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A B S T R A C T   

The effect of graphene nanoribbon twist on its lateral buckling resistance to axial compression and on its thermal conductivity is analyzed with the help of molecular 
dynamics simulations. It is shown that the nanoribbon twisted by an angle close to π can withstand three times greater compressive force as compared to a flat 
nanoribbon. The explanation lies in the fact that such twist increases the effective area moment of inertia of the nanoribbon cross section. It is also found that the 
thermal conductivity coefficient of the nanoribbon increases monotonically up to 10% with increasing twist angle, in the regime of uniform twisting. This effect is 
due to the introduction of tensile strain in the twisted nanoribbon, which increases the contribution of the acoustic out-of plane (ZA) phonon modes to thermal 
conductivity. Our results demonstrate that twist deformation of nanoribbons can improve their mechanical and physical properties. The reported effects can be 
observed for 2D materials other than graphene because they have simple mechanical explanation not related to a particular crystal structure.   

1. Introduction 

Thermal management became a keypoint in investigation of mate-
rials suitable for application in new generation electronics due to 
decrease in their size (Anandan and Ramalingam, 2008). Anomalous 
thermal conductivity in low-dimensional, small size systems, not 
obeying the Fourier’s law, has been explained theoretically (Lepri et al., 
2003) and confirmed experimentally (Hsiao et al., 2013, 2015; Lee et al., 
2017). It has been found experimentally that the thermal conductivity of 
single-wall carbon nanotubes increases with their lengths over 1 mm at 
room temperature (Lee et al., 2017). Recent enormous activity in this 
direction has resulted in emergence of new field of phononics (Li et al., 
2012; Maldovan, 2013). Among considerable number of such materials 
one can distinguish a wide class of carbon nanostructures including 
graphene and carbon nanotubes, which demonstrate a very high thermal 
conductivity (Berber et al., 2000; Balandin et al., 2008; Wang et al., 
2014a; Zhang et al., 2015) together with superior level of functional 
properties such as tensile strength (Lee et al., 2008; Yu, 2000), optical 
conductance (Kuzmenko et al., 2008), electron mobility (Geim and 
Novoselov, 2007), and biological compatibility (Fabbro et al., 2016). 
Abnormally high thermal conductivity of graphene is explained by the 

large propagation distance of long-wave phonons which in turn is 
related to the specifics of long-wavelength phonon transport in 
two-dimensional systems (Li et al., 2014; Singh et al., 2011). 

Anomalous thermal conductivity is typical for linear systems 
(Podolskaya et al., 2018; Krivtsov et al., 2018; Krivtsov, 2015; Kuzkin 
and Krivtsov, 2017a, 2017b, 2017c; Sokolov et al., 2017), but it can also 
be realized in nonlinear lattices in the absence of defects (Lepri et al., 
2003). At high temperatures thermally populated discrete breathers can 
suppress ballistic heat transport (Xiong et al., 2017) since they are 
efficient phonon scatterers (; Saadatmand et al., 2018). 

Coming back to 2D nanomaterials, due to relatively small bending 
rigidity, they are prone to loss of flat shape and this results in evolution 
of their properties. Various possible 3D structures of graphene can be 
subdivided in several coarse groups, namely, secondary van der Waals 
structures such as nanoscrolls or folds (Yang et al., 2012; Savin et al., 
2015a, 2015b; Jayasena et al., 2014), windings (Savin et al., 2017; Yin 
and Shi, 2013), ripples and wrinkles (Deng and Berry, 2016; Korznikova 
and Dmitriev, 2014; Anagnostopoulos et al., 2018), crumpled graphene 
(Zang et al., 2013; Baimova et al., 2014), origami and kirigami type 
structures (Ning et al., 2018; Chen et al., 2017; Zhang et al., 2017; Blees 
et al., 2015). Graphene also demonstrates forced or spontaneous 
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twisting (Rong and Kuiper, 1993; Hass et al., 2008; Luican et al., 2011; 
Kit et al., 2012; Bets and Yakobson, 2009; Moraes Diniz, 2014; Xia et al., 
2016; Savin and Kivshar, 2017). Prediction of materials behaviour and 
properties in the presence of twist deformation is an issue of particular 
importance for design of reliable materials for flexible electronics. Be-
sides, wrinkling, rolling, and twisting are common for thin sheet mate-
rials of any kind (Vandeparre et al., 2011; Chen et al., 2016a). 

One can list several parameters that affect thermal conductivity of 
graphene. These are (i) geometrical parameters (size and shape) of the 
graphene sheet (Yang et al., 2009; Zhai and Jin, 2011; Yeo et al., 2012; 
Wang et al., 2014b, 2017), (ii) presence of topological and isotopic 
defects (Pop et al., 2012; Haskins et al., 2011; Zhang et al., 2012; Wang 
et al., 2017; Savin et al., 2010; Li et al., 2013; Peng et al., 2017; Noshin 
et al., 2017; Ebrahimi and Azizi, 2018, Evazzade et al., 2018.), (iii) 
contact with the substrate or other 2D sheets (Liu et al., 2012, 2014a, 
2014b, 2015; Yang et al., 2012; Koniakhin et al., 2017), (iv) presence of 
internal strains and stresses (Wei et al., 2011; Gunawardana et al., 2012; 
Ma et al., 2012; Chen et al., 2016b; Xu et al., 2015), and (v) mentioned 
earlier space configurations (Yang et al., 2012; Chen et al., 2012; Zhao 
et al., 2013; Antidormi et al., 2017; Mortazavi et al., 2017). While in-
fluence of the factors (i)-(iii) on thermal conductivity of graphene is well 
established, the role of the factors (iv) and (v) is still not completely 
understood. Let us present a short summary of the influence of listed 
factors on thermal conductivity of graphene. 

