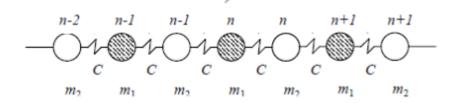

Моделирование межатомных взаимодействий в одномерной и двумерной квадратной цепочках

Дисперсионная кривая для одномерной моноатомной цепочки.


Дисперсионная кривая для одномерной цепочки с 2 типами жесткостей.

Решение уравнения для одномерной цепочки с частицами 2 разных типов

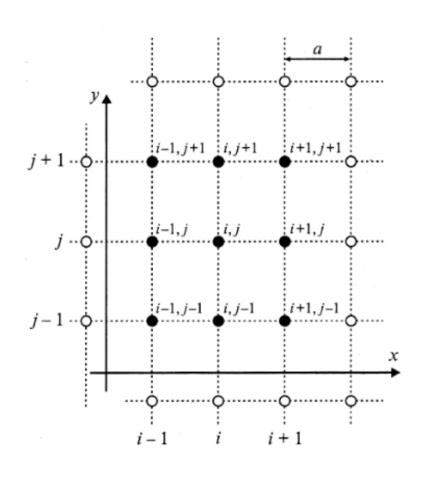
Пусть u_i и v_i - перемещения частиц с массами m_1 и m_2 соответственно.

Цепочка имеет вид:

Система уравнений для цепочки такого типа:

$$m_1 u_n = C [(v_{n+1} - u_n) - (u_n - v_{n-1})],$$

$$m_2 v_{n+1} = C [(u_{n+2} - v_{n+1}) - (v_{n+1} - u_n)]$$


Если искать решения в виде:

$$u_n = ue^{i(\omega t + kn)}$$
, $v_n = ve^{i(\omega t + k(n+1))}$

То тогда получим:
$$v_{+} = \sqrt{2\beta \left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)}$$

$$v_{-}^{2} = \beta \left(\frac{M_{1} + M_{2}}{M_{1} M_{2}}\right) 2 \frac{M_{1} M_{2}}{\left(M_{1} + M_{2}\right)^{2}} k^{2} a^{2} = 2\beta \frac{k^{2} a^{2}}{M_{1} + M_{2}}$$

Квадратная двумерная решётка

Решение уравнения для квадратной двумерной решётки

В данном случае предполагается, что решётка квадратная с параметром a. Рассматривается взаимодействие частицы (i,j) с 4-мя ближайшими соседними точками: (i+1,j), (i-1,j), (i,j+1), (i,j-1).

Рассмотрим пару точек, например, (i,j) и (i+1,j).

Пусть $u_{i,j}$ и $u_{i+1,j}$ - компоненты смещения по оси x, а $v_{i,j}$ и $v_{i+1,j}$ -по оси y.

Тогда:
$$r_{(i,j);(i+1,j)}^2 = (a + u_{i+1,j} - u_{i,j})^2 + (v_{i+1,j} - v_{i,j})^2$$
.

$$F_{(i,j)(i+1,j)}$$

$$= \left| \tilde{\alpha} \left\{ \sqrt{(a + u_{i+1,j} - u_{i,j})^2 + (v_{i+1,j} - v_{i,j})^2} - a \right\} \right|$$
 $\approx \tilde{\alpha} |u_{i+1,j} - u_{i,j}|$ $(\alpha - \text{постоянная}).$

$$F_X\{(i,j)(i+1,j)\} = \tilde{\alpha}(u_{i+1,j} - u_{i,j}),$$

$$F_Y\{(i,j)(i+1,j)\} = 0.$$