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a b s t r a c t 

We present a new mechanical model of interatomic bonds, which can be used to describe the elastic 

properties of the carbon allotropes, such as graphite, diamond, fullerene, and carbon nanotubes. The in- 

teratomic bond is modeled by a hyperboloid–shape truss structure. The elastic characteristics of this bond 

are determined. Previous known structural models also used elastic elements (beams, trusses) to simu- 

late a carbon bond. However unlike them our model satisfies to the correct ratio of the longitudinal and 

lateral stiffness, observed from the previous experimental and theoretical results. Parameters of the bond 

in application for graphene and diamond were determined. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Mechanical properties of carbon nanostructures have been ex-

ensively studied by scientists all over the world since the mid-

le of the twentieth century. The elastic properties of two most

ommon allotropes of carbon: diamond and graphite were experi-

entally determined in works McSkimin and Andreatch Jr (1972) ;

cSkimin and Bond (1957) and Blakslee et al. (1970) , respectively.

ue to the unique crystal structure, diamond and lonsdaleite are

onsidered as the most durable of the existing materials. At the

ame time it was predicted that graphite should also have an out-

tanding tensile strength in the basal plane, but the plane orthog-

nal to the base has significantly lower tensile strength ( Blakslee

t al., 1970; Bosak et al., 2007 ). Discovery of such materials as

ullerenes ( Kroto et al., 1985 ), carbon nanotubes ( Iijima et al.,

991 ), and graphene ( Geim and Novoselov, 2007 ) at the turn of

he present century, warmed up the interest of the scientific com-

unity to the properties of carbon and the structures it is capable

o form. 

A key point in the study of the carbon allotropes and its proper-

ies at the micro level is the choice of a model describing the inter-

tomic bonds. The ab initio methods developed in the past decade

ue to the advances of quantum physics and chemistry are widely

sed to model carbon nanostructures ( Bichoutskaia et al., 2006;

udin et al., 2001; Yanovsky et al., 2009; Zhou et al., 2001 ). Ap-

arently, they are the most precise and predictively valid methods,
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ut due to the high complexity and high computational costs, they

re rarely used to describe even relatively small nanostructures,

ot to mention the objects of the size of a few micrometers. Vari-

us particle dynamics methods to simulate carbon nanostructures

ere applied in order to decrease the simulation time in compar-

son to ab initio approaches: molecular dynamics ( Golovnev et al.,

008; Jin and Yuan, 2003; Reddy et al., 2006; Yao et al., 2001 ) and

olecular mechanics ( Korobeynikov et al., 2014 ). These methods

uggest that atoms interact as material points through the empiri-

al interaction potentials. In turn, these potentials are partly based

n the quantum mechanical calculations. Such approaches reduce

he problem to the solution of the ordinary differential equations

t each time step. In addition, they require significantly less com-

utational cost than ab initio methods. 

At the same time it was shown ( Berinskii and Krivtsov, 2010;

hang et al., 2002 ) that a number of commonly used interaction

otentials to simulate the graphene, graphite and diamond bonds

 Allinger et al., 1989; Brenner et al., 2002; Tersoff, 1988 ) do not

eet the experimentally determined elastic moduli. Furthermore,

he empirical interaction potentials depending on the position of

 number of particles include a large number of parameters with

o clear physical meaning. At the same time they are inferior to

he pairwise potentials of the Lennard-Jones or Morse type that

epend only on the difference between the position vectors of the

nteracting particles. However, the classical pairwise potentials do

ot adequately describe the majority of covalent structures, which

nclude carbon allotropes. Such structures are characterized by a

ow crystal packing density and oriented interatomic bonds. The

se of a pairwise potential leads to the maximizing of a packing

ensity that in turn causes the collapsing of a model. A possible
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Fig. 1. 3D model of the carbon interatomic bond. 
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solution is to take the rotational degrees of freedom for the carbon

atoms into account ( Grekova and Zhilin, 2001; Ivanova et al., 2007;

Vasiliev et al., 2010 ) and develop a generalized moment (torque)

potentials ( Berinskii et al., 2007; Kuzkin and Krivtsov, 2011; Kuzkin

and Asonov, 2012; Tovstik and Tovstik, 2012 ) for simulations. In

these works the atoms are assumed to be the solid bodies, not

just the material points, and interaction between them is described

both by the forces and the torques. It gives the interatomic bond

additional lateral stiffness, providing the desired angle between

the bonds in the lattice. Torque potentials combine the relative

simplicity (they are, in fact, pairwise) and versatility. They inde-

pendently determine the longitudinal, lateral, torsional and flexu-

ral bond rigidity. On the one hand it gives the freedom to choose

the parameters of the simulation. On the other hand, if the lon-

gitudinal and lateral stiffness can be unambiguously determined

from the experimentally measured elastic characteristics, the flex-

ural and torsional bond stiffness depends on the couple-stress ten-

sor components of the crystal lattice, for which to date there is no

experimental data. On the macrolevel taking the rotational degrees

of freedom into account allows to construct a generalised model

of material ( Eremeyev et al., 2012; Forest et al., 20 0 0; Maugin and

Metrikine, 2010 ). 