Similarly to most of low dimensional materials, graphene does not 
follow the Fourier’s law and its thermal conductivity grows monoto-
nously upon length increase (Balandin et al., 2008). However the 
character of this dependence is not trivial. It has been shown that in the 
length range 1.5–200 nm thermal conductivity increases monotonously 
with the length (Chen et al., 2013). Analysis of similar dependence in the 
length interval from 200 nm to 1 μm revealed the growth of thermal 
conductivity with increasing length and following saturation at a finite 
constant value (Su and Zhang, 2018). Similar dependence has been 
observed for the variation of the nanoribbon width (Su and Zhang, 
2018). 

Presence of defects generally reduces the mean free path of phonons 
with corresponding considerable heat conductivity decrease (Haskins 
et al., 2011; Zhang et al., 2012; Wang et al., 2017; Savin et al., 2010; Li 
et al., 2013; Peng et al., 2017; Noshin et al., 2017; Ebrahimi and Azizi, 
2018). Similar effect is observed in the case of graphene contact with 
substrate that can considerably reduce the lifetime of phonons and 
suppress the contribution of flexural phonons to the heat conduction 
(Liu et al., 2012, 2014a, 2014b, 2015; Yang et al., 2012; Koniakhin et al., 
2017). 

In (Li et al., 2010; Zhang et al., 2013) thermal conductivity of gra-
phene was reported to decrease upon tension and/or compression. 
However the first principle simulations (Yeo et al., 2012) have revealed 
that at low temperatures thermal conductivity of armchair graphene 
nanoribbons increases with tension due to growing contribution from 
flexural phonons. For higher temperatures these effect becomes less 
pronounced. Nonequilibrium Green’s function method was combined 
with the elasticity theory to demonstrate enhanced by stretching bal-
listic thermal transport for both zigzag and armchair graphene nano-
ribbons (Zhai and Jin, 2011). One can see that the results can be 
controversial and strongly depend on the investigation method. 

Mechanical properties of twisted graphene nanoribbons have been 
addressed in (Li, 2010). The effect of nanoribbon twisting on its thermal 
conductivity was considered earlier in (Wei et al., 2011, 2014; Chel-
lattoan and Sathian, 2013; Shen, 2014), where a monotonous decrease 
of thermal conductivity due to nanoribbon twisting was obtained. In 
these works, various deterministic thermostats were used in the simu-
lations. However, it was shown that the proper choice of the thermostat 
is a key issue in revealing the physics of heat conduction in solids. In 
particular, it was shown that the use of deterministic thermostats can 
lead to non-physical results while modeling of heat transfer for 
non-equilibrium conditions (Fillipov et al., 1998; Legoll et al., 2009; 

Chen et al., 2010). 
Last but not least, let us consider the influence of volume confor-

mation on the heat conduction of graphene. Decrease of the conductivity 
was reported for wrinkled (Chen et al., 2012), folded (Yang et al., 2012), 
coiled (Zhao et al., 2013), and twisted (Antidormi et al., 2017) gra-
phene, while manipulations with kirigami graphene allow to reach a 
considerable enhancement of thermal conductivity (Mortazavi et al., 
2017). However, this last case is inextricably linked to the emerging of 
internal strains with corresponding modification of the phonon spec-
trum. Due to this fact, it seems reasonable to analyze both physical and 
mechanical properties of graphene depending on the change of its vol-
ume configuration, because they are coupled to elastic strains intro-
duced by the shape transformation. 

Our aim here is to study the effect of twisting combined with axial 
tension/compression on stiffness and thermal conductivity of graphene 
nanoribbons. This approach will allow to relate physical and mechanical 
properties of twisted graphene nanoribbons. Our simulation of heat 
transfer is performed using a stochastic Langevin thermostat that is 
proved to show consistent with experiment results in a wide range of 
investigation parameters (Chen et al., 2010). 

2. Model 

Let us consider a finite flat carbon nanoribbon with zigzag orienta-
tion, consisting of N� K carbon atoms, see Fig. 1, where N is the number 
of transverse elementary cells, K is the number of atoms in the 
elementary cell. In the ground state, the nanoribbon is flat and lies in the 
x; y plane with x axis oriented along the zigzag edge. Then its length can 
be calculated as Lx ¼ ðN � 1 =2Þa and width as Ly ¼ 3Kr0=4 � r0, where 
the longitudinal step of the nanoribbon is a ¼ r0

ffiffiffi
3
p

and r0 ¼ 1:418 Å is 
the C–C valence bond length. 

