Modeling Fracture Geometry

R.D. Barree
Barree & Associates LLC
In this session ...

• What are the dominant processes of modeling?
• What are the requirements of a good design model?
• What models are available?
• What are their assumptions?
• How should you select an appropriate model?
Which Model & Why

If you are taking the time to ‘design’ or evaluate a frac job, shouldn’t you make it worthwhile?

Simplistic Models:
- Easy to use
- Require minimal input data
- Take little or no time

Sophisticated Models:
- Require input to describe the reservoir
- Accurately describe the fracture
- Allow for making informed decisions

© 2009 Barrie & Associates
Fracture Design:
Understanding & Modeling Dominant Processes

• Fracture geometry creation
 – elastic properties, plasticity, pore pressure
 – model assumptions, rock shear and slip

• Fluid leakoff
 – pressure dependence, whole gel

• Fluid rheology

• Proppant transport
 – rheology, localized leakoff
 – causes & remedies for screenouts
Design Model Requirements

• Describe/Include the basic physics of all important processes
• Ability to predict (not just mimic) job results
• Provide decision making capability
 – Understand what happened
 – Isolate causes of problems
 – Change necessary inputs
 – Predict results

If your model can’t do this, why run it?
Modes of Fracture

Mode I: Tension
Mode II: Sliding Shear
Mode III: Tearing Shear

Conventional frac models only assume Mode I
Available Frac Models

• 2D Models
 — Perkins-Kern Nordgren (PKN)
 — Khristianovich-Geertsma-DeKlerk (KGD)
 — Penny-Frac

• Pseudo-3D Models
 — MFRAC
 — StimPlan, e-StimPlan
 — FracCade

• Lumped Parameter Models
 — FracPro
 — FracPro-PT

• 3D Models
 — GOHFER
 — N-StimPlan
 — Terra-Frac
All Frac Models Start With A Width Equation

Consider the displacement caused by a point load on the surface of a semi-infinite half space:

The displacement of the surface is given by:

\[w = \frac{P_{\text{net}} \left(1 - \nu^2\right)}{\pi Er} \]
The deflection of the surface of a semi-infinite half-space acted on by a distributed pressure is:

\[u = \iint \frac{(1-\nu^2)P_{net} \, d\psi \, ds}{\pi E} \]

This solution was developed by J. Boussinesq in 1885.
Distributions of “Tensile” Stress at the Frac Tips

Distributed stress allowing smooth closure at the fracture tip

Concentrated stress approaching a singularity at the fracture tip
Composite Process Zone Modeled by Apparent Stress Concept

Net Stress Positive: Internal Fluid Pressure Exceeds Closure

Net Stress Negative: Internal Fluid Pressure Less Than Closure

Damage Zone = 1-6 ft Tensile Stress in Rock

Fluid Lag = 1-10 ft
Plane-Strain Solution

- Applies for cracks of large aspect ratio
- Width is a function of net pressure and characteristic length
- Width is constant along frac length
Sneddon’s Equation
for Width of a Plane-Strain Linear Crack

- Sneddon’s equation (1945) for an infinite length (plane-strain) crack, with crack tips at +c and −c
- Simplified-geometry solution assumes two-dimensional plane-strain behavior with an implied stress singularity (infinite stress) at the crack tip

\[u = \frac{2(1-\nu^2)p}{E} \sqrt{c^2 - y^2} \]

Most 2D and Pseudo 3D models use a form of this equation
Geometry Assumption in 2D models

• All 2D models require the user to input constant frac height
• Length and width are calculated from compliance and leakoff
• Called “2D” because only width and length are calculated, while height remains fixed.
• Two 2D models are PKN and KGD
 – Both were published by Royal Dutch Shell researchers in the 1960s.
 – Both use the Sneddon linear crack solution for a plane-strain crack.
Differences in Geometry
Assumption for PKN and KGD

Fracture width at the mid-point (y=0) is given by Sneddon’s equation for two common 2D models:

PKN
The total fracture height (H) is 2c

\[w = 2u = \frac{2(1-\nu^2)Hp}{E} \]

KGD
The crack half length (c) is given by L

\[w = 2u = \frac{4(1-\nu^2)Lp}{E} \]

Note that these are the same equations solved with different characteristic crack lengths and assume an infinite stress and zero displacement at the crack tips.
Results Controlled by Assumptions in Simplistic Models
Pseudo-3D Models

- Calculate pressure drop along fracture length
- Calculate width and equilibrium height at each segment
- May have proppant transport models run sequentially with geometry
Example of StimPlan Output

- Chart showing stress (MPa) vs. TVD (m) and fracture penetration (m).
- Color scale indicates width - total in.
- Time duration: 25.27 min.
Lumped Parameter Models

- Model gives position of frac at three points only
- Frac growth is driven by vertical and horizontal pressure gradient functions
- Fracture outline is connected with concentric ellipses
- May have separate prop transport models that may or may not interact with geometry development
Example of Fracpro-PT Output
Available 3-D Models

• N-StimPlan
 – Gridded width and flow solution similar to GOHFER™
 – Fully-coupled elastic finite-element width solution

• GOHFER™
 – Gridded deformation and flow solution
 – Shear-decoupled formulation

• Terra-Frac
 – Finite-element solution
 – Requires re-meshing with time
 – Single fluid entry point
 – Linear-elastic solution
Elastically Coupled Displacement

A point-load causes deformation of the entire surface
What is actually Observed in the Field?

- Fracture widths are often less than predicted
- High net treating pressures are common
- Height containment is often better than expected
- Shear failure occurs in the rock mass (microseisms)
Displacement With Shear

Slippage along shear-planes restricts displacement to a limited area
Shear-Slip Model

- No displacement transmitted across a freely sliding shear plane
- No influence from any loads applied on opposite side of shear plane
- Integrate applied load over a small area
- No stress concentration at fracture boundary
- Very small fracture widths
Frac Extension with Shear-Slip

Fluid pressure must penetrate rock and exceed closure stress

Fluid pressure enters existing crack and generates a stress concentration
Containment

Coupled System

Decoupled System
Actual Fracture in Core Section
Microseisms After Water Injection
Fracture Height Containment Through Shear Slip at Bed Boundaries
Which Model & Why

If you are taking the time to ‘design’ or evaluate a frac job, shouldn’t you make it worthwhile?

Sophisticated Models:
- Require input to describe the reservoir
- Accurately describe the fracture
- Allow for making informed decisions

Simplistic Models:
- Easy to use
- Require minimal input data
- Take little or no time