
Chapter 25
Localized Modes in a 1D Harmonic
Crystal with a Mass-Spring Inclusion

Ekaterina V. Shishkina and Serge N. Gavrilov

Abstract The spectral problemconcerning the existence of localizedmodes of oscil-
lation in 1D harmonic crystal with a single mass-spring inclusion is investigated. A
crystal is an infinite harmonic chain of particles with nearest-neighbor interaction.
The bond stiffnesses are referred to as “springs”. Two types of inclusion are con-
sidered, namely, a symmetric and an asymmetric ones. The symmetric inclusion
consists of the particle of an alternated mass with two springs of alternated stiff-
nesses attached. The asymmetric inclusion consists of the particle of an alternated
mass with one alternated spring attached. Outside the inclusion the chain is assumed
to be uniform. For both types of a mass-spring inclusion, the necessary and suffi-
cient conditions for the existence of localized modes, as well as the corresponding
frequencies of localized oscillation, are found.

25.1 Introduction

The phenomenon of localized modes of linear oscillation is well known for both
continuum (Glushkov et al. 2011; Indeitsev et al. 2007; Kuznetsov et al. 2002; Ursell
1951) and discrete (Andrianov et al. 2012; Gendelman and Paul 2021; Kossevich
1999; Manevich et al. 1989; Maradudin et al. 1963; Montroll and Potts 1955; Rubin
1963; Teramoto andTakeno 1960;Yu 2019) systems. In discretemechanical systems,
to the best of our knowledge, this phenomenonwas first time described in the classical
study by Montroll and Potts (1955), though it was previously known in physics for
non-mechanical systems (Conwell et al. 1950; Koster 1954; Koster and Slater 1954).
In the discrete case, usually, isotopic (i.e., pure inertial) or pure elastic inclusions
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are considered, though in the referenced above work (Montroll and Potts 1955) a
mass-spring inclusion is also discussed.

To discover the existence of a localized mode in a system, one needs to consider
a spectral problem, see, e.g., Indeitsev et al. (2007). If localized mode exists in
a system, then one can observe (Shishkina et al. 2023) the localization of non-
stationary waves.1 Namely, some portions of the wave energy can be trapped forever
near inhomogeneities (in the absence of dissipation). One can observe undamped
localizedvibrationof an infinite systemsubjected to an impulse loading. For a discrete
mechanical system this was shown first time by Teramoto and Tokeno (1960).

The localized modes essentially influence on another wave phenomenon, which
we call the anti-localization of non-stationary waves (Shishkina and Gavrilov 2023;
Shishkina et al. 2023). This is zeroing of the non-localized propagating component of
the wave-field in a neighborhood of an inclusion. The anti-localization breaks at the
boundary of the localization domain (the domain of existence for the localized mode
in the problem parameters space). This fact can be discovered only by considering
the systems, where the boundary of the localization domain does not correspond to a
homogeneous system without any inclusion (Shishkina et al. 2023). This is our main
motivation to investigate the problems involving mass-spring inclusions.

In the paper we systematically investigate the spectral problems concerning the
existence of localizedmodes of oscillation in 1D harmonic crystal with amass-spring
inclusion. A crystal is an infinite harmonic chain of particles with nearest-neighbor
interaction. The bond stiffnesses are referred to as “springs”. The chain contains a
single mass-spring inclusion, which consists of a single particle with an alternated
mass and two or one springs attached to this particle with an alternated stiffness. The
first case is the case of a symmetric inclusion, whereas the second case is the case of
an asymmetric inclusion. Outside the inclusion the chain is assumed to be uniform.
The schematic of the system is presented in Fig. 25.1. For both types of a mass-spring
inclusion, the necessary and sufficient conditions for the existence of localizedmodes
are found, as well as the corresponding frequencies of localized oscillation. Note that

Fig. 25.1 The schematic of the system. a The case of a symmetric inclusion, b the case of an
asymmetric inclusion

1 In the discrete case it is more correct to speak about quasi-waves, since the perturbations propagate
at an infinite speed.
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the spectral problem for a continuum analogue of discrete problems considered in
the paper is investigated in Glushkov et al. (2011), Gavrilov et al. (2019).