In reality, the nanoribbon edges are always chemically modified. For 
simplicity, we assume that the hydrogen atoms are attached to each edge 
carbon atom, so the edges form the CH groups. In our numerical simu-
lations, we take this into account by changing the mass of the edge 
atoms. We assume that the edge atoms have the mass M1 ¼ 13mp, but all 
other carbon atoms have the mass M0 ¼ 12mp, where mp ¼ 1:6601�
10� 27 kg is the proton mass. In most MD studies on graphene nano-
ribbons chemical modification of the edge C atoms is not taken into 
account (Bets and Yakobson, 2009; Xia et al., 2016; Xu et al., 2015; Li, 
2010; Shen, 2014). However, the edge atoms are chemically very active 
(Antidormi et al., 2017) and they chemisorb atoms or radicals from the 
atmosphere. In this sense our model is more realistic since it somehow 
takes into account chemical modification of the edge C atoms by H 
atoms. This approach works well for nanoribbons of width more than 
K ¼ 10 and in this work minimal value of K is 12. It is not a problem to 
explicitly consider the hydrogen atoms, but here we tried to keep our 
model as simple as possible to make it easily reproducible by others. 

Hamiltonian of the nanoribbon can be presented in the form, 

H¼
XN

n¼1

XK

k¼1

�
1
2
Mn;kð _un;k; _un;kÞþPn;k

�

; (1)  

where each carbon atom has a two-component index α ¼ ðn;kÞ, where n 
is the transverse elementary cell number and k numbers the atoms in the 
cell. In (1) Mα is the mass of the carbon atom with the index α (Mα ¼ M1 
for the edge atoms and Mα ¼ M0 otherwise), uα ¼ ðxαðtÞ; yαðtÞ; zαðtÞÞ is 
the three-dimensional vector describing the position of an atom with the 
index α at the time t. 

The term Pα in (1) describes the interaction of the carbon atom with 
the index α with the neighboring atoms. The potential depends on var-
iations in bond lengths, bond angles, and dihedral angles between the 
planes formed by three neighboring carbon atoms and it can be written 
in the form 
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P¼
X

Ω1

U1 þ
X

Ω2

U2 þ
X

Ω3

U3 þ
X

Ω4

U4 þ
X

Ω5

U5; (2)  

where Ωi, with i ¼ 1, 2, 3, 4, 5, are the sets of configurations including 
all interactions of neighbors. This sets only need to contain configura-
tions of the atoms shown in Fig. 2, including their rotated and mirrored 
versions. 

Potential U1ðuα; uβÞ describes the energy of interaction between pairs 
of atoms with the indexes α and β, connected by the valence bonds, as 
shown in Fig. 2(a). The potential U2ðuα;uβ;uγÞ describes the deforma-
tion energy of the angle between the valence bonds uα; uβ and uβuγ, see 
Fig. 2(b). Potentials Uiðuα; uβ; uγ; uδÞ, i ¼ 3, 4, and 5, describes the 
deformation energy associated with a change in the angle between the 
planes uα; uβ; uγ and uβ;uγ;uδ, as shown in Fig. 2(c)–(e). 

We use the potentials employed in the modeling of the dynamics of 
large polymer macromolecules (Noid et al., 1991; Sumpter et al., 1994). 
For the valence bond coupling we take 

U1ðu1;u2Þ¼ ε1fexp½ � α0ðr � r0Þ� � 1g2
; r¼ ju2 � u1j; (3)  

where ε1 ¼ 4:9632 eV is the energy of the C–C valence bond. For the 
valence angle the potential reads 

U2ðu1;u2; u3Þ¼ ε2ðcosϕ � cosϕ0Þ
2
; (4)  

cosϕ¼ðu3 � u2; u1 � u2Þ = ðju3 � u2j ⋅ ju2 � u1jÞ; (5)  

where the equilibrium value of the angle is defined as cosϕ0 ¼

cosð2π =3Þ ¼ � 1=2. The potential of the torsion angle is 

Uiðu1;u2;u3;u4Þ¼ εiðzicosφÞ; (6)  

cosφ¼ðv1; v2Þ = ðjv1j ⋅ jv2jÞ; (7)  

v1¼ðu2 � u1Þ � ðu3 � u2Þ; (8)  

v2¼ðu3 � u2Þ � ðu3 � u4Þ; (9)  

where the sign zi ¼ 1 for the indices i ¼ 3;4 (equilibrium value of the 
torsion angle φ0 ¼ π) and zi ¼ � 1 for the index i ¼ 5 (φ0 ¼ 0). 

The specific values of the parameters are α0 ¼ 1:7889 Å� 1, ε2 ¼

1:3143 eV, and ε3 ¼ 0:499 eV, and they are found from the frequency 
spectrum of small-amplitude oscillations of the graphite sheet (Savin 
and Kivshar, 2008). According to the previous study (Gunlycke et al., 
2008), the energy ε4 is close to the energy ε3, whereas ε5≪ε4 
(jε5 =ε4j < 1=20). Therefore, in what follows we use the values ε4 ¼ ε3 ¼

0:499 eV and assume ε5 ¼ 0, the latter means that we omit the last term 
in the sum (2). 

For the convenience of the reader potential parameters are collected 
and described in Table 1. 

All the results reported here were obtained with homemade software 
written in the FORTRAN programming language. 