The foregoing approaches can be attributed to the discrete

methods, meaning that the crystal lattice is considered to be a

set of interacting particles. However, there are some other ap-

proaches that are closer to the field of the classical mechanics.

Such approaches are so–called structural or discrete–continuous

methods ( Cheng et al., 2009; Goldstein et al., 2008; Kalamkarov

et al., 2006 ). The most straightforward example of the structural

method is a covalent bond modeled by the solid deformable rod

( Li and Chou, 2003; Tserpes and Papanikos, 2005 ). The distinc-

tion of these methods from the discrete ones consists in that the

interatomic bonds are modeled as a deformable body or a con-

struction. Besides the perception simplicity, these approaches have

one more important advantage. They can be implemented in stan-

dard computing packages based on the finite–element, boundary–

element, or finite difference methods. These methods can be con-

sidered as the bridges between the parameters of atomistic and

continual models of the material. E.g. the classical elastic contin-

ual model has to be isotropic in case of graphene ( Berinskii and

Borodich, 2013a ) and therefore has only two independent parame-

ters. 

The interatomic bond energy can be specified by a interatomic

potential as a function of the distance between the nearest inter-

acting atoms and the angles between the adjacent bonds in the

lattice. The parameters of the potentials are chosen based on the

elastic properties of the entire lattice. At the same time, the bind-

ing energy is equivalent to the energy of the rod deformation that

depends on its length and its angular deflection. By comparing the

energies one can determine the parameters required for the rod

model. In particular, if the Euler–Bernoulli model of the rod is con-

sidered, then the parameters are Young’s modulus of the bond and

its diameter. More complex models can be used, e.g. the Timo-

shenko beam. However in this case an additional parameter ap-

pears namely the Poisson ratio of the rod. Its exact value cannot be

determined ( Berinskii et al., 2014 ). The circular section rod model

imposes some limitations on the properties of carbon bond, but

at the same time it allows to determine not only the longitudi-

nal and transverse, but also the torsional and flexural stiffness us-

ing only two parameters. These parameters are necessary to deter-

mine the bending stiffness of a crystal lattice of the graphene sheet

( Berinskii et al., 2014 ). Modelling of the graphene layer deforma-

tion with regard to the available experimental data shows that the

ratio of the lateral bond stiffness C 2 between the carbon atoms to

the longitudinal stiffness C 1 is approximately 1/2 ( Ivanova et al.,

2007 ). However, the rod bond model at the reasonable parameters
ive a much lower value of the flexural rigidity. Thus, the value of

/2 can only be achieved if the thickness of the rod is close to its

ength and the material of the rod should have the negative Pois-

on ratio ( Berinskii and Borodich, 2013b ). So, an important issue is

o find a relatively simple mechanical model that allows for such a

atio of stiffness. 

There are other conclusive structural models of the graphene

nd nanotubes, e.g. ( Goldstein et al., 2008; Odegard et al., 2002 ).

owever, we have shown earlier ( Berinskii and Borodich, 2013b )

hat they cannot meet the required stiffness ratio. 

In this paper, the carbon bond model is built on the symmetry

roperties of the hyperboloid. These properties allow it to achieve

 high ratio of the lateral and longitudinal stiffness, therefore the

yperboloid shapes are widely used in the engineering to cre-

te lightweight constructions consisting of straight beams that are

nown for being able to carry a large load while achieving a low

se of raw materials. In particular, the first hyperboloid tower was

uilt by Russian engineer V.G. Shukhov in Nizhny Novgorod (1896)

 English, 2005 ). Being widely demanded in architecture and engi-

eering, such models still haven’t found a wide use in micro- and

anomechanics. It appears that the analogy drawn from the macro

evel will allow to describe correctly the properties of carbon ma-

erials at the micro level. 

. A hyperboloid carbon model: compression and tension 

tiffness 

We model a carbon bond as a rigid structure, which is con-

tructed as follows. Let us introduce the unit vectors of Cartesian

asis i, j, k . Here and after the vector and tensor values are de-

oted by bold letters. Unit vector i determines a direction of the

ond, unit vectors j and k determine a plane perpendicular to the

ond. Next, consider a cylinder with an axis coinciding with the

ond direction, and with the height equal to its length. Bases of

he cylinder have a radius of R = b/ 2 , where b is a bond width. 

Then place a set of N truss elements with stiffness k along the

eneratrices of the cylinder so that they are evenly distributed over

he cylinder surface. We then rotate one of the bases of the cylin-

er around its axis until it makes an angle γ . Then the trusses

ill rest on the one-sheet hyperboloid surface connecting the two

ylinder bases ( Figs. 1 and 2 ). Vectors c n connecting the start and

he end point of the truss members of hyperboloid may be repre-

ented as 

 n 
def = −R s n + a i + R ̃

 s n , (1)

here 

 n 
def = P ( 

2 nπ
i ) ·j , ˜ s n 

def = P (γ i ) ·s n ; n = 1 , 2 , . . . , N; (2)

N 
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Fig. 2. Model of the carbon interatomic bond (top view). 
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Fig. 3. Longitudinal, transversal, torsional and bending stiffness as the functions of 

angle γ . 