Note that the case of a symmetricmass-spring inclusionwas previously considered
by Montroll and Potts in (1955), who obtained the expression for the frequency of
the antisymmetric localized mode and the frequency equation for the symmetric
mode. For the symmetric oscillation the problem solution was not finalized, namely,
neither the expression for the admissible frequency was explicitly derived, nor the
domain of existence for the corresponding mode was obtained. In recent paper (Yu
2019) Yu considered a non-stationary problem for the case of a symmetric mass-
spring inclusion and, in particular, obtained the frequency of the symmetric localized
oscillation and its domain of existence. In our opinion, although the results obtained
in Yu (2019) are correct, they have been derived by a wrong way. The more detailed
comparison of the results obtained in this paper with the known results is given in
Discussion (see Sect. 25.5).

25.2 The Mathematical Formulation for the Spectral
Problem

The equations ofmotions in the dimensionless form can be expressed as the following
infinite system of differential-difference equations:

ün − (un+1 − 2un + un−1)

= ( − (m − 1)ü0 + (K − 1)
(
(u1 − u0) + γ (u−1 − u0)

))
δn

− (K − 1)(u1 − u0)δn−1 + γ (K − 1)(u0 − u−1)δn+1, (25.1)

where n ∈ Z, δn is the Kronecker delta, un(t) is the dimensionless displacement
of the particle with a number n, n = 0 corresponds to the particle with alternated
dimensionless mass m, γ = 1 corresponds to the case of a symmetric inclusion, and
γ = 0 corresponds to the case of an asymmetric inclusion. We assume that

m > 0 and K > 0; (25.2)

m �= 1 or K �= 1. (25.3)

The differential-difference operator in the left-hand side of Eq. (25.1) corresponds
to a uniform chain of mass points of unit mass connected by springs of unit stiffness.
The non-dimensionalization is discussed, e.g., in Shishkina and Gavrilov (2023).
Assuming that un(t) is a harmonic oscillation

un(t) = Un(�) e−i�t , (25.4)
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consider the steady-state problem concerning the natural localized oscillation at a
frequency �. In what follows, we assume without loss of generality that

� > 0. (25.5)

Since we deal with a linear system, for the uniform chain (m = 1, K = 1) the
corresponding solutions for amplitudes are

Un = U0e
−iqn, (25.6)

where q is the (quasi-)wave-number. The frequency� andwave-number q are related
by the dispersion relation, which properties are discussed in Appendix.

In the case of the chain with the inclusion, we look for a mode with finite energy,
and, therefore, we require that Un satisfy conditions

∞∑

n=−∞
U 2

n < ∞,

∞∑

n=−∞
(Un+1 −Un)

2 < ∞, (25.7)

and, hence, consider the frequencies inside the stop-band (25.79) (see Appendix).
Due to Eq. (25.1) for the amplitudes Un one gets:

−�2Un − (Un+1 − 2Un +Un−1) = (
(m − 1)�2U0 + (K − 1)

(
(U1 −U0) + γ (U−1 −U0)

))
δn

−(K − 1)(U1 −U0)δn−1 + γ (K − 1)(U0 −U−1)δn+1. (25.8)

The last equation can be treated as the equation of motion for the homogeneous chain
with three-point loads expressed by terms in the right-hand side. Thus, the solution
is

Un = (
(m − 1)�2U0 + (K − 1)

(
(U1 −U0) + γ (U−1 −U0)

))
Gn

+ (K − 1)(U0 −U1)Gn−1 + γ (K − 1)(U0 −U−1)Gn+1,

(25.9)

where Gn is the Green function for a uniform chain given by Eq. (25.82) (see
Appendix).

25.3 The Case of a Symmetric Inclusion

Here we take γ = 1. Due to symmetry, the oscillation, without lost of generality, can
be considered as the sum of symmetric and antisymmetric components:

Un = U s
n +U a

n , (25.10)
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where U s−n = U s
n , U

a−n = −U a
n . Hence, for the symmetric mode Eq. (25.9) can be

rewritten as

U s
n = (m − 1)�2U s

0Gn + (K − 1)(U s
0 −U s

1)(Gn+1 − 2Gn + Gn−1), (25.11)

where n ≥ 0. For the antisymmetric mode U a
n , taking into account that U a

0 = 0, we
rewrite Eq. (25.9) in the following form:

U a
n = (K − 1)U a

1 (Gn+1 − Gn−1). (25.12)

25.3.1 Symmetric Mode

Consider now the symmetric mode.We subsequently substitute n = 0 and n = 1 into
Eq. (25.11) and obtain the following homogeneous set of linear algebraic equations
for unknown U s