More detailed discussion and motivation of our choice of the inter-
action potentials (3), (4), (6) can be found in (Savin et al., 2010). Critical 
assessment of different interatomic potentials developed for graphene 
can be found in (Rowe et al., 2018). 

Let us introduce 3K-dimensional vector xn ¼ fun;kg
K
k¼1 describing the 

positions of the atoms of the n-th cell. Then, the nanoribbon Hamiltonian 
(1) can be written in the following form: 

H¼
XN� 1

n¼2
hn¼

XN� 1

n¼2

�
1
2
ðM _xn; _xnÞþP ðxn� 1; xn; xnþ1Þ

�

; (10)  

Fig. 1. Schematic view of the zigzag graphene nanoribbon structure showing the numbering of atoms. Edge atoms are shown in a darker color. Vertical dotted lines 
divide the nanoribbon into elementary translational cells (N is the number of translational cells, K is the number of atoms in each cell). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Schematic of the interatomic interactions described by the five terms in Eq. (2) for (a) i ¼ 1, (b) i ¼ 2, (c) i ¼ 3, (d) i ¼ 4, and (e) i ¼ 5.  

Table 1 
Potential parameters.  

Parameter Description Value Equation 

M0  mass of C atom 12� 1:0364� 10� 4  Eq. (1) 

M1  mass of C atom at the edge 13� 1:0364� 10� 4  Eq. (1) 

r0  C–C valence bond length 1.418 Å Eq. (3) 
ε1  C–C bond breaking energy 4.9632 eV Eq. (3) 
α0  exponential factor 1.7889 Å� 1 Eq. (3) 
ε2  valence angle energy 1.3143 eV Eq. (4) 
φ0  equilibrium valence angle 2π=3 rad  Eq. (4) 
ε3 ¼ ε4  dihedral angle energy 0.499 eV Eq. (6) 
z3 ¼ z4  equilibrium angle parameter 1 Eq. (6) 
ε5  torsion angle energy 0 eV Eq. (6) 
z5  equilibrium angle parameter � 1 Eq. (6)  
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where the first term describes the kinetic energy of the atoms (M is di-
agonal mass matrix), and the second term describes the interaction be-
tween the atoms in the n-th cell and with the atoms of neighboring cells. 

In order to apply deformation to the nanoribbon, we fix the positions 
of the atoms at the two ends, with the indices n ¼ 1; 2 and n ¼ N � 1;N. 
Thus, boundary conditions can be described as follows: two ends of the 
nanoribbon are clamped and the nanoribbon edges are free. Then we 
twist the nanoribbon by rotating the right end of the nanoribbon by the 
angle φ with respect to the middle line of the nanoribbon. The twist 
angle is increased by steps of Δφ ¼ π=180. After each increment the 
twisted configuration is subject to the energy minimization procedure to 
find new equilibrium state corresponding to the relaxed twisted geom-
etry, as shown in Fig. 3 for different twist angles. Stationary state of the 
twisted nanoribbon fx0

ng
N
n¼1 is found as the solution of the minimum 

problem 

E¼
XN� 1

n¼2
P ðxn� 1; xn; xnþ1Þ→ min

fxng
N� 3
n¼2

; (11)  

with corresponding boundary conditions (clamped ends). Problem (11) 
was solved numerically by means of the conjugate gradient method. 

Numerical solution of Problem (11) showed that for each nanoribbon 
there is a critical value of the twist angle, φ0, above which twisting 
becomes nonuniform, as shown in Fig. 3(e). The value of this angle 
depends on the width and length of the nanoribbon (it grows with 
increasing length, and decreases with increasing width of the nano-
ribbon). For the case Lx ¼ 39:174 nm, Ly ¼ 3:261 nm (N ¼ 160, K ¼
32), presented in Fig. 3(e), the nonuniform twisting starts at φ � φ0 ¼

3:5π. In this study we consider only uniformly twisted nanoribbons, i.e., 
the twist angle within the interval φ < φ0. 

The behaviour of the nanoribbon with a large twist angle is analyzed 
in the work (Li, 2010) and the features of transformation from the 
twisted to the coiled configuration were addressed in (Cranford and 
Buehler, 2011). In (Moraes Diniz, 2014) the existence of critical value of 
the twist angle corresponding to the self-reconstruction to the original 
nanoribbon was shown by means of ab initio approach. 

3. Effect of twisting on the longitudinal stiffness of the 
nanoribbon 

Solving Problem (11) for the case when the rotation of the right end 
of the nanoribbon is combined with its shift along the x axis allows to 

find stationary states of the axially compressed (stretched) twisted 
nanoribbon, see Fig. 4. As a measure of the longitudinal compression 
(tension) of the nanoribbon we introduce the dimensionless coefficient 
d equal to the ratio of the longitudinal step of a compressed (stretched) 
nanoribbon to the longitudinal step of flat nanoribbon, which is equal to 
a. In the absence of longitudinal compression (stretching) d ¼ 1, for 
longitudinal compression d < 1, while in the case of nanoribbon tension 
d > 1. 

