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Abstract

Ultrasonic percussive drilling with diamond-coated tools has been extensively studied under laboratory
conditions on rocks such as sandstone, limestone, granite and basalt, in order to investigate the
applicability of this technique to downhole drilling. An experimental set-up, a programme of work and
example results are presented. The studies showed that an introduction of high-frequency axial vibration
significantly enhances drilling rates compared to the traditional rotary type method. It has been found out
that the material removal rate (MRR) as a function of static load has at least one maximum. Looking at the
time histories of the measured drilling force, strong nonlinear effects have been observed, which were
explained using simple nonlinear models. Among them, pure impact and impact with dry friction oscillators
were used to provide an insight into the complex dynamics of ultrasonic percussive drilling. It is postulated
that the main mechanism of the MRR enhancement is associated with high amplitudes of forces generated
by impacts. Novel procedures for calculating MRR are proposed, explaining an experimentally observed
fall of MRR at higher static loads.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

The harsh conditions of a downhole drilling process, its cost, and environmental issues put
severe demands on the effectiveness and reliability of the drilling method. As a consequence, every
increase in cutting rates and decrease in tool wear breakage is very welcome. Previous experiments
carried out at the University of Aberdeen [1–3] have established the advantages of rotary high-
frequency drilling for high-speed, high-precision machining of glasses, ceramics and composites.
Recently, some preliminary studies have been conducted on hard rocks [3]. In particular, high
material removal rates (MRRs) are achieved with substantial reduction of drilling forces when
compared either with conventional grinding or conventional ultrasonic machining (USM). The
approach is related to percussive drilling; however, the forcing frequency is much higher and there
is a better force control. Therefore, in this paper, it is proposed to implement the already well-
developed understanding of USM to downhole drilling. This work was conducted to ascertain the
extent to which an introduction of high-frequency (ultrasonic) loading can improve drilling rates
and reduce drilling forces, in particular, the weight on the drill bit for drilling hard rocks such as
sandstone, granite and basalt [3,4].
In precision manufacturing, one of the most promising methods for drilling in hard materials is

USM. In its more common form, this involves the removal of material by the abrading action of
grit-loaded liquid slurry circulating between the workpiece and a tool vibrating perpendicular to
the workface at a frequency above the audible range (see Fig. 1). Typically, a high-frequency
power source activates a stack of magneto-strictive or piezo-electric material, which produces a
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Fig. 1. Schematic of conventional USM; 1—magneto-strictive transducer, 2—coupling cone, 3—tool, 4—abrasive

slurry, 5—workpiece, 6—fixture, 7 —pump, 8—tank.
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Fig. 2. Schematic of rotary USM; 1—piezo-electric element, 2—transducer assembly, 3—coupler, 4—diamond-coated

or -impregnated tool, 5—workpiece, 6—fixture, 7—pump, 8—tank, 9—cutting fluid.
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low-amplitude vibration of the toolholder. This motion is transmitted under light pressure to the
slurry, which abrades the workpiece into a conjugate image of the tool form. A constant flow of
slurry is necessary to carry away the chips from the workface. A variation of USM is the addition
of ultrasonic vibration to a rotating tool, usually a diamond-plated drill (see Fig. 2). Rotary
ultrasonic machining (RUM) substantially increases the drilling efficiency. A piezo-electric
element (1) built into the rotating head provides the necessary vibration. The natural frequency of
the transducer assembly (2) and coupler is tuned to the forcing frequency; so, ideally, the tip of a
tool (4) should be at an anti-node point of the displacement. During the process, a cutting fluid (9)
is supplied to cool the tool and remove debris from the workpiece (5).
As can be easily deduced, there is a strong analogy between ultrasonic drilling and downhole

drilling of hard rocks, which can be used to enhance the efficiency of the downhole drilling.
Therefore, the main aim of this paper is to investigate the mechanism governing the relationship
between the MRRs for a selection of rocks, and various drilling parameters which can effect the
process. The results from the experimental studies will form the basis for the mathematical
modelling undertaken in latter sections, which is aimed to:
1.
 establish structurally simple but phenomenologically comprehensive models of the dynamic
interactions that occurred in the ultrasonic drilling of hard rocks;
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2.
 formulate theoretical basis to describe the ultrasonic drilling process in terms of the MRR and
forces generated during the cutting action.

