
Министерство образования и науки Российской Федерации 
Санкт-Петербургский политехнический университет Петра Великого 

Институт прикладной математики и механики 
Высшая школа теоретической механики 

 
 

 Работа допущена к защите 

 Директор высшей школы 

 ___________ А. М. Кривцов 

 «___»_______________20__ г. 

 
 
 

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА МАГИСТРА 

«ТРАДИЦИОННЫЕ И НОВЫЕ МОДЕЛИ ДЛЯ ОЦЕНКИ 

ДИНАМИЧЕСКОЙ ТЕКУЧЕСТИ» 

 
по направлению 01.04.03 «Механика и математическое моделирование» 
по образовательной программе 01.04.03_02 «Механика и математическое 

моделирование (международная образовательная программа)» 
 
 
 
Выполнил 
студент гр. 3640103/80201                     ____________  К. Гупта 

Руководитель 
Доцент, к.ф.-м.н.                     ____________  Е. А. Подольская 

Консультант 
Научный сотрудник СПбПУ, к.ф.-м.н.   ____________  В. А. Братов 

Консультант 
по нормоконтролю                     ____________  Е. А. Хайбулова 
 
 
 
 
 

Санкт-Петербург 

2020 



Peter the Great St.Petersburg Polytechnic University 
Institute of Applied Mathematics and Mechanics 

Higher School of Theoretical Mechanics 
 

 
 Work approved 

 Head of the Higher school 

 ___________ A. M. Krivtsov 

 «___»_______________20__ г. 

 
 
 

GRADUATE QUALIFICATION WORK 

«CONVENTIONAL AND NEW MODELS FOR SIMULATION OF DYNAMIC 

YIELDING» 

 
Subject 01.04.03 «Mechanics and Mathematical Modeling» 
Educational program 01.04.03_02 «Mechanics and Mathematical Modeling 

(international educational program)» 
 
 
 
Submitted by 
Student of group No.3640103/80201        ____________  K. Gupta 

Scientific advisor 
Associate Professor, PhD.                   ____________  E. A. Podolskaya 

Work advisor 
Scientific researcher of SPbPU, PhD.       ____________  V. A. Bratov 

Regulatory 
advisor                    ____________ E. A. Khaibulova 
 
 
 
 
 

 
Saint Petersburg 

2020 



ABSTRACT 

57 pages, 26 figures, 7 tables, 0 appendices 

KEYWORDS: DYNAMIC, FEM, COPPER, HARDENING 

The solid materials deform permanently, after applying a force that tends to make a non-

reversible change of sample size and shape, to perform the dynamic deformation experiment a 

Taylor rod- on- anvil impact test experiment is implemented and the simulation is carried out 

using Finite Element Method (FEM). There are several applied plasticity models for simulation 

of high strain, high strain rate and high temperature applications has been used like Johnson-

Cook, bilinear plasticity, Zerilli-Armstrong model to check the dynamic yielding of specimen 

along with new models are also employed to check and verify the best desired results, when 

compared with the experimental data of deformed specimen at different velocities and for 

different material (Cu - OFHC).It states that previous model results are not up to the mark, and 

there is a significant deviation in the shape and size of deformed specimen when compared 

with laboratory and simulation data. The objective of this work is to develop a new deformation 

model to correctly predict the sample deformation at points distant from the contact surface. 

To implement a new model, change in yield stress of material is appended in the form internal 

stress. Accordingly, this modification is carried out using a user subroutine material model 

code in Fortran language (VUMAT), that resembles the hardening of material.   
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NOMENCLATURE 

 

Superscripts 

pl                         Plastic 

el                          Elastic 
 

Notation 

ijklC                       Elasticity tensor 

ijδ                         Kronecker delta 

pc                         Specific Heat 

∆                          Increment 

E                          Young’s Modulus 

ije                          Deviatoric Strain 

ijε                         Strain 

( )G N                    Shear Modulus   

( )K B                    Bulk Modulus 

ν                           Poisson’s ratio 

ijσ                         Stress 

η                           Viscosity Constant 

µ                          Spring Constant 

yσ                         Yield stress 

t                            Time 

T                           Temperature 

meltT                        Melting temperature 

refT                         Reference temperature                        

V                           Velocity 
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ρ                           Density 

Hσ                         Hydrostatic stress 
.

pε                          Plastic Strain rate 

pε                          Equivalent plastic strain 

J                           Hardening parameter 

h                            Plastic hardening 

τ                            Relaxation time 

 .                            Dot above rate 
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INTRODUCTION 
1.1 Background and Motivation  

To investigate the dynamic deformation of materials, several research has been fulfilled 

and some are in progress, as it possess numerous of mechanical application like crash, impact 

and ballistic testing [1]. Elastic and plastic stress states define a major role to define the 

dynamic yielding of material and strain increment. The stress state in the yield surface is elastic, 

once the stress state lies on the surface of material and reached its yield point, in that case 

material shows plastic behavior. If the material continuously deformed the stress state remains 

on yield surface along with change in shape and size of material [2]. There are various different 

yield surfaces known in engineering, to define the constitutive model of material and to 

evaluate the process of deformation in finite element analysis (FEA). The best yield surface 

model should be selected that should predicts the correct different material behavior, like 

isotropic and kinematic strain hardening, yielding stress.  