Compressive strain is applied stepwise with a step of Δd ¼ � 0:01. 
Solving the minimum Problem (11) for the nanoribbon after each 
increment of strain, we find the dependence of its energy E on the lon-
gitudinal compression ratio d and twist angle φ. Typical form of the 
dependence Eðd;φÞ is presented in Fig. 5. As can be seen from the figure, 
in the interval of twisting angles φ < 2π, E(d) has a minimum in the 
vicinity of d ¼ 1. In this case, compression or stretching of the nano-
ribbon leads to an increase of its energy. The energy growth is faster for 
stretching and slower for compression, since compression is mainly 
realized via less energy consuming bending of the nanoribbon. In the 
case of severe twisting of the nanoribbon (φ > 2π) the convergence of its 
ends leads to monotonic energy decrease. Here the convergence of the 
ends allows to decrease the energy of the nanoribbon due to its trans-
verse bending, see Fig. 4(c). 

For a more detailed analysis, let us consider how the axial force 
applied to the nanoribbon ends depends on d and φ. The force is 
normalized to the nanoribbon width: 

Fðd;φÞ¼ �
1
Ly

∂
∂d

Eðd;φÞ:

With this definition, F is positive when the nanoribbon is under axial 
compression and negative under tension. The functions Fðd;φÞ for 
nanoribbons of different lengths and widths are presented in Figs. 6 and 
7. 

The function Fðd;φÞ for the nanoribbons of length Lx ¼ 39:174 nm 
(the number of cells N ¼ 160) is shown in Fig. 6 for different values of 
the nanoribbon width. Only positive (compressive) values of the func-
tion F are shown. As one can see from the plot, in the interval of twist 
angles φ < 2π the convergence of the ends of the twisted nanoribbon 
initially leads to a sharp growth of the compressive forces. This happens 
due to the longitudinal compression of the nanoribbon in the absence of 
its lateral buckling. Further convergence of the ends leads to the force 
saturation and weak dependence on d due to the fact that convergence of 
the nanoribbon ends is realized via lateral bending of the nanoribbon. 

Fig. 3. Stationary states of the twisted nanoribbon. Twist angles are φ ¼ 0 (a), π (b), 2π (c), 3π (d), and 3:5π (e). Note that for large twist angle, in (e), a nonuniform 
twisting is observed. Potential (strain) energy of the twisted nanoribbon in (a)–(e) is E ¼ 0:0, 2.01, 19.50, 82.75, and 136.42 eV, respectively. Nanoribbon length is 
Lx ¼ 39:174 nm and width Ly ¼ 3:261 nm (number of cells is N ¼ 160 with K ¼ 32 atoms in each cell). The nanoribbon ends are clamped. 
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The highest compressive force in the nanoribbon is observed around the 
value of twist angles φ � π. Stronger twisting of the nanoribbon reduces 
the resistance of the nanoribbon to axial compression, and for φ > 2π the 
resistance to compression is absent because F is negative (not shown in 
the figure). 

Let us compare Fðd;φÞ for the nanoribbons of different width (recall 
that F is normalized to the nanoribbon width) taking length Lx ¼ 39:174 
nm (N ¼ 160). For the width Ly ¼ 1:134 nm (number of atoms in a cell 
K ¼ 12) the greatest compressive force occurs for the value of twist 

angle φ ¼ π, where it is 3.08 times greater than for flat nanoribbon, (φ ¼
0) see Fig. 6(a). For the nanoribbon with Ly ¼ 1:560 nm (K ¼ 16) the 
largest compressive force also occurs at φ ¼ π, where it is 3.14 times 
larger than for flat nanoribbon; for Ly ¼ 2:411 nm (K ¼ 24) the maximal 
compressive force increases by 3.5 times at φ ¼ 1:2π as compared to φ ¼
0; for Ly ¼ 3:261 nm (K ¼ 32), the maximal compressive force increases 
by 3.7 times at φ ¼ π, see Fig. 6(b), (c), (d). 

Now the effect of the nanoribbon length on Fðd;φÞ is analyzed for the 
nanoribbons having width Ly ¼ 1:560 nm (K ¼ 16). For the nanoribbon 

Fig. 4. Stationary states of twisted nanoribbon for the two values of the tension/compression ratio, d ¼ 1 and 0.9. In (a) twist angle is φ ¼ π, potential energies of the 
states are E ¼ 0:4789, 1.1397 eV; in (b) φ ¼ 2π, E ¼ 2:2655, 2.4952 eV; in (c) φ ¼ 4π, E ¼ 14:3872, 9.5503 eV. Nanoribbon length is Lx ¼ 39:174 nm and width 
Ly ¼ 1:560 nm (N ¼ 160, K ¼ 16). 

Fig. 5. Dependence of the nanoribbon energy E on the axial tension/compression ratio d and twist angle φ. Nanoribbon consists of N ¼ 80 unit cells, each cell 
includes K ¼ 16 carbon atoms (nanoribbon length is Lx ¼ 19:526 nm and width Ly ¼ 1:560 nm). The twist angle is limited to 3π because for larger angles twisting 
becomes nonuniform [see Fig. 3(e)] and this type of deformation is not consider here. 
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having length Lx ¼ 9:701 nm (number of cells N ¼ 40) the maximal 
compressive force is observed for twisting angles φ ¼ π, where it is 3.6 
times greater than at φ ¼ 0; for Lx ¼ 19:526 nm (N ¼ 80) the maximum 
is at φ ¼ 1:1π with the increase by 3.4 times; for Lx ¼ 39:174 nm (N ¼
160) at φ ¼ 1:1π (by 3.2 times); and for Lx ¼ 58:822 nm (N ¼ 240) at 
φ ¼ π (by 3.1 times), see Fig. 7. 