2. Experimental studies

2.1. Previous work

In conventional USM, abrasive grains suspended in the slurry are supplied to the gap between
an ultrasonic vibrating tool and a workpiece. Under feed pressure and aided by the abrasives, the
tool hammers its way into the workpiece and makes a hole. When the hole becomes deeper,
ensuring a supply of abrasive to the working gap is difficult and the MRR is normally reduced.
This problem was overcome by the introduction of rotary ultrasonic machining with diamond-
impregnated/coated tools. These were developed in the early 1960s by UKAEA, Harwell in
England. Some years later, quite similar methods were studied by Russians, e.g. Markov [5–7] and
Petrukha [8], but details of the methods were not revealed. Kubota et al. [9] provided some basic
concepts of the process using the experimental approach to the problem. Their experiments were
carried out with three configurations; i.e. a glass plate drilled by a stationary ultrasonic tool with a
rotary table, a glass rod turned by a lathe with an ultrasonic transducer on the carriage and a glass
plate drilled by a rotating transducer head. They established the influences of grain size, amplitude
of vibration rotational speed and feed pressure on the MRR. Similarly, Komaraiah et al. [10]
conducted experiments on the USM of different workpiece materials including glass, porcelain,
ferrite and alumina using various tool materials in order to analyse the effects of mechanical
properties of the workpiece and tool material on the surface roughness and accuracy. In Refs.
[11,12], the influence of different process parameters on the MRR during the machining of
zirconia was examined. Previous studies undertaken by the authors [1] on the float glass have
prompted the existence of the so-called fall in MRR for higher rates of static load. These works
confirmed once again the superiority of the rotary technique over conventional slurry-type
drilling.

2.2. Experimental rig and programme

The experimental studies have been conducted on a rotary ultrasonic milling machine
developed at the University of Aberdeen and known as the ‘Ultramill’ [13]. This machine
is design-based on a commercial jig-borer with vertical roller slideways carrying the ultrasonic
head assembly. The headstock consists of a piezo-electric ultrasonic transducer operating at
21 kHz and rotating on two ball bearings mounted at ultrasonic displacement node points, the
spindle being directly driven by a DC motor. Tools are mounted by means of a screw thread,
with a plane interface positioned close to a stress node, to provide the ultrasound coupling. There
are two different types of diamond tools, diamond impregnated and diamond coated. With
impregnated tools, the diamond grids are bonded into the parent material of the tool, where
with coated tools a thin layer of diamonds is bonded by electroplating to a blank tool made from
mild steel. During the course of the experimental studies, only the diamond-coated tools
were used.
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A unique programme of experimental investigations was carried out to determine the
relationships between the MRR and the process control parameters including the static load,
ultrasonic amplitude, and rotational speed of the spindle. In order to ascertain these relationships,
an experimental rig shown in Fig. 3 was used, which comprises of the Ultramill, a load cell, and
displacement and acceleration transducers.
In a typical test, the following signals were recorded: the acceleration of the headstock

measured by an accelerometer, the dynamic drilling force by a force transducer, the vertical
displacement by a Linear Variable Displacement Transducer (LVDT). A drilled sample waxed to
the micro-table of the load cell was clamped to the cross table of the ultrasonic drilling machine.
During the drilling process, the transducer signals were connected to the input channels of the
data acquisition system, which acquired data with a sampling rate of up to 800kHz. The
experimental data were then analysed off-line by playing back the digital records.
A schematic of the experimental rig depicted in Fig. 3 also shows a mechanism of applying

constant static force, F stat. The mechanism uses gravity of required weights to move the sample
towards the tool. Throughout the experimental studies the headstock position remained fixed, and
the rock samples were lifted and pressed against the tool. At the beginning of each test, the static
load was gently applied to the rock sample through the load release system lever until it reached
the required value. During the drilling process the working fluid was supplied to remove the debris
and cool the drill.
The programme of experimental studies included 758 drilling tests on four different stones such

as sandstone (three different types), limestone (one type), granite (one type), basalt (five types) and
on a float glass. The experiments on the float glass were to relate the current findings with the
previous studies (e.g. Ref. [1]). For each test the following parameters were chosen: drilled
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material static load, ultrasonic amplitude, rotational speed, tool diameter and diamond grid size.
Then, for each test, a unique data file has been produced and stored for further analysis and
calculation of the MRRs. Since the majority of our tests comply with the same pattern, only
sample results are discussed here. In particular, results obtained for the Hopeman sandstone will
be discussed in the next section.