Fig. 4. (a) an interatomic bond between two atoms, (b) a typical hexagon of 

graphene crystal lattice. 
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b  
he unit vectors s n and 

˜ s n specify the attachment points of the

russes to the base of the cylinder. P ( γ i ) denotes the turn–tensor

round unit vector i by angle γ ( Grekova and Zhilin, 2001 ). 

The resulting structure will have tension and shear stiffness,

ut will not have a torsion stiffness. To eliminate this shortcoming,

e introduce the second set of N truss members of hyperboloid,

wisted in the opposite direction ( Fig. 2 ): 

 

′ 
n 

def = −R s n + a i + R ̃

 s 
′ 
n , ˜ s 

′ 
n 

def = P ( −γ i ) ·s n . (3)

f γ = π/N, then the set of trusses of the first and the second type

orm a side surface of the antiprism, which is a polyhedron with

wo N -gon end faces and 2 N triangular lateral faces. The geometri-

al properties of the interatomic bond are considered in more de-

ails at Appendix B . 

A stiffness tensor of the resulting structure has the form 

 = 

k 

c 2 

∑ 

n 

(
c n c n + c ′ n c ′ n 

)
, (4) 

here c is the modulus of the corresponding vectors: 

 = | c n | = | c ′ n | = 

√ 

R 

2 ( s n − ˜ s n ) 
2 + a 2 = 

√ 

2 R 

2 (1 − cos γ ) + a 2 . 

(5) 

et us calculate the sum 

 

n 

c n c n = 

∑ 

n 

(
R 

2 ( s n − ˜ s n ) ( s n − ˜ s n ) + a 2 ii 

)
. (6)

ere we implement 
∑ 

n s k = 

∑ 

n ̃  s k = 0 . By virtue of the symmetry,

 > 2 

 

n 

( s n − ˜ s n ) ( s n − ˜ s n ) = 

N 

2 

( s n − ˜ s n ) 
2 ˜ E = N(1 − cos γ ) ̃  E , (7)

here ˜ E = jj + kk is a unit tensor in the plane perpendicular to the

ond. Upon substituting these values in formula (4) for the stiff-

ess tensor, one obtains: 

 = 

2 Nk 

c 2 

(
R 

2 (1 − cos γ ) ̃  E + a 2 ii 

)
. (8)

ormula (8) gives the following expressions for the longitudinal

nd lateral stiffness 

 1 = 2 Nk 
a 2 

c 2 
, C 2 = 2 Nk 

R 

2 

c 2 
(1 − cos γ ) . (9)

onsideration of torsion and bending of the hyperboloid bond (see

ppendix C and Appendix D ) gives the following formulae: 

 3 = 2 Nk 
R 

4 

2 
sin 

2 γ , C 4 = 

R 

2 a 2 kN 

2 
(1 + cos γ ) (10)
c 2 c 
here C 3 is a torsional and C 4 is a bending stiffness respectively.

et us represent every stiffness as 

 1 = C 0 1 , C 2 = C 0 2 (1 − cos γ ) , C 3 = C 0 4 sin 

2 γ , 

C 4 = C 0 4 (1 + cos γ ) (11) 

here C 0 
1 

− C 0 
4 

are constant values which can be obtained form

10) and (11) . Fig. 3 shows the dependencies of C 1 − C 4 on γ . One

an see that at γ = π/ 2 all functions are far from zero. C 1 , C 2 and

 4 have the mean values, at the same time C 3 has its maximum

alue. Hence, the case γ = π/ 2 is natural for practical applications.

Using the model of the interatomic bond proposed above and

aking the symmetry of the crystal lattice into account it is pos-

ible to construct the model of given material. For instance, the

odel proposed for graphene is shown at Fig. 4 . Ghaphene and

arbon nanotubes have covalent sp2 bonds leading to the hexago-

al symmetry of crystal lattice ( Cooper et al., 2012; Pierson, 2012 ).

he carbon atoms at Fig. 4 are represented as the triangles to take

his symmetry into account. It does not mean that carbon atoms

n such model have to be always simulated as the rigid triangles.

owever, sometimes this representation can be successfully used

 Berinskii et al., 2007 ). In case of diamond one has sp3 hybridized

arbon bond ( Pierson, 2012 ), and the atoms can be represented as

egular tetrahedrons ( Fig. 5 ). Other carbons allotropes ( Falcao and

udl, 2007 ) also can be considered with hyperboloid model. 