0 and U
s
1:

(
1 − (m − 1)�2G0 − 2(K − 1)(G1 − G0)

)
U s

0 + 2(K − 1)(G1 − G0)U
s
1 = 0,

(25.13)
(
(m − 1)�2G1 + (K − 1)(G2 − 2G1 + G0)

)
U s

0

− (
1 + (K − 1)(G2 − 2G1 + G0)

)
U s

1 = 0.
(25.14)

Here we have taken into account that Gn = G−n . A non-trivial solutions exist if
and only if the determinant of the set is zero. Substituting expression (25.82) for
the Green function, calculating the determinant, and simplifying the complicated
expression obtained lead to the frequency equation for the symmetric mode:

�L(�) = −
√

�2 − 4R(�), (25.15)

where

L(�) = m�6 − (
(m + 2)K + 5m

)
�4 + (

2(2m + 5)K + 5m
)
�2 − 2K (m + 5),

(25.16)

R(�) = m�6 − (
(m + 2)K + 3m

)
�4 + (

2(m + 3)K + m
)
�2 − 2K .

(25.17)

Here we have taken into account that (25.79) is fulfilled. Equation (25.15) after
squaring, which is possible if and only if

L(�)R(�) ≤ 0, (25.18)
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can be equivalently transformed to the form of the following bi-quadratic equation:

m2(K − 1)�4 + Km
( − (m + 2)K + 4

)
�2 − 4K 2 = 0. (25.19)

The solution of the last equation (25.19) in the case

K �= 1 (25.20)

is

�2 = �2
±

def=
K

(
− 4 + (m + 2)K ±

√(
(m + 2)2K − 8m

)
K

)

2(K − 1)m
. (25.21)

The special case K = 1 is considered in Sect. 25.3.3. Since � ∈ R, the discriminant
for Eq. (25.19) must be non-negative:

K ≥ 8m

(m + 2)2
. (25.22)

Finally, the domain of existence for modes with corresponding frequencies �± are
areas in the two-dimensional parameter space,2 where inequalities (25.79), (25.18),
and (25.22) are fulfilled. For the mode with the frequency � = �+ the domain of
existence is plotted in Fig. 25.2 (see zone “4”). For the root �− restriction (25.18) is
never satisfied in the domain where Eq. (25.22) is fulfilled.

Fig. 25.2 The domain of existence (zone 4) for the symmetric mode with the frequency � = �+
in the case of symmetric inclusion. Outside of zone “1” inequality (25.22) is true; in zone “2”
inequality (25.77) is true; in zones “2” and “3” inequality (25.18) is false

2 The parameters are m and K .
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The boundary for the domain of existence for the mode with the frequency � =
�+ is the boundary between zones “3” and “4”, which corresponds to a common
root of the equation

L(�)R(�) = 0, (25.23)

and frequency equation (25.15). To find the analytic expression for the boundary we
should prove the following lemma.

Lemma 1 Provided that Eqs. (25.2), (25.3), (25.5), (25.20) are true, � = 2 is the
unique solution of set of Eqs. (25.23), (25.15), which exists if and only if

K = 2m

1 + m
. (25.24)

Proof Clearly, the right-hand side of (25.15) is zero at � = 2. Thus, � = 2 is the
solution of set (25.23), (25.15) if and only if L(2) = 0. Calculating L(2) and putting
the expression obtained to zero yields

− 2 Km − 2 K + 4m = 0, (25.25)

which is equivalent to Eq. (25.24).
Let positive � �= 2 satisfies Eqs. (25.23), (25.15). Then

L(�) − R(�) ≡ −2m�4 + 2
(
2m + K (2 + m)

)
�2 − 2K (4 + m) = 0. (25.26)

Since Eq. (25.23) is true, Eq. (25.19) follows from Eq. (25.15). Thus,� is a common
root of two bi-quadratic equations, namely Eqs. (25.19), (25.26), hence, the left-
hand sides of these equations must be proportional. Calculating the remainder of
two polynomials, which equal to the left-hand sides of (25.19) and (25.26), and
putting the result to zero, one gets for all �:

(
Km(m + 2) − 2m2

)
�2 + Km2 + 4 Km − K 2(m + 2)2 ≡ 0, (25.27)

which is equivalent to m = 0 and K = 0. �

Remark 1 One can easily prove that for K > 0 and m > 0 polynomials L(�) and
R(�) do not have common roots by calculating the Gröbner basis (Buchberger 2002)
for this set of polynomials.