2.3. Experimental results

Almost all previous experimental results and most theoretical approaches (e.g. Ref. [14]) have
concentrated on the static relationships between MRR and F stat, which can hardly explain the role
of vibrations in the ultrasonic drilling. It has been recently repeatedly observed in our laboratory
that the main working mechanism is related to impact oscillators [1,2,15,16].
Figs. 4 and 5 show steady-state time histories of the drilling force for four different levels of the

static load and the ultrasonic amplitude. These time histories suggest that the considered process
is nonlinear due to the fact that the tool impacts the workpiece. The closest model for this action is
an impact oscillator with a gap, which can be altered to control the amplitude of the generated
percussive forces. On top of this, additional effects such as modulations are also visible.
The strong modulation of the signal amplitude clearly visible on the condensed time histories of

Figs. 4 and 5 is caused by rotation of the spindle. There are also weak modulations seen on the
zoom-up plots; however, no convincing explanation can be given yet. By examining Fig. 4 (both
the condensed and the zoom-up time histories), it is evident that the static load of 25N produces
the highest impact forces, leading consequently to a higher value of the MRR. This finding
coincides with the theoretical predictions, for both the single-degree-of-freedom (dof) and three-
dof models, which will be given in the next sections. It is also noticeable that the system vibrates
with period two motion for all the four static loads.
Some qualitative motion changes are apparent when the ultrasonic amplitude is being used as a

control parameter (see Fig. 5). It starts with nearly a period one motion of a small amplitude at
aum ¼ 3:5mm, develops a period two motion with a slightly larger amplitude at aum ¼ 4:5mm, to
settle on a period two with a large amplitude of the measured force oscillations for aum ¼ 5:5 and
7:0mm. The influence of the static load and the ultrasonic amplitude on the measured force is
strongly nonlinear, so even a small difference in amplitude (Fig. 5(b) and (c)) can produce a
change in dynamic response. This can clearly be seen on zoom-ups of the above-specified time
histories (Fig. 5(f) and (g)), where the tip of the tool after an impact with the workpiece spends a
half of the period oscillating with significantly smaller amplitude (Fig. 5 (g)).
Examining the changes in the dynamic responses depicted in Fig. 5(a) and (b), one can notice

the behaviour similar to those reported for other impacting systems, e.g. Refs. [17,18]. A high-
amplitude period two motion leads consequently to the saturation of the MRR, and this is
predicted theoretically in the next section.
Although the dynamic responses are interesting and possibly carrying the answers on the

working mechanism, the most important practical information is the MRR. Fig. 6 presents the
MRR obtained by varying the static load and ultrasonic amplitude. The tool progression time
histories depicted in Fig. 6(a) and (b) reveal complexities of the drilling process, such as the
percussive action, propagating fracture, and stochasticity of the rock mechanical properties. This
is reflected in irregularities of time histories of the tool progression. However, it is clear that the
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Fig. 4. Time histories of the percussive force for a varying load and constant ultrasonic amplitude, aum ¼ 5mm; time

span within 0:1 s: (a) F stat ¼ 20N, (b) F stat ¼ 25N, (c) F stat ¼ 30N, (d) F stat ¼ 35N, (e)–(h) zoom-ups of (a)–(d) within

the time span of 0:0005 s.
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average tool progression as a function of ultrasonic amplitude increases monotonically (see
Fig. 6(a) and (c)) to reach the saturation zone, which is best observed on the MRR (Fig. 6(c)).
The fall of the MRR for higher static loads can be easily seen by examining Fig. 6(b) and (d).