. Ratios between the bond stiffness in different directions 

As it was mentioned in introduction, the relation C 2 / C 1 for car-

on materials often exceeds 1/2. It will be shown later that some



148 I.E. Berinskii, A.M. Krivtsov / International Journal of Solids and Structures 96 (2016) 145–152 

Fig. 5. Representation of sp3 hybridized carbon atom (diamond). 
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Fig. 6. Relations C 2 / C 1 and C 3 / C 4 as functions of angle α = arctan b 
a 

at γ = π/ 2 . 

Table 1 

The stiffness ratio values. 

γ 0 π /2 π

C 1 / C a 2 / c 2 a 2 / c 2 a 2 / c 2 

C 2 / C 0 R 2 / c 2 2 R 2 / c 2 

C 3 / C 0 R 4 / c 2 0 

C 4 / C R 2 a 2 /(2 c 2 ) R 2 a 2 /(4 c 2 ) 0 

C 2 / C 1 0 R 2 / c 2 2 R 2 / c 2 

C 4 / C 3 ∞ a 2 /(4 R 2 ) 0 
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simple models can not satisfy this relation with reasonable param-

eters. Let us consider the relation mentioned above for hyperboloid

model. 

C 2 
C 1 

= 

R 

2 

a 2 
(1 − cos γ ) = 

b 2 

a 2 
1 − cos γ

4 

, (12)

where b = 2 R is the bond width. In the two-dimensional case the

stiffness ratio is b 2 / a 2 . According to the formula (12) , the maxi-

mum stiffness ratio is reached at γ = π . However, γ = π case is

degenerate because all the trusses intersect at a single point. An-

other case, γ = π/ 2 , is more realistic, so we write: 

C 2 
C 1 

= 

R 

2 

a 2 
= 

1 

4 

b 2 

a 2 
. (13)

For instance, the value for the stiffness ratio 1/2 is attained at 

R = 

√ 

2 

2 

a ≈ 0 . 7 a, b = 

√ 

2 a ≈ 1 . 4 a. (14)

Hence, the thickness of hyperboloid can exceed it’s length and it

does not contradicts the physical sense unlike the rod models of

the bond. Let us calculate then the corresponding value of c 

c = 

√ 

a 2 + b 2 = 

√ 

3 a ≈ 1 . 7 a. (15)

Then we get the bond stiffness 

 1 = 

1 

3 

C, C 2 = 

1 

6 

C; C 
def = 2 Nk. (16)

Where C is the total truss members’ stiffness. 

We next write down stiffness (9) in the form 

 1 = C cos 2 α, C 2 = C sin 

2 α
1 − cos γ

4 

= 

1 

2 

C sin 

2 α sin 

2 γ

2 

. (17)

Where C = 2 Nk, α = arctan 

b 
a . Then we get the stiffness ratio 

C 2 
C 1 

= tan 

2 α
1 − cos γ

4 

= 

1 

2 

tan 

2 α sin 

2 γ

2 

. (18)

Similarly, one can obtain for C 3 and C 4 

 3 = 

1 

4 

CR 

2 sin 

2 α sin 

2 γ , C 4 = 

1 

4 

R 

2 

(
a 2 

c 2 

)
C(1 + cos γ ) . (19)

A corresponding stiffness ratio can be found as: 

C 3 
C 4 

= tan 

2 α
sin 

2 γ

1 + cos γ
. (20)
he functions of ratios on the angle α at γ = π/ 2 are shown at

ig. 6 Let us denote 

C 2 
C 1 

= 

κ2 

2 

, (21)

here κ is undefined constant with order of unity. Then using

18) we obtain: 

an α sin 

γ

2 

= κ. (22)

t gives us the following representation for the trigonometric func-

ions of argument α: 

an α = 

κ

sin 

γ
2 

, sin α = 

κ√ 

κ2 + sin 

2 γ
2 

, cos α = 

sin 

γ
2 √ 

κ2 + sin 

2 γ
2 

,

(23)

nd formulas (17) take the form 

 1 = 

sin 

2 γ
2 

κ2 + sin 

2 γ
2 

C, C 2 = 

1 

2 

κ2 sin 

2 γ
2 

κ2 + sin 

2 γ
2 

C. (24)

n particular, if put κ = 1 and γ = π/ 2 , one obtains values (16) for

he stiffness. Similarly, we find the expressions for the torsional

nd flexural stiffness. In the general case using (C.8) and (23) we

rrive at 

 3 = 

1 

4 

κ2 sin 

2 γ

κ2 + sin 

2 γ
2 

CR 

2 (25)

or the bending stiffness formulas (D.18) and (23) result into 

 4 = 

1 

16 

κ2 (1 + cos γ ) 

κ2 + sin 

2 γ
2 

Ca 2 (26)

he stiffness values for various γ are shown in Tables 1 and 2 . 

. Comparison with the rod models 

Let us compare the hyperboloid model and rod model of the

arbon bonds. The longitudinal and transversal stiffness for the

uler–Bernoulli model (EBM) and the Timoshenko model (TM) are



I.E. Berinskii, A.M. Krivtsov / International Journal of Solids and Structures 96 (2016) 145–152 149 

Table 2 

The stiffness ratio values, expressed in terms of α = 

arctan b 
a 

. 