Hence, the boundary between zones “3” and “4” corresponds to the curve, where
Eq. (25.24) is fulfilled. Finally, there exists the unique symmetric localized mode
with the frequency � = �+, where �+ is given by Eq. (25.21). The domain of
existence for this mode is

K >
2m

1 + m
. (25.28)
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Fig. 25.3 The value of the trapped mode frequency � = �+ defined according to Eq. (25.21)
inside the domain of existence (25.28) in the case of a symmetric inclusion

The frequency equation in the form of bi-quadratic equation (25.19) was previ-
ously obtained by Montroll and Potts in (1955). The authors in Montroll and Potts
(1955) do not find the explicit expressions for the roots of this equation and do not
examine their properties, hence, they do not obtain the domain (25.28) of existence
for the symmetric mode of localized oscillation.

In Fig. 25.3 one can see the plot of the value of the trapped mode frequency �+
defined according to Eq. (25.21) inside the domain of existence (25.28).

25.3.2 Antisymmetric Mode

Consider now the antisymmetric mode. One substitutes n = 1 into Eq. (25.12) and
gets (

(K − 1)(G2 − G0) − 1
)
U a

1 = 0. (25.29)

The non-trivial solution for U a
1 exists if and only if

(K − 1)(G2 − G0) − 1 = 0. (25.30)

Substituting expression (25.82) for the Green function, and simplifying the compli-
cated expression obtained yields the following frequency equation:

2K − �2 = �
√

�2 − 4. (25.31)

Equation (25.31) after squaring, which is possible if and only if
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2K − �2 ≥ 0, (25.32)

can be equivalently transformed to the form of the following expression:

�2 = K 2

K − 1
. (25.33)

One can see that � ∈ R, if and only if

K > 1. (25.34)

Finally, the domain of existence for the antisymmetricmodewith frequency (25.33) is
the area in the two-dimensional parameter space, where inequalities (25.32), (25.34),
and (25.79) are fulfilled. Substituting Eq. (25.33) into restrictions (25.32), (25.79),
respectively, leads to the following inequalities:

K (K − 2)

K − 1
≥ 0, (25.35)

K 2

K − 1
> 4. (25.36)

The solution of the set of inequalities (25.34)–(25.36) is

K > 2. (25.37)

Thus, provided that (25.37) is true, there exists the unique antisymmetric localized
mode with frequency given by (25.33).

Results of Sect. 25.3.2 re-obtain the ones derived by Montroll and Potts in
(1955). Namely, in Montroll and Potts (1955) the authors obtained frequency equa-
tion (25.30), Eq. (25.33) for the frequency of antisymmetric localized mode and
domain of its existence (25.37).

25.3.3 The Special Case K = 1

Consider the particular case K = 1.The antisymmetricmode in this case cannot exist.
For the symmetric mode frequency equation (25.19) transforms to the following one:

m(2 − m)�2 − 4 = 0. (25.38)

Hence, the frequency of the localized mode is

� = �0
def= 2√

m(2 − m)
. (25.39)
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Here, obviously,m < 2, since� ∈ R. The left-hand side of Eq. (25.18) with� given
by (25.39) is

L(�0)R(�0) = 4(m − 1)m6

(m − 2)6
. (25.40)

Thus, Eq. (25.18) is equivalent to
m ≤ 1. (25.41)

Taking into account that restriction (25.79) for � described by Eq. (25.39) is equiv-
alent to the inequality

(m − 1)2 > 0, (25.42)

which it true for all m �= 1, one gets the expression for the domain of existence for
the localized mode

m < 1. (25.43)

Note that it is the particular case of Eq. (25.28) for K = 1.
These results for the particular case K = 1 are well known in the literature and

coincide with the ones previously obtained in many studies, e.g., in Montroll and
Potts (1955) or in recent paper (Shishkina and Gavrilov 2023).

25.4 The Case of an Asymmetric Inclusion

Let us take γ = 0 and substitute n = 0 and n = 1 into Eq. (25.9). We obtain the
following homogeneous set of linear algebraic equations for unknown U0 and U1:

(
(m − 1)�2G0 − (K − 1)(G0 − G1) − 1

)
U0 + (K − 1)(G0 − G1)U1 = 0,

(25.44)
(
(m − 1)�2G1 − (K − 1)(G1 − G0)

)
U0 + (

(K − 1)(G1 − G0) − 1
)
U1 = 0.