Also, an existence of multiple maxima for different ultrasonic amplitudes was observed.
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Fig. 5. Time histories of the percussive force for a varying ultrasonic amplitude and constant load F stat ¼ 25N; time

span within 0:1 s: (a) aum ¼ 3:5mm, (b) aum ¼ 4:5mm, (c) aum ¼ 5:5mm, (d) aum ¼ 7mm, (e)–(h) zoom-ups of (a)–(d)

within the time span of 0:0005 s. The zoom-ups have been taken in the sections of the lowest amplitudes.
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Summarizing, the introduction of the high-frequency axial percussive motion substantially
increases the MRR, while compared to the conventional drilling (without axial vibrations). For
the data presented in this study, the enhancement is approximately ten times. It is noteworthy to
point out that the largest value of F stat does not produce the largest impacts.
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3. Theoretical modelling

The first theoretical approach to modelling of USM was put forward by Saha et al. [14]. This
attempt was to develop a comprehensive analytical model for the estimation of MRR in order to
investigate the mechanism of the material removal process. The paper reports a satisfactory
agreement between theory and experiment, apparently explaining the fall in MRR for higher
static loads. However, this model uses Hertzian theory to explain the mechanism of material
removal. It appears that this should be more suitable for ductile rather than brittle materials. A
theoretical model based on indentation fracture mechanics was presented in Ref. [12]. The model
gives a reasonable correlation with the experimental data, but it cannot predict MRR before
commencing experimental studies since the calculation requires the power-rating evaluation,
which has to be taken from the experimental data. Another empirical model was proposed in Ref.
[11], where the machining process is carefully monitored and analysed. Based on a number of
experiments of carefully chosen parameters, the model can be used in MRR prediction over a
wider range of process parameters. However, this model is static and therefore it is not capable of
explaining the dynamics of ultrasonic drilling.
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3.1. Three-dof model without progression

Dynamics for ultrasonic drilling with a resonant transducer assembly tuned to the ultrasonic
frequency can be modelled as a two-mass discrete model, which was analysed in Ref. [2]. For the
purpose of clarity, this paper summarizes the main results.
The model shown in Fig. 7 consists of a mass representing the movable headstock, m1, and the

equivalent mass of the vibrating ultrasonic horn plus tool, m2. Linear springs of stiffness k1 and k2

and dashpots of viscous damping c1 and c2 connect the head-stock and the equivalent mass to the
piezo-electric ultrasonic driver, which excites the system kinematically with amplitude A and
frequency O=ð2pÞ. The material properties are represented by a stiffness k3 and damper c3. The
process starts with an initial gap g between the tool tip and the workpiece. The model assumes
that the influence on the dynamic responses coming from penetration into the material can been
A sin Ωt

k1

k0

c1

k2c2

k3c3

g

Fstat

x1

x2

x4

x5

m1

m2

Fig. 7. Three-dof model of ultrasonic drilling.
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neglected. The equations of motion for the system are piecewise linear of the following form:

m1 €x1 þ c0 _x1 þ c1ð _x1 � _x2Þ þ k1ðx1 � x2Þ ¼ F stat; ð1Þ

c1ð _x2 � _x1Þ þ c2ð _x2 � AO cos Ot � _x4Þ

þ k1ðx2 � x1Þ þ k2ðx2 � A sin Ot � x4Þ ¼ 0; ð2Þ

m2 €x4 þ c2ð _x4 � _x2 þ AO cos OtÞ þ k2ðx4 þ A sin Ot � x2Þ ¼ 0 for x4 � x5pg and _x4o _x5; ð3Þ

m2 €x4 þ c2ð _x4 � _x2 þ AO cos OtÞ þ c3 _x5

þ k2ðx4 þ A sin Ot � x2Þ þ k3x5 ¼ 0 for x4 � x54g and _x4X _x5; ð4Þ

c3 _x5 þ k3x5 ¼ 0 for x4 � x5pg and _x4o _x5; ð5Þ

_x5 ¼ _x4 for x4 � x54g: ð6Þ

It was assumed that the MRR is a function of the magnitude of the impact force and its
frequency [19–22] and the tip of the tool, with diamonds uniformly distributed, impacts the
workpiece making micro-cracks on its surface. The relative value of MRR was estimated from the
algorithm developed in Ref. [2], which is briefly outlined below:
1.
Fig

im
Initially, the global average value AVG� of the impact force (see Eq. (8) and Fig. 8), IF, over all
numerical simulations performed is calculated from

AVG�
¼

1

m

Xm

i¼1

1

t2 � t1

Z t2

t1

IFðtÞdt; ð7Þ

where m is the number of numerical simulations, t1, t2 are the time limits of a single simula-
tion chosen to provide a steady-state time history. Eq. (7) can be re-written for a discrete time
IF

IFmin

AVG*

tk

nk
CYC

t

. 8. Diagram used for calculating MRR, where AVR� is the globally average impact force, IFmin is the minimum

pact force causing a crack, nk
CYC and tk is the number and the time of kth crossing of AVR�.