γ 0 π /2 π

C 1 / C cos 2 α cos 2 α cos 2 α

C 2 / C 0 1 
4 

sin 
2 α 1 

2 
sin 

2 α

C 3 / C 0 R 2 

4 
sin 

2 α 0 

C 4 / C 
a 2 

8 
sin 

2 α a 2 

16 
sin 

2 α 0 

C 2 / C 1 0 1 
4 

tan 2 α 1 
2 

tan 2 α

C 4 / C 3 ∞ cot 2 α 0 

Table 3 

Comparison of the models. 

Model type C 2 / C 1 ( C 2 /C 1 ) max 

EBM 

3 
4 

b 2 

a 2 
3 
4 

b 2 

a 2 
� 1 

TM 

3 
4 

π2 b 2 

π2 a 2 +18(1+ ν) b 2 
π2 

24 
≈ 0 . 41 

HM 

1 −cos γ
4 

b 2 

a 2 
+ ∞ 
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Table 4 

Parameters of the bonds for graphene and diamond. 

Material C 1 , N/m C 2 , N/m a , nm Source 

Graphene 730 402 0 .142 Ivanova et al. (2007) 

Diamond 472 338 0 .154 Krivtsov and Loboda (2012) 

Table 5 

Parameters of the bonds for graphene and diamond. 

Material b , nm C , N/m k , N/m ( N = 6) k , N/m ( N = 12) 

Graphene 0 .203 2387 199 99 

Diamond 0 .260 1824 152 76 
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b  
iven ( Berinskii et al., 2014 ). The longitudinal stiffness for both

odel is the same: 

 

EBM 

1 = C T M 

1 = 

EF 

a 
(27) 

ere E is a rod Young modulus, F is a cross section and a is its

ength. 

However, the transversal stiffness differ for two models. The

uler–Bernoulli model supposes the cross section is perpendicular

o the bending line. In a Timoshenko model rotation between the

ross section and the bending line is allowed. This makes the lat-

er model more complicated and one need to take the additional

arameters into account: 

 

EBM 

2 = 

12 EJ 2 
a 3 

, C T M 

2 = 

12 EJ 2 kF 

kF a 3 + 24 J 2 (1 + ν) a 
(28)

Here ν is a Poisson’s ratio, k = π2 / 12 is a transverse shear pa-

ameter, J 2 is a section moment of inertia. Let us consider the rods

ith a circular section so that 

 = 

πb 2 

4 

, J 2 = 

πb 2 

64 

(29)

tiffness ratio values C 2 / C 1 for the Euler–Bernoulli model (EBM),

he Timoshenko model (TM), and the hyperboloid model (HM) pro-

osed in this paper are presented in Table 3 . 

In addition, the table shows maximum possible stiffness ratio

alues C 2 / C 1 attainable within the realistic range of parameters. Re-

all that ν is the dimensionless Poisson ratio of the rod material,

hich in principle can range from −1 to 0.5, but for the most of

he real materials it varies from 0 to 0.5. The angle γ is a hyper-

oloid model parameter, ranging from 0 to π . 

The Euler–Bernoulli model, as it is shown in the table, gives a

esult similar to the hyperboloid model, but with a higher stiffness

the value of the coefficient of b 2 / a 2 in the BEM is higher than

n HM). However, the Euler–Bernoulli model is derived under the

ssumption that the rod is thin, i.e. b � a . Therefore, it can prop-

rly describe only the small stiffness ratio values, while the ex-

erimental data provides the values close to 1/2. The hyperboloid

odel, by contrast, is defined for any b / a value, so it can provide

ny stiffness ratio from zero to infinity (it’s impossible only in the

egenerate case, if γ = 0 ). 

Consider now the Timoshenko model. For the small values of

 / a the results are actually the same as the results given by the

uler–Bernoulli model. On the contrary, if b / a tends to infinity,

he model provides an expression, approaching the value π2 

24(1+ ν) 

ith no dependence on b / a . It takes the maximum value at ν = 0
hat gives π2 

24 ≈ 0 . 41 , which is less than the required experimen-

al value. Theoretically it is possible to achieve an arbitrarily large

tiffness ratio when ν → −1 , but the negative values of ν are not

ery natural. Additionally, even if b / a reaches a significant value,

he use of the Timoshenko model instead of the Euler–Bernoulli

odel is fairly straightforward, but still controversial. 

As a result, the aforementioned rod models allow to obtain

he experimental stiffness ratio only if they are close to, or even

ut of the applicability range. The proposed hyperboloid model

HM) is free from these drawbacks, it allows to obtain the experi-

ental stiffness ratio along with the reasonable parameter values.

hus, stiffness ratio 1/2 can be obtained for γ = π/ 2 and b/a = 

√ 

2 .

oreover, hyperboloid model allows to build a macroscopic model

f a carbon bond and carbon nanostructures that can be used for

he macroscopic simulation. 