We conclude that by applying twist angle of about 180� it is possible 
to increase the resistance of the nanoribbon to axial compression by 
more than three times as compared to the flat nanoribbon. The greater 
the width to length ratio of the nanoribbon is, the stronger is the increase 
of the compressive force. 

4. Effect of twisting on thermal conductivity of the nanoribbon 

Let us consider how the twisting of the nanoribbon affects its thermal 
conductivity. 

From the Hamiltonian (10) the following system of equations of 
motion can be derived 

� M€xn ¼ Fn ¼ P1;nþ1 þ P2;n þ P3;n� 1; (12)  

where the function Pi;n ¼ Piðxn� 1; xn; xnþ1Þ, Pi ¼ ∂P ðx1; x2; x3Þ=∂xi, i ¼
1,2,3. 

Local heat flux through the n-th cross section, jn, determines a local 
longitudinal energy density hn by means of a discrete continuity 

Fig. 6. Compressive force normalized to the nanoribbon width, F, as the 
function of axial tension/compression ratio d and twist angle φ for nanoribbons 
of length Lx ¼ 39:174 nm (number of cells N ¼ 160) and different widths: (a) 
Ly ¼ 1:134 nm (number of atoms in a cell K ¼ 12); (b) Ly ¼ 1:560 nm (K ¼
16); (c) Ly ¼ 2:411 nm (K ¼ 24); (d) Ly ¼ 3:261 nm (K ¼ 32). Only positive 
values of F (compressive axial force) are shown. 

Fig. 7. Compressive force normalized to the nanoribbon width, F, as the 
function of axial tension/compression ratio d and twist angle φ for nanoribbons 
of width Ly ¼ 1:560 nm (K ¼ 16) with lengths: (a) Lx ¼ 9:701 nm (N ¼ 40); (b) 
Lx ¼ 19:526 nm (N ¼ 80); (c) Lx ¼ 39:174 nm (N ¼ 160); (d) Lx ¼ 58:822 nm 
(N ¼ 240). Only positive values of F (compressive axial force) are shown. 
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equation, _hn ¼ jn � jn� 1. Using the energy density from Eq. (10) and the 
equations of motion (12), we obtain the general expression for the en-
ergy flux through the n-th cross section of the nanoribbon, 

jn¼ðP1;n; _xn� 1Þ � ðP3;n� 1; _xnÞ:

For a direct modeling of the heat transfer along the nanoribbon, we 
consider a nanoribbon of fixed length ðN � 0:5Þa with fixed end segments 
with indexes n ¼ 1,2 and n ¼ N � 1; N. We place the first Nþ ¼ 10 
segments into the Langevin thermostat at temperature Tþ ¼ 330 K, and 
the last N� ¼ 10 segments, into the thermostat at T� ¼ 270 K. It is well- 
known that long-wavelength, low-frequency phonons make largest 
contribution to thermal conductivity (Hsiao et al., 2013, 2015). Such 
phonons have relatively low Debye temperature and one can use clas-
sical molecular dynamics for simulations at room temperature. 

As a result, for modeling of the thermal conductivity we need to 
integrate numerically the following system of equations: 

M€xn ¼ � Fn � ΓM _xn þ Ξþn ; for  2 < n � Nþ;
M€xn ¼ � Fn; for  Nþ < n � N � N� ;
M€xn ¼ � Fn � ΓM _xn þ Ξ�n ; for  N � N� < n < N � 1;

(13)  

where Γ ¼ 1=tr is the damping coefficient (relaxation time tr ¼ 0:2 ps), 
and Ξ�n ¼ fξk;ig

K;3
k¼1;i¼1 is 3K-dimensional vector of normally distributed 

random forces normalized by conditions 

〈ξ�n;iðt1Þξ�l;jðt2Þ〉¼ 2Mn;iΓkBT�δnlδijδðt1 � t2Þ:

We select the initial conditions for system Eq. (13) corresponding to 
the ground state of the nanoribbon, and solve the equations of motion 
numerically by tracing the transition to the regime with a stationary 
heat flux. At the inner part of the nanoribbon Nþ < n � N � N� , we 
observe the formation of a temperature gradient corresponding to a 
constant flux. Distribution of the average values of temperature and heat 
flux along the nanoribbon can be found in the form 

Tn¼ lim
t→∞

1
3KkBt

Z t

0
ðM _xnðτÞ; _xnðτÞÞdτ; (14)  

Jn¼ lim
t→∞

a
t

Z t

0
jnðτÞdτ; (15)  

where kB is the Boltzmann constant. 
It is seen that for the atoms belonging to the ten atomic rows at the 

left and right ends of the nanoribbon the Langevin thermostat is applied, 
while for the rest of the atoms the NVE ensemble is used. The equations 
of motion Eq. (13) are integrated numerically using the fourth order 
numerical scheme with the time step of 0.1 fs. 