ARTICLE IN PRESS

M. Wiercigroch et al. / Journal of Sound and Vibration 280 (2005) 739–757750
series as

AVG�
¼

1

m

Xm

i¼1

1

n

Xn

j¼1

IFij ; ð8Þ

where IFij is an impact force calculated for the jth time step of the ith simulation.

2.
 The minimum impact force IFmin causing damage is assumed to be dependent on the material

constant

IFmin ¼ aAVG�: ð9Þ
3.
 The effective crack propagation force IF� is assumed to be

IF� ¼ IF� IFmin for IF4IFmin; ð10Þ

IF� ¼ 0 for IFpIFmin: ð11Þ
4.
 Similar to the calculation of fatigue life, it is postulated that MRR will be dependent on the
number of cycles, which is evaluated from a number of times the AVG� line is crossed

ncyc ¼ ncross=2: ð12Þ
5.
 Finally, the MRR is then estimated as

MRR ¼
ncyc

ðt1 � t2Þ

1

n

Xn

i¼1

IF�
i

AVG�

� �z

IFi; ð13Þ

where n is the number of time steps and z is currently a free parameter chosen from comparison
with experimental results.

An example of MRR calculated using the above algorithm for varying static load is shown in
Fig. 9, which has been normalized with respect to the maximum values of F stat and MRR. From a
careful examination of the graph, it is evident that the upper and lower envelopes are non-
monotonic functions of F stat with well-pronounced maxima. The jagged edge of the MRR graph
is due to the nonlinear dynamic responses of the system, which are studied in the section to follow.
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Fig. 9. The MRR as a function of F stat.
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However, it is worth noting that the envelopes correlate well with the experimental findings,
particularly in predicting the experimentally observed drops in MRR (see Fig. 6(d)).
The main role of F stat is to provide conditions for the most effective impacting patterns. Clearly,

under certain conditions, the light load causes the head to ‘bounce off’ the workpiece, with only
intermittent and small impact forces. However, when F stat is too large, the hammering effect
disappears and the workpiece is loaded with a force that possesses a large static component,
decreasing significantly the cutting efficiency.

3.2. One-dof model with progression

The current section will investigate the nonlinear dynamics approach to model the MRR, which
is phenomenologically different from any others previously undertaken, including the 3-dof model
outlined in the previous section. It is based on the theory of impacting and dry friction oscillators
[15–18]. In particular, the formulation of a simple model of the nonlinear dynamic interactions
encountered during the drilling process will be addressed, which aims to explain the fall in the
MRR for higher static loads and also take into account a progressive motion of the drilling tool.
The presented model is shown in Fig. 10, where m is an equivalent mass of the tool, F ðtÞ is a

drilling force, Pð _yÞ is a resistive force modelled by a frictional pair, x is coordinate of the tool’s tip,
and y is coordinate of the dry friction element, which represents progression of the drilling
surface. The equation of motion of the mass takes the following form:

m €x ¼ F ðtÞ for xoy;

m €x ¼ F ðtÞ � Pð _yÞ for x ¼ y; ð14Þ

which depends on the relative position between x and y coordinates. The equation of motion for
the frictional slider is

y ¼ x for _xX0;

_y ¼ 0 for _xo0: ð15Þ

In reality, the drilling force has static and dynamic components. It was assumed the drilling
force FðtÞ has the following form:

F ðtÞ ¼ F stat þ Fdyn sinðot þ f0Þ; ð16Þ

where F stat is the static force, Fdyn and o are the amplitude and frequency of harmonic force,
relatively, t is time, and f0 is a phase shift. The resistive force Pð _yÞ, which in reality is very
F(t)

y

x

m

P(y)
.

