation:

n = 458,
R

a
= 0.35,

Θ

ma2
= 49 · 10−3,

v0

v∗
= 10−6,

∆t

T0

= 10−2,
b

b0

= 26 · 10−4,

db
a

= 0.2, ν = 0.2,
cH
cA

= 1,
B1

cA
= 1,

B2

cAa2
= −5 · 10−3,

B3

cAa2
= 15 · 10−3,

B4

cAa2
= 2.08 · 10−3,

fs
cAa

= 10−2.

(47)
The results of the simulation are shown in figure 6. Buckling and post-buckling behavior
of the shell are presented. In the places, where the shell folds, the bonds undergo
extremely large turns and deformation. For example, large deformations occur at
moment t/T0 = 2680 (see figure 6). However large deformations do not lead to any
instability or other unphysical behavior of V-model. Thus one can conclude that V-
model is applicable for computer simulation of discrete shells under large displacements,
turns, and deformations.

7 Results and discussions

In the present paper a new model for elastic bonds in solids is proposed. Vectors
rigidly connected with particles are used for description of bond deformation. The
expression for potential energy of the bond as a function of the vectors is proposed.
The expressions for forces and moments acting between bonded particles are obtained
using potential energy function. This approach guarantees that the forces and moments
caused by the bond are conservative and the bond is perfectly elastic. Dissipative terms
can also be added if required. Expressions connecting parameters of the V-model with
longitudinal, shear, bending and torsional stiffnesses of the bond are derived in the case
of small deformations. It is shown that appropriate choice of the parameters allows
to describe any values of all the bond stiffnesses exactly. Two different calibration
procedures depending on bond length/thickness ratio are proposed. In the case of rod-
like bonds the comparison with Bernoulli-Euler and Timoshenko rod theories is used

17



Figure 6: Buckling of the discrete half-spherical shell under point force load.

for calibration. It is shown that parameters of V-model can be chosen so that under
small deformations the bond is equivalent to either Bernoulli-Euler or Timoshenko rod
connecting particles. Note that in the framework of V-model the bond may connect any
two points belonging to the particles and lying on the line connecting particle centers
in the initial state (in particular, particles centers or points lying on the surfaces).
The model for calibration in the case of short bonds is proposed. In all the cases
simple expressions, connecting parameters of V-model with geometrical and mechanical
characteristics of the bond, are derived. Two examples of computer simulations using
V-model are given. The most challenging structures, notably one layer thin discrete
rods and shells, are considered. Computer simulations of dynamical buckling of the
straight discrete rod and half-spherical shell are carried out. It is shown that V-model
is applicable for description of large elastic deformations of solids composed of bonded
particles.

Simulation of fracture is not considered in the present paper. However V-model
allows to formulate fracture criteria for the bond. For example, the criterion, proposed
in paper [4], can be directly implemented in the framework of V-model.

The authors are deeply grateful to Michael Wolff, Sergiy Antonyuk, Igor Berinskiy,
William Hoover, and Anton Krivtsov for useful discussions and motivation for this
work.
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