. Parameters of hyperboloid bond for graphene and diamond 

Let us now calculate the parameters of the proposed model for

he real materials. The principal data are the values of transversal

nd longitudinal bond stiffness. These values were calculated pre-

iously and results are given in Table 4 : 

The data for graphene can be also used for carbon nanotubes

nd fullerens because these materials have the same type of car-

on bond. Let us choose γ = π/ 2 due to the arguments considered

n the previous sections. From (13) it follows: 

 

2 = 4 a 2 
C 2 
C 1 

, c 2 = a 2 + b 2 (30)

ow the total trusses stiffness C = 2 Nk can be found from the first

ow of Table 1 as 

 = C 1 

(
1 + 

b 2 

a 2 

)
(31) 

he last question is how to choose number of trusses ( N ). From one

oint of view more truss members bring more accurancy to the

odel. On the other hand, big number of trusses make the model

oo complicated and uneffective for simulations. Determination of

he optimal number of the trusses depends on the specific way of

imulation and considered task. Here the truss stffness k is calcu-

ated for two cases that give the perfect symmetry to the bond and

eem to be a reasonable choise: N = 6 and N = 12. The calculated

arameters are given in Table 5 . 

The data from Tables 4 and 5 can be used for realization of spe-

ific model (e.g. finite element model). The trusses in such model

an be sumulated as springs without mass or as the elastic rods. 

. Conclusion 

The previous investigations have shown that model of carbon

ond must reveal a ratio between the longitudinal and transverse
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Fig. Appendix B.1. Geometry of hyperboloid bond. 
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stiffness equal approximately 1/2. A significant disadvantage of the

known structural models of carbon bonds is that they do not al-

low this ratio without loss of the physical meaning of the model.

In this paper we proposed a hyperboloid shaped rod construction

as a new mechanical model of the carbon bond. Rotation angle γ
between the two bases of the construction is taken as a free model

parameter. The influence of this parameter on the geometry of the

carbon bond is estimated. The given work provides the stiffness ra-

tio values computed for different γ . In particular, it is shown that

the choices γ = 0 (corresponds to a cylindrical surface), and γ = π
(a conical surface) are the degenerate cases corresponding to the

zero shear, torsional or bending stiffness. Selecting γ = π/ 2 allows

to avoid the degenerate cases, and the structure in this case has

the hyperboloid shape. 

The following values are determined analytically: tension-and-

compression (longitudinal) stiffness of the construction, shear

(transverse) stiffness, the torsional stiffness about the symmetry

axis, as well as the bending stiffness. The proposed model is com-

pared with the Euler–Bernoulli and Timoshenko rod models that

have been developed to simulate the carbon bonds earlier. It was

shown that the hyperboloid model combined with the elastic prop-

erties of the rods allows to achieve the experimental ratio between

the longitudinal and transverse carbon bond stiffness. 
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Appendix 

Let us write the basic formulas describing the geometry and

elastic properties of the three-dimensional hyperboloid bond. 

Appendix A. Basic notation 

a is a bond length; b is a bond width; 

R is a bond radius, R 
def = 

1 
2 b; 

c is a truss length, c 
def = 

√ 

a 2 + b 2 ; 

α is a bond width angle, α
def = arctan 

b 
a ; 

γ is a bond torsion angle; 

x is a coordinate along the bond; y is a coordinate across the

bond; 

k is truss stiffness; N is a number of the unidirectional truss

members of hyperboloid; 

C is a total trusses’ stiffness, C 
def = 2 Nk ; 

C 1 , C 2 , C 3 , C 4 are longitudinal, lateral,torsional and bending

bond stiffness; 

κ is a parameter of the covalency, κ2 def = 2 
C 2 
C 1 

; 

ϕ, � are the angles of hiperboloid torsion and bending respec-

tively; 

E, ν are the Young modulus and Poissone’s ratio for EBM and

TM; 

F, J 2 are the section are and moment of inertia for EBM and TM;

M T , M B are the torque and the bending moment 

Appendix B. Geometry of the hyperboloid bond model 

Let us define the geometric characteristics of the three-

dimensional bond. In the undeformed state the truss direction it
efined by formula (1) 

 n 
def = −R s n + a i + R ̃

 s n , (B.1)

here vector c n connects the attachment points of the truss mem-

ers of hyperboloid in the undeformed state. Let us introduce di-

ensionless variable ξ , taking the values from 0 to 1. Then the

osition of any point of the truss with respect to the bond center

an be determined by a vector 

 

def = r 0 + c n ξ , r 0 
def = − a 

2 

i + R s n . (B.2)

Let us introduce projections 

 

def = r ·i , y 
def = | r ·(E − ii ) | . (B.3)

or instance, x gives the vector projection on the direction of i ,

nd y is the projection length of x on a plane perpendicular to

 ( Fig. Appendix B.1 ). In other words, y expresses the distance

rom the point on the truss to the bond axis. Evaluating formulas

B.2) and (B.3) yields: 