Fig. 10. One-dof model with a dry friction pair.
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complex, is modelled by a Coulomb friction in the first instance. This requires a fulfillment of the
following conditions:

Pð _yÞ ¼ Q for _y40;

Pð _yÞpQ for _y ¼ 0; ð17Þ

where Q stands for modulus of the dry friction force. Consideration will be limited to the case
when F ðtÞoQ. From Eqs. (14)–(17), it can be easily seen that the considered system can be in one
of three unique modes listed in Table 1.
In order to gain some extra flexibility, new dimensionless variables and parameters are

introduced:

t ¼ ot; f ðtÞ ¼
FðtÞ

Q
; a ¼

Fdyn

Q
; b ¼

F stat

Q
; x ¼

o2m

Q
x; Z ¼

o2m

Q
y: ð18Þ

The dimensionless drilling force takes the form

f ðtÞ ¼ a sinðt� ot0Þ þ bo1 : ð19Þ

Numerical analysis of the system shows that when the static force is large enough only periodic
motion with the excitation frequency occurs. For b=a above the first subcritical period of doubling
bifurcation located at b=a � 0:27, the system responds with a period one motion, as shown in
Fig. 11. All bifurcation diagrams presented here were obtained for a=Q ¼ 0:12 and for the static
force, b varying from zero up to the value of the dynamic component, a.
Fig. 11 shows that, after the second subcritical period doubling, a narrow region of

chaotic motion occurs, followed by period three and then period six motions. Then again a
narrow chaotic region is seen, which is followed by period four and period eight motions. Thus,
after each chaotic region, multiplicity of the motion increases by one period. It is clear from
Fig. 11 that for this system chaotic regions are quite narrow whilst compared to periodic ones.
A similar behaviour has been reported for two-dimensional piecewise smooth maps, e.g.
Refs. [23,24].
From the practical point of view, the drilling progression per excitation period, DZ is an

important measure. This progression normalized to the maximum value of 1 as a function of the
drilling forces ratio is presented in Fig. 12 as a function of the drilling force ratio, b=a.
From Fig. 12, one can deduce that the maximum value of the progression is obtained for

the period one motion. For the responses with multiple periods, high progressions occur at
certain values of the drilling forces ratio, but it is necessary to note that the responses need to
be averaged; hence the material removal became smaller than for the period one motion, as
Table 1

Three unique modes of motion

Mode x y Condition

No contact m €x ¼ F ðtÞ _y ¼ 0 xoy

Progression m €x ¼ F ðtÞ � Q y ¼ x _x40

Stop _x ¼ 0 y ¼ x F ðtÞX0
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Fig. 12. Bifurcation diagram of the drilling surface displacement DZ per excitation period, as a function of the drilling

forces ratio b=a.

Fig. 11. Bifurcation diagram of tool displacement per excitation period Dx, as a function of the drilling forces ratio b=a.
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shown in Fig. 13. In this figure, the MRR is shown as a function of the drilling forces ratio,
b=a. The MRR is assumed to be proportional to the average progression of the drilling
surface and is shown with respect to its maximum value. An interesting and rather unexpected
result is that for certain values of the drilling forces ratio the MRR decreases to zero. The
local maxima of the MRR which are related to subharmonics, and therefore some impacts, are
strong, and others are weak. Consequently, this might result in a low MRR and possibly in a high
tool wear.
Now a progressive periodic motion is investigated, as shown in Fig. 14, which satisfies the

following equations:

xðtþ 2pÞ ¼ x� þ xðtÞ; Zðtþ 2pÞ ¼ x� þ ZðtÞ; ð20Þ
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Fig. 13. MRR as a function of the drilling forces ratio b=a.

Fig. 14. Progressive periodic motion.
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where x� is the dimensionless penetration during one excitation period. The dimensionless MRR
calculated per one period is

r ¼
Zð2p� Zð0Þ

2p
¼

x�
2p

: ð21Þ

Substitution of the stationary solution to the equation of motion leads to a set of algebraic
nonlinear equations, which will be discussed below.
MRR as functions of the force ratios b=a ða ¼ constÞ and b=a ðb ¼ constÞ are shown in Fig. 15.