(25.45)

Here one have taken into account that Gn = G−n . A non-trivial solutions exist if
and only if the determinant of the set is zero. Substituting expression (25.82) for
the Green function Gn , calculating the determinant, and simplifying the complicated
expression obtained lead to the frequency equation for the localized mode:

�L(�) = −
√

�2 − 4R(�), (25.46)
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where

L(�) = m�4 − (
1 + K + 3m + Km

)
�2 + 2 + 4K + 2Km, (25.47)

R(�) = m�4 − (
1 + K

)(
1 + m

)
�2 + 2K . (25.48)

Here we have taken into account that (25.79) is fulfilled. Equation (25.46) after
squaring, which is possible if and only if

L(�)R(�) ≤ 0, (25.49)

can be equivalently transformed to the form of the following bi-quadratic equation:

m(m − 1)(K − 1)�4 + (
K 2 − (1 − Km)2

)
�2 − 4K 2 = 0. (25.50)

In the case
m �= 1 and K �= 1 (25.51)

the solution of Eq. (25.50) is

�2 = �2±
def= (1 − Km)2 − K 2 ±

√(
1 + K (m − 1)

)2(1 + K (2 − 6m + K (1 + m)2)
)

2(K − 1)(m − 1)m
.

(25.52)
The special case K = 1 is considered in Sect. 25.3.3. The case m = 1 is treated in
Sect. 25.4.1. Since � ∈ R, the discriminant for Eq. (25.50) must be non-negative:

1 + K (m − 1) = 0 or 1 + K (2 − 6m + K (1 + m)2) ≥ 0. (25.53)

The first expression in Eq. (25.53) is equivalent to

K = 1

1 − m
. (25.54)

For inequality (25.53) one can obtain the following equivalent one:

(1 + m)2K 2 + 2(1 − 3m)K + 1 ≥ 0. (25.55)

We can demonstrate that this inequality is satisfied if and only if

(
m ≤ 1 and K > 0

)
or

(
m > 1 and K ∈ (0, K−] ∪ [K+,+∞)

)
, (25.56)

where

K±
def= 3m − 1 ± 2

√
2m(m − 1)

(1 + m)2
. (25.57)
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Note that K+ = K− = 1/2 at m = 1.
Finally, the domain of existence formodeswith corresponding frequencies�± are

areas in the two-dimensional parameter space, where restrictions (25.79), (25.49),
and (25.56) are fulfilled. For modes with frequency � = �− and � = �+ the
domains of existence are plotted in Fig. 25.4a, b, respectively (see zone “4” in each
plot).

The boundaries for the domain of existence for the modes with the frequencies
� = �± correspond to the common roots of the equation

Fig. 25.4 The domain of existence (zone 4) for the mode with the frequency a� = �−, b� = �+
in the case of asymmetric inclusion. Outside of zone “1” restriction (25.56) is true; in zone “2”
inequality (25.77) is true; in zones “2” and “3” inequality (25.49) is false
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L(�)R(�) = 0, (25.58)

and frequency equation (25.46).

Lemma 2 Provided that Eqs. (25.2), (25.5), (25.51) are true, the solutions of set of
Eqs. (25.58), (25.46) are

1. � = 2, which exists if and only if

K = 2 − 1

m
; (25.59)

2.

� =
√

2

(1 − m)m
, (25.60)

which exists if and only if inequality

m < 1 (25.61)

and Eq. (25.54) are fulfilled.
There are no more solutions.

Proof Clearly, the right-hand side of (25.46) is zero at � = 2. Thus, � = 2 is the
solution of set (25.58), (25.46) if and only if L(2) = 0. Calculating L(2) yields:

Km − 2m + 1 = 0, (25.62)

which is equivalent to Eq. (25.59).
Let � �= 2 satisfies Eqs. (25.58), (25.46). Equation (25.58) can be fulfilled if and

only if � is a common root of equations:

L(�) = 0, (25.63)

R(�) = 0. (25.64)

Therefore,
L(�) − R(�) = 2(−m�2 + K (1 + m) + 1) = 0, (25.65)

which is equivalent to

� =
√
1 + K (1 + m)

m
. (25.66)