 = aξ − a 

2 

, y = R | (1 − ξ ) s n + ξ ˜ s n | 
= R 

√ 

(1 − ξ ) 2 + ξ 2 + 2(1 − ξ ) ξ cos γ . (B.4)

ore convenient formulas can be obtained by introducing a new

ariable ζ : 

= 2 ξ − 1 , −1 ≤ ζ ≤ 1 . (B.5)

hen formulas (B.5) take the form 

 = 

a 

2 

ζ , y = R 

√ 

cos 2 
γ

2 

+ ζ 2 sin 

2 γ

2 

. (B.6)

xcluding ζ from these equations yields a hyperbola with respect

o variables x and y . 

y 2 

R 

2 
−

(
4 

a 2 
sin 

2 γ

2 

)
x 2 = cos 2 

γ

2 

. (B.7)

et us consider this equation for the three characteristic values of

= 0 : y = R, 

= 

π

2 

: 2 

y 2 

R 

2 
− 4 

x 2 

a 2 
= 1 , 

= π : y = ±2 

R 

a 
x. (B.8)

hus, y is a constant when γ = 0 , which corresponds to a cylin-

rical surface; if γ = π, then y varies linearly with x , which corre-

ponds to a conical surface; if γ = 

π
2 then the function of y on x

s a hyperbola. 

Variables x and y range in values 

a ≤ x ≤ a 
, y min ≤ y ≤ R, (B.9)
2 2 

http://dx.doi.org/10.13039/501100003443


I.E. Berinskii, A.M. Krivtsov / International Journal of Solids and Structures 96 (2016) 145–152 151 

w

y

I

γ  

T

I

γ

A

 

t  

s  

u  

m

M

T  

s

F  

S  

a

F  

T

M  

S

M

U

s

s

i

=

T

C  

A  

n  

I  

f  

v

 

I  

e

A

 

C  

a  

m

M  

T  

s

F  

S  

a

F  

T

M  

S  

o  

t

M  

L

M  

w

C  

T  

i

s  

T

C  

I  

l∑
 

F

C  

N

i  
here y reaches its minimum value at x = 0 : 

 min = R cos 
γ

2 

. (B.10) 

n particular: 

= 

π

2 

⇒ y min = 

R √ 

2 

≈ 0 . 7 R. (B.11)

he derivative of y with respect to x if x = a/ 2 is equal to 

dy 

dx 

∣∣∣∣
x = a 2 

= 4 

R 

2 sin 

2 γ
2 

a 2 
x 

y 

∣∣∣∣
x = a 2 

= 2 

R 

a 
sin 

2 γ

2 

. (B.12) 

n particular: 

= 

π

2 

⇒ 

dy 

dx 

∣∣∣∣
x = a 2 

= 

R 

a 
. (B.13) 

ppendix C. Torsional stiffness 

Let us find the torque about axis x with unit vector i for the

russ in the three-dimensional model. Imagine that the bottom

ide of the hyperboloid (1) was turned by an angle of ϕ about a

nit vector i . The corresponding torque of any separate truss ele-

ent will be following: 

 n T = R s n ×F n T (C.1) 

he force F n T for the given truss is determined by it’s tensor of

tiffness k 
c 2 

c n c n and displacement vector: 

 n T = 

k 

c 2 
(c n c n ) ·(−R s n ×ϕi ) (C.2)

imilarly, we have to take forces from other types of trusses into

ccount: 

 

′ 
n T = 

k 

c 2 
(c ′ n c ′ n ) ·(−R s n ×ϕi ) (C.3)

he resulting torque will be given by sum 

 T = 

∑ 

( M n T + M 

′ 
n T ) = −

∑ 

n 

R s n ×( F n T + F ′ n T ) (C.4)

ubstitution of (C.2) and (C.3) to (C.4) gives: 

 T = −
∑ 

n 

R s n × k 

c 2 

(
c n c n + c ′ n c ′ n 

)
· ( R s n × ϕi ) 

= −kR 

2 ϕ 

c 2 

(∑ 

n 

s n ×
(
c n c n + c ′ n c ′ n 

)
× s n 

)
· i (C.5) 

sing expression (1) for c n we get 

 n × c n = a s n × i + R s n × ˜ s n = a s n × i + R i sin γ , 

 n × c ′ n = a s n × i + R s n × ˜ s 
′ 
n = a s n × i − R i sin γ , 

( c n × s n ) · i = −
(
c ′ n × s n 

)
· i = −R sin γ ;

(C.6) 

t follows 

M T = − kR 2 ϕ 
c 2 

(∑ 

n s n ×
(
c n c n + c ′ n c ′ n 

)
× s n 

)
· i = 

 

kR 2 ϕ 
c 2 

R sin γ
∑ 

n 

(
( a s n × i + R i sin γ ) − ( a s n × i − R i sin γ ) 

)
= 

= 

2 NkR 4 ϕ 
c 2 

sin 

2 γ i . 