The thick curves in both figures are calculated for a soft excitation, i.e. a ! 0 or b ! 0. In the
left-hand side figure, the curves above the thick one correspond to a ¼ 0:1; 0:2; . . . ; 0:5, while in
the right-hand side figure the curves correspond to b ¼ 0:05; 0:10; . . . ; 0:25.
In Fig. 15(a), the relationships between the MRR and the static force b have clearly pronounced

maxima and for the ratio b=a equal to one the MRR decreases to zero. The curves above the thick
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Fig. 15. MRR as functions of (a) the relative hydrostatic force b=a ða ¼ constÞ, and (b) the relative amplitude of the

harmonic force a=b ðb ¼ constÞ.
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one correspond to hard excitations, calculated using small-parameter approximation [15]. It can
be deduced from the graphs that the MRRs for hard excitations also have well-pronounced
maxima, but they are shifted to higher values of b=a.
Consider now the influence of the amplitude of the harmonic force a on the MRR while the

static force b is kept constant, as shown in Fig. 15(b). The MRR is equal to zero for apb, then it
increases monotonically to finally reach a constant value for a=b4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
. Hence, there is no

need to increase amplitude of the harmonic force above 3:3b. The curves above the thick one in
Fig. 15(b) correspond to hard excitation. The vertical axes are presented as ratios to MRRmax,
which is calculated using small-parameter approximation [15] and can be expressed as

MRRmax ¼ p
QSb2

om
; ð22Þ

where S is the cross-section of the drillbit. For the hard excitation, the MRR is a monotonic
function of the excitation amplitude, b. It is noteworthy that, for a bigger excitation, the MRR
does not have the flat portion, and the inclination of this part of the graph is steeper for higher
values of b.
The developed model allows the calculation of the MRR in the form

MRR ¼
SQ

om
rða; bÞ; ð23Þ

where r ¼ rða; bÞ is a known function of a and b.
An investigation of the MRR function given by Eq. (22) provides the following conclusions:
1.
 Impacting action is only effective if the static force is smaller than the amplitude of the
harmonic force, boa. If b is greater than a, the drill is stopped by the static force.
2.
 For the lower static forces (approximately bo0:3a), motion with the period of the excitation
force became unstable and multi-period or chaotic motion occurs, which is characterized by a
smaller MRR and higher wear of the tool.
3.
 The MRR function of the static force, B (while A is kept constant), has a well-pronounced
maximum, which is taken at b � 0:39a for soft excitation and shifts to the right for greater
excitation.
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4.
 The MRR is a monotonically increasing function of the amplitude of the harmonic force, a. In
the case of the soft excitation, this function becomes constant for a=b4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
; this means

that an increase of the amplitude more than 3:3b does not improve the MRR.
4. Conclusions

The conducted experimental studies on a variety of different rocks have concluded that the
introduction of the high-frequency oscillatory motion significantly increases their MRRs. By
examining the influence of the static loading it has been found out that the MRR has at least one
maximum. The MRR as a function of the ultrasonic amplitude saturates for higher values of the
amplitudes. Time histories of the dynamic drilling force indicate strong nonlinear effects
associated mainly with the impacting action of the tool. However, other effects such as
propagating fracture and stochasticity of rock mechanical properties are also important factors,
and will be addressed in the ongoing research [22].
A theoretical study has also been carried out to investigate the mechanism governing the high-

frequency (ultrasonic) percussive (impact) drilling of hard brittle materials such as rocks. First, a
three-degrees-of-freedom model was studied using an impact oscillator approach. This was the
first dynamic model able to explain the fall of the MRR for higher static forces. It was also noted
that a light static load causes the tool to be ‘bounced off’ from the workpiece, with only
intermittent and small impact forces. On the contrary, when the static force is too large, the
percussive effect disappears and the workpiece is exposed to a static force decreasing drastically
the drilling efficiency. When the ultrasonic amplitude was varied, the MRR initially increased to
reach a saturation value for higher static loads. The predicted nonlinear character of its behaviour
was investigated by a single-degree-of-freedom model, where a comprehensive nonlinear dynamic
analysis including construction of MRR bifurcation diagrams was conducted. Moreover, the
most intriguing phenomenon of zero MRR for some discrete values of the static load has been
observed. The developed analytical expressions describing the MRR confirmed the existence of
maxima for moderate values of the static load.
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