Distribution of the temperature and local heat flux along the nano-
ribbon is shown in Fig. 8. The heat flux in each cross section of the inner 
part of the nanoribbon should remain constant, namely, Jn � J for Nþ <
n � N � N� . The requirement of independence of the heat flux Jn on a 
local position n is a good criterion for the accuracy of numerical simu-
lations, as well as it may be used to determine the integration time for 
calculating the mean values of Jn and Tn. As follows from the figure, the 
heat flux remains constant along the central inner part of the 
nanoribbon. 

A linear temperature gradient can be used to define the local coef-
ficient of thermal conductivity 

κðNiÞ¼ ðN � N� � Nþ � 1ÞJ = ðTNþþ1 � TN� N� ÞS;

where Ni ¼ N � N� � Nþ is the number of periods in the central part of 
the nanoribbon, S ¼ 2ðLyþ2rCÞrC is the area of the nanoribbon cross 
section, van der Waals carbon radius is rC ¼ 1:85 Å. 

Let us consider a nanoribbon of width Ly ¼ 1:560 nm (K ¼ 16). At 
length Lx ¼ 78:471 nm (N ¼ 320) the flat nanoribbon (twist angle φ ¼
0) at a temperature of T ¼ 300 K has thermal conductivity of κ ¼ 244 

W/mK. Interestingly, for the nanoribbon twisted by φ ¼ 15π the con-
ductivity is higher, κ ¼ 270 W/mK. The increase of thermal conductivity 
in this case is the result of the increase in heat flux caused by the tensile 
strain introduced in the nanoribbon by twisting, see Fig. 8. 

The dependence of the ratio of thermal conductivity of twisted 
nanoribbon to that of flat nanoribbon, κðφÞ=κð0Þ, on the twist angle φ is 
shown in Fig. 9. Curves 1 and 2 are for the nanoribbons of width Ly ¼

1:560 nm (K ¼ 16) and Ly ¼ 3:261 nm (K ¼ 32), respectively. Nano-
ribbon length is Lx ¼ 78:47 nm (N ¼ 320). As can be seen from the 
figure, at a fixed length of the nanoribbon (compression ratio d ¼ 1), 
uniform twisting leads to a monotonic increase in thermal conductivity 

Fig. 8. Distribution of (a) local heat flux Jn and (b) local average temperature 
Tn along the nanoribbon with length Lx ¼ 78:471 nm and width Ly ¼ 1:560 nm 
(N ¼ 320, K ¼ 16). Curves 1 and 3 give the dependences for the flat nano-
ribbon (twist angle φ ¼ 0), while curves 2 and 4 for the twisted nanoribbon 
(φ ¼ 15π). Temperatures T� ¼ 300� 30 K, the number of end cells interacting 
with the Langevin thermostat N� ¼ 10. 

Fig. 9. Ratio of thermal conductivity of twisted nanoribbon to that of flat 
nanoribbon, κðφÞ=κð0Þ, as the function of the twist angle φ for the nanoribbon of 
length Lx ¼ 78:47 nm (N ¼ 320) and two values of width, Ly ¼ 1:560 nm (K ¼
16) and Ly ¼ 3:261 nm (K ¼ 32), curves 1 and 2, respectively. Temperature 
T ¼ 300 K. 
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up to 10%. At large twist angles twisting becomes nonuniform, see Fig. 3 
(e), and thermal conductivity starts to decrease with increasing φ. This 
happens because in the case of non-uniform twisting some of the valence 
bonds are strongly deformed. For wider nanoribbon non-uniform 
twisting starts at a smaller twist angle. 

The dependence of the coefficient of thermal conductivity of flat 
(curves 1 and 3) and twisted (curves 2 and 4) nanoribbons on the ten-
sion/compression ratio d is shown in Fig. 10. Two values of the nano-
ribbon width are compared, Ly ¼ 1:560 nm (K ¼ 16) at the twist angles 
φ ¼ 0 and φ ¼ 10π (curves 1 and 2); Ly ¼ 3:261 nm (K ¼ 32) at φ ¼ 0 
and φ ¼ 4π (curves 3 and 4). Nanoribbon length is Lx ¼ 78:47 nm (N ¼
320). As can be seen from the figure, the increase in thermal conduc-
tivity of twisted nanoribbons occurs only for d � 0:99, i.e., only for very 
mild compression and for tension. For stronger compression, when d <
0:99, the effect of twisting on the coefficient of thermal conductivity is 
very weak. 

5. Discussion and conclusions 

With the use of molecular dynamics method, it was shown that 
physical and mechanical properties of graphene nanoribbons can be 
controlled and improved by twisting. 

Firstly, it was shown that the resistance of the nanoribbon to buck-
ling under axial compressive force can be enhanced by twisting the 
nanoribbon by an angle close to π, as shown in Figs. 6 and 7. This effect 
has very simple explanation. It is well known that bending rigidity of a 
beam can be improved by increasing the area moment of inertia of its 
cross section even though the cross section area is not changed. For a flat 
nanoribbon the area moment of inertia is 

I¼Lyh3�12; (16)  

where h is the effective thickness of the nanoribbon. In many applica-
tions one can take h ¼ 3:3 Å, which is the distance between carbon 
planes in graphite. In the nanoribbon twisted by angle π the area mo-
mentum of cross section changes along the nanoribbon attaining the 
maximal possible value in the middle, see Fig. 4(a), 

IðLx = 2Þ¼L3
yh
.