(C.7) 

hus, for torsional stiffness C 3 we arrive at 

 3 
def = 

| M T | 
ϕ 

= 2 Nk 
R 

4 

c 2 
sin 

2 γ . (C.8)
ccording to formula (C.8) if γ = 0 and γ = π the torsional stiff-

ess becomes zero and if γ = π/ 2 , it achieves the maximum value.

t is an additional argument to choose this value for γ . Comparing

ormulas (9) and (C.8) we find that the ratio of torsional and trans-

erse stiffness is 

C 3 
C 2 

= 

R 

2 sin 

2 γ

1 − cos γ
= 

R 

2 sin 

2 γ

2 sin 

2 γ
2 

= 2 R 

2 cos 2 
γ

2 

. (C.9)

f γ = π/ 2 , then the ratio of torsional and transverse stiffness is

xactly equal to R 2 . 

ppendix D. Bending stiffness 

Let us consider the bending stiffness of the hyperboloid bond.

onsider the rotation of the bottom side of the hyperboloid (1) by

n angle of � about a unit vector k . The corresponding bending

oment of separate truss element will be following: 

 n B = (−a i / 2 + R s n ) × F n B (D.1)

he force F n B for the given truss is determined by it’s tensor of

tiffness k 
c 2 

c n c n and displacement vector: 

 n B = 

k 

c 2 
(c n c n ) · (−R s n × �k ) (D.2)

imilarly, we have to take forces from other types of trusses into

ccount: 

 

′ 
n B = 

k 

c 2 
(c ′ n c ′ n ) ·(−R s n ×�k ) (D.3)

he resulting moment will be given by sum 

 B = 

∑ 

( M n B + M 

′ 
n B ) = −

∑ 

n 

(−a i / 2 + R s n )×( F n B + F ′ n B ) (D.4)

ubstitution of (D.2) and (D.3) to (D.4) gives the bending moment

f the three-dimensional hyperboloid model arising from turning

he end of the bond about k = s n ×i by angle �: 

 B = −
∑ 

n 

(−a i / 2 + R s n )× k 

c 2 
(c n c n + c ′ n c ′ n ) ·(R s n ×�k ) (D.5)

et us reformulate (D.5) as 

 B = 

k 

c 2 
R 

2 (C 

1 
4 − (aR/ 2) C 

2 
4 ) ·�k (D.6)

here 

 

1 
4 = 

∑ 

n 

s n ×(c n c n + c ′ n c ′ n )×s n C 

2 
4 = 

∑ 

n 

i×(c n c n + c ′ n c ′ n )×s n (D.7)

ensor C 

1 
4 will be considered separately. Using the identities result-

ng from (1) –(3) , one obtains: 

 n ×c n = a s n ×i + R sin γ i s n ×c ′ n = a s n ×i − R sin γ i (D.8)

hen we have: 

 

1 
4 = 2(a 2 i×

∑ 

n 

s n s n ×i − NR 

2 sin 

2 γ ii ) (D.9)

t is easy to see that for the spherical tensor from (D.9) , the fol-

owing relation holds: 
 

n 

s n s n = −(N/ 2) ̃  E (D.10)

inally, we arrive at: 

 

1 
4 = −N(a 2 ˜ E + 2 R 

2 sin 

2 γ ii ) (D.11)

ow, let us consider tensor C 

2 
4 
. It is easy to see that 

×c n = R i×( ̃ s n − s n ) i×c ′ n = R i×( ̃ s 
′ 
n − s n ) (D.12)
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Taking into account (D.8) and (D.12) , after transformations we get:

C 

2 
4 = −Ra i×

∑ 

n 

(s ′ n + ̃

 s n ) s n ξ + 2 aR i×
∑ 

s n s n i (D.13)

Using (2) and (3) we wright 

s ′ n + ̃

 s n = (P (γ i ) + P γ i )) ·s n = 2 ii + 2 ̃

 E cos γ (D.14)

To obtain this relation we use the formula for a turn–tensor from

Grekova and Zhilin (2001) : 

P (γ i ) = ii + cos γ ( ̃  E − ii ) + sin γ i×˜ E (D.15)

Using (D.9) , one can rearrange the second term in (D.13) : 

C 

2 
4 = −aRN(1 − cos γ ) ̃  E (D.16)

Introducing (D.11) and (D.16) into (D.6) , one obtains the bending

moment: 

M B = −R 

2 a 2 kN 

2 c 2 
(1 + cos γ )�k (D.17)

whence we obtain the bending stiffness 

 4 = 

| M B | 
�

= 

R 

2 a 2 kN 

2 c 2 
(1 + cos γ ) (D.18)

N.b. that the maximum value of the bending stiffness is reached at

γ = 0 , but if γ = π the bending stiffness becomes zero (the bond

takes the shape of an hourglass in this case). 
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