Since Eq. (25.58) is true, Eq. (25.50) follows from Eq. (25.46). Thus, Eq. (25.66)
should be a common root of Eq. (25.65) and bi-quadratic equation (25.50). Substi-
tuting Eq. (25.66) into Eq. (25.50) leads to
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− 4(1 + K (m − 1))2 = 0, (25.67)

which is equivalent to Eq. (25.54). For such values of K

� = �±
∣∣
K= 1

1−m
=

√
2

(1 − m)m
. (25.68)

It is clear, that the root (25.68) exists only if m < 1. �

One can see that the root defined by Eq. (25.68) satisfies restriction (25.79):

2

(1 − m)m
> 4 ⇐⇒ m2 + (m − 1)2 > 0. (25.69)

Hence, the boundary between zones “3” and “4” in Fig. 25.4a corresponds to the
curve, where Eq. (25.54) is fulfilled. The same boundary separates the left simply
connected domain of zone “3” and zone “4” in Fig. 25.4b. The boundary between
zone “4” and the right simply connected domain of zone “3” in Fig. 25.4b is defined
by Eq. (25.59).

The final conclusion can be formulated as follows. Provided that inequality

K > 2 − 1

m
(25.70)

is true, there exists the unique localized mode, which frequency equals � = �− if

m < 1 and K >
1

1 − m
, (25.71)

and equals� = �+ otherwise.Note that form < 1 and K = 1/(1 − m) the localized
mode exists, and the corresponding frequency is defined by Eq. (25.68).

In Fig. 25.5 one can see the plot of the value of the trapped mode frequency �±
defined according to Eq. (25.52) and the root selection condition (25.71) inside the
domain of existence (25.70).

25.4.1 The Special Case m = 1

Consider the special case m = 1, K �= 1. Frequency equation (25.46) transforms to
the following one:

(2K − 1)�2 − 4K 2 = 0. (25.72)

Hence, the frequency is

� = 2K√
2K − 1

. (25.73)
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One can see that � ∈ R if and only if K > 1/2. It is easy to show that the frequency
defined by Eq. (25.73) satisfies restriction (25.79) if and only if K �= 1.

Now we should verify restriction (25.49). Equations (25.47), (25.48) calculated
at � given by (25.73) transform to the following ones:

L(�) = 2(1 − K )

(2K − 1)2
, (25.74)

R(�) = 2K

(2K − 1)2
. (25.75)

Obviously, inequality (25.49) is satisfied for K ≥ 1. Since we consider K �= 1, we
conclude that the localized mode with frequency Eq. (25.73) exists if and only if
K > 1.

The results of this particular case were previously obtained in Maradudin et al.
(1963).

25.5 Discussion

The spectral problem concerning the existence of localized modes of oscillation in
1D harmonic crystal with a single mass-spring inclusion has been investigated in
the paper. We have considered two types of inclusion, namely, a symmetric inclu-
sion (Fig. 25.1a), and an asymmetric inclusion(Fig. 25.1b). Note that the obtained
results were verified by numerical calculation of a fundamental solution for the cor-
responding non-stationary problems at a number of various values of the problem

Fig. 25.5 The value of the trapped mode frequency � = �± defined according to Eq. (25.52)
and the root selection condition (25.71) inside the domain of existence (25.70) in the case of an
asymmetric inclusion
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parametersm and K . The presence of a localizedmode can be easily discovered in the
non-stationary response of a system as a non-vanishing oscillation with correspond-
ing frequency (Teramoto and Takeno 1960; Rubin 1963; Shishkina and Gavrilov
2023; Yu 2019; Shishkina et al. 2023). The perfect agreement was obtained.

For the case of a symmetric mass-spring inclusion (Sect. 25.3) oscillation can be
uncoupled into two components, namely, the symmetric and antisymmetric ones.
For the symmetric mode expression (25.21) for the natural frequency � = �+ is
obtained. For the symmetric mode the domain of existence is defined by Eq. (25.28),
see Fig. 25.2 for details. The frequency of the antisymmetric mode is given by
Eq. (25.33).