12: (17) 

That is why maximal increase of buckling resistance is observed for 
the twist angle φ � π. 

Secondly, it was found that the coefficient of thermal conductivity is 
also higher in uniformly twisted nanoribbons, see Fig. 9, and for small φ 
one has κeφ2 while for larger φ saturation and even decrease of κ is 
observed with increasing φ. In order to explain such κðφÞ dependence let 
us discuss how thermal conductivity depends on tensile strain in flat 

nanoribbons. From Fig. 10 it is clearly seen that for small tensile strain 
(d > 1), κ increases with strain linearly. The increase of thermal con-
ductivity of graphene with tensile strain is due to growing contribution 
from the acoustic out-of plane (ZA) phonon modes (Singh et al., 2011; 
Baimova et al., 2012; Jiang et al., 2015). Then we note that in twisted 
nanoribbon we also have appearance of tensile strains increasing line-
arly away from the rotation axis. Let us estimate the maximal tensile 
strain in the nanoribbon twisted by angle φ assuming that its edge is a 
helix line on a cylinder of length Lx and diameter equal to the nano-
ribbon width Ly. The length of such helix is 

L¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
x þ

�
φLy
�

2
�2

q

; (18)  

then the maximal tensile strain at the edge of the nanoribbon is 

εmax¼
L � Lx

Lx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

φLy

2Lx

�2
s

� 1 �
1
2

�
φLy

2Lx

�2

; (19)  

where simplification was achieved under the assumption φLy=Lx≪1, i. 
e., twist angle φ is small or the relative nanoribbon width Ly=Lx is small 
or both are small. From Eq. (19) it is clear that for small φ tensile strain 
in the nanoribbon is proportional to φ2 and since κ is proportional to the 
elastic strain, it follows that κeφ2, as it was observed in the simulations 
for small φ, see Fig. 9. For larger twist angles, tensile strain reduces 
noticeably the interatomic bond stiffness resulting in saturation of κðφÞ
dependence. 

Thus, thermal conductivity of twisted graphene nanoribbon is 
defined by the two competing factors. From one side, twist induced 
tension leads to growing contribution to thermal conductivity from ZA 
phonon modes and, on the other side, to the decrease of covalent bond 
stiffness, that has a negative contribution to thermal conductivity. At 
small twist angles the first factor dominates leading to an increase of 
thermal conductivity, while for large φ the second factor leads to satu-
ration and even decrease of thermal conductivity with growing twist 
angle. 

Our findings can be summarized as follows:  

� Some physical and mechanical properties of graphene nanoribbons 
can be controlled and improved by twisting combined with tension 
or compression. In the most of previous works twist without tension 
or compression was considered (Wei et al., 2011, 2014; Antidormi 
et al., 2017; Li, 2010; Chellattoan and Sathian, 2013; Shen, 2014), 
while in this study the combination of these deformation modes was 
addressed.  
� Nanoribbon twisting results in the variation of the area moment of 

inertia, I, along the length. For the twist angle close to π, I is maximal 
in the middle of the nanoribbon, which greatly increases its resis-
tance to lateral buckling under axial compression. To the best of our 
knowledge, the effect of twisting on the nanoribbon buckling has not 
been analyzed in the literature.  
� Thermal conductivity κ of twisted graphene nanoribbon as the 

function of the twist angle φ first increases proportionally to φ2, then 
saturates, and at even higher twist angles starts to decrease. This 
complex behaviour is explained by the competition of two factors 
that affect graphene thermal conductivity. For small twist angles 
tensile strain is induced along the nanoribbon edges, that enhances 
the contribution to thermal conductivity from ZA phonons and 
hence, in increase of thermal conductivity. For larger twist angles, 
tensile strain noticeably reduces the rigidity of valence bonds, which 
results in the reduction of thermal conductivity. Note that in the 
earlier works (Wei et al., 2011, 2014; Chellattoan and Sathian, 2013; 
Shen, 2014) a monotonous decrease of thermal conductivity due to 
nanoribbon twisting was obtained. This difference can be explained 
by the fact that the Nose-Hoover thermostat was used in that works, 
while in the present study a more physically justified Langevin 

Fig. 10. Dependence of the thermal conductivity coefficient κ on the axial 
tension/compression parameter d for a nanoribbon of length Lx ¼ 78:47 nm 
(N ¼ 320) and two values of the width: Ly ¼ 1:560 nm (K ¼ 16) at the twist 
angle φ ¼ 0 and φ ¼ 10π (curves 1 and 2, respectively); Ly ¼ 3:261 nm (K ¼
32) at φ ¼ 0 and φ ¼ 4π (curves 3 and 4, respectively). 
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thermostat is used (Fillipov et al., 1998; Legoll et al., 2009; Chen 
et al., 2010). 
� Overall, one can conclude that moderate twist of graphene nano-

ribbons can result in enhancing both thermal conductivity and 
bending stiffness. Simple mechanical explanation is proposed for 
both effects. In the interpretation of these effects a particular struc-
ture of graphene was not used and thus, similar behaviour is ex-
pected for nanoribbons made from other 2D materials. 
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