Note that the case of a symmetric mass-spring inclusion was previously consid-
ered by Montroll and Potts in their famous study (Montroll and Potts 1955), where
the expression for the frequency of the antisymmetric localized mode in the form of
Eq. (25.33), as well as the frequency equation for the symmetric mode, coinciding
with bi-quadratic equation (25.19), were obtained. The solution of Eq. (25.19) was
not derived, and the domains of existence for modes with frequencies �± defined by
Eq. (25.21) were not investigated. Note that, as far as we understand (see Remark 1),
our unsquared frequency equation (25.15) cannot be reduced to the unsquared fre-
quency equation in Montroll and Potts (1955) (see equation (3.22) in Montroll and
Potts 1955). Moreover, in book (Maradudin et al. 1963) the corresponding prob-
lem concerning the symmetric localized mode is not accounted in the list of known
analytically solvable 1D problems.

In study Yu (2019) the momentum autocorrelation function for the alternated
mass in a chain with a symmetric defect is investigated. This function coincides with
(Rubin 1963) a fundamental solution of the deterministic problem (with accuracy to
a constant multiplier). The non-vanishing component of the momentum autocorre-
lation function consists of contributions from modes with frequencies �± defined
by Eq. (25.21). Restriction (25.18) is not introduced into consideration. In order
to select the appropriate value of the frequency among two possible values given
by (25.21), Yu calculates the amplitudes of the corresponding modes and rejects the
mode with frequency �− due to its “non-physical nature”, since its amplitude is
greater than the initial particle velocity. In the present study we demonstrate that the
criterion for the choice of the proper root (25.21) of the frequency equation in the
form of bi-quadratic equation (25.19) is restriction (25.18), which makes possible
the squaring of Eq. (25.15). We also demonstrate that the boundary of the domain
of existence (25.28) corresponds to a root of Eqs. (25.23), whereas in Yu (2019) it
is declared that the boundary corresponds to a minimal (in some sense) value of the
frequency�+. In our opinion, although the results obtained in Yu (2019) are correct,
they have been derived by a wrong way.

For the case of an asymmetric mass-spring inclusion (Sect. 25.4) the domain
of existence for the localized mode defined by inequality (25.70) is divided into
two areas, to which different roots � = �± (25.52) of frequency equation (25.50)
correspond. The choice of the proper root should be done according to condition
(25.71). We have not found any study where the spectral problem for an asymmetric
inclusion was considered, although there may be some.
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The special particular cases considered in Sects. 25.3.3, 25.4.1 were previously
considered in Maradudin et al. (1963); Montroll and Potts (1955).

The plots for values of the localized modes frequencies inside the corresponding
domains of existence are presented in Figs. 25.3 and 25.5 for the cases of a symmetric
and an asymmetric inclusion, respectively. One can see that the plots have qualita-
tively similar structure, the essential difference can be observed only for enough
small values of m and K .

The results of the paper can be used, in particular, in the investigation of non-
stationary waves anti-localization (Shishkina et al. 2023) in infinite discrete systems.
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Appendix

Here we discuss the dispersion relation and the Green function in the frequency
domain for the uniform chain. Assuming the solution to be in the form of Eqs. (25.4),
(25.6) we get the dispersion relation for a uniform chain corresponding to the one
described by Eq. (25.1):

�2 = 4 sin2
q

2
≡ 2(1 − cos q), (25.76)

where� ∈ R is the frequency, q is the wave-number. The detailed analysis of the dis-
persion relation for a uniform chain is given, for example, in Shishkina and Gavrilov
(2023).

The whole frequency band � ∈ R can be divided to the pass-band, where

�2 < �2
∗ ≡ 4, (25.77)

q = ± arccos
2 − �2

2
, (25.78)

i.e., the corresponding wave-numbers q(�) are reals, and the stop-band, where

�2 > �2
∗ ≡ 4, (25.79)

q = π ± i arccosh
1

2
(�2 − 2) = π ± i ln

(
1

2
(�2 − 2) +

√
1

4
(�2 − 2)2 − 1

)

,

(25.80)

i.e., the corresponding wave-numbers are imaginary. Here
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�∗
def= 2 (25.81)

is the cut-off (or boundary) frequency, which separates the bands.
The Green function in the frequency domain for the corresponding uniform chain

in the stop-band is Montroll and Potts (1955), Shishkina and Gavrilov (2023)

Gn(�) = (−1)|n|2|n|

�|n|−1(�)((−�2 + 2)�(�) + 4)
, (25.82)

where
�(�)

def= �2 − 2 + |�|
√

�2 − 4. (25.83)
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