In literature, several models of plastic deformation of material and yield criterion have 

been used by many authors to define the dynamic deformation of material Wilkins [3], Eakins, 

Thadhani [4] but all these models have limitation. Among those classic von Mises criterion 

was actively used for isotropic material [5-8]. This is the most widely used yield criterion model 

till the last century, it is due to inability of this model to predict the high rate deformation of 

order 103 s-1 to 104 s-1. At the same time, several other widely used models are discussed and 

compared among each other to have the best dynamic deformation results.  

During model simulation comparison, there is a noticeable error in models that are 

included in FEM software, that motivates to implement a new model with best possible solution 

with a smaller number of model coefficients.  

This thesis mainly focusses on implementing a new model by accepting all the 

drawbacks of conventional model. 
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1.2 Scope of Thesis  

The main objective of this thesis is to compare numerical results of the proposed models 

that are included in commercial FEM codes (Abaqus, Ansys) with the laboratory performed 

experimental data. A theoretical review will be fulfilled to choose the model which define the 

best material behavior by predicting precise shape and size of deformed material with 

experimental results.  

In this thesis, there will be total four different FEM models of simulation on dynamic 

deformation will be performed using rod on anvil impact test with the velocity (83 m/s), while 

using OFHC grade rod copper of length (76.2 mm) and diameter (19.05 mm) for both the 

numerical analyses and experimental study. The numerical simulation is performed at two 

different FEM software Ansys Workbench and Abaqus. According to the aim of thesis the new 

model is implemented to Abaqus software via the user material subroutine (VUMAT) with all 

the necessary parameters and included dynamic yield stress under changeable parameter of 

strain and strain rate (for isotropic material) to predict the best solution.  

 

1.3 Outline of the Thesis  

This thesis begins with an elementary chapter (Chapter 2). A literature study on impact 

tests, particularly Taylor impact test, is described. The objective and motivation of this research 

is briefly discussed, and all other chapters is followed accordingly.  

Chapter 3, the finite element simulation is performed on the four different material 

models, simultaneously results of experiments for OFHC copper material are presented and 

then comparison of the simulation results with the experimental data is accomplished.  

Chapter 4 presents the new model implementation, how the change in the dynamic yield 

stress impacted material during simulation, its significant characteristics during analyses. 

Chapter 5 the results and discussion of the FEA of new and conventional model is discuss 

along with transient deformation of profile during numerical simulation.  

Chapter 6 contains the conclusion of the thesis and suggestions for future work.    
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CHAPTER 1. THEORETICAL BACKGROUND 
As per record, a lot of information available about the different constitutive models and 

their execution in FEM software. This thesis is focused on the research work related to 

implementation of constitutive models of dynamic deformation process by means of ABAQUS 

software and the comparison of the simulation results of conventional and new model with the 

experimental results.  

A constitutive equation is a junction between two quantities i.e. kinetic and kinematic 

these quantities are specific and tells the response of material externally when forces are 

applied.  

The stress-strain is a constitutive equation originated from the Hooke’s law: It states 

stresses inside the body is directionally proportional to the strain, when a body is subjected to 

external loading.  [9] 

𝜎𝜎 = 𝐸𝐸𝐸𝐸(1.1) 

The external load is applied on a body and due to which deformation happens which is 

generally in normal direction and in tangential direction, defining numerically using stress 

tensor as: 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖 ≈ 𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖(1.2) 

where C is the elasticity tensor and S is the compliance tensor. 

Solid-state deformations: Several forms of deformations in materials is possible:[10] 

Elastic: The material retrieves its initial shape after getting deformation.  

Inelastic: In this case material shows almost elastic properties, but the force applied 

include resistive force that is time dependent. Examples are like metals and ceramics that shows 

this characteristic in general it is very small till the time friction generates. For example, 

machine produces a large vibrations and stresses. 

Viscoelastic: This plays a major role to define the solid-state deformation as if time-

dependent resistive is large and taken into account. 
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Plastic: This is a common behavior perceived in materials that after applying a force 

material does not come to its original shape and size as the stress reaches to yield point and if 

there is any more increase in stress it leads to a permanent deformation in material.  

Hyperelastic: In this deformation there accounts the displacement in material due to 

strain energy density function. 

When several equations are defined to get a response of material under a specified load, 

then those models are termed as material model. The models introduced in this review are valid 

for metals mainly focused on large strains, high strain rates and high temperatures. In this thesis 

Von- Mises, Johnson-Cook, Zerilli-Armstrong, Steinberg Guinan and New material model is 

implemented and will also be discussed both numerically and analytically along with a 

verification of results with experimental data. 

 

1.1 Stress Tensor  

This tensor comprises of nine components 𝜎𝜎𝑖𝑖𝑖𝑖 that completely define the state of stress 

at a point inside a material in the deformed state, placement, or configuration. The tensor relates 

a unit-length direction vector m to the traction vector T(m) across an imaginary surface 

perpendicular to m [11]: 

𝑇𝑇(𝑚𝑚) = 𝑚𝑚.𝜎𝜎 or 𝑇𝑇𝑖𝑖
(𝑚𝑚) = 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖. 

where, 

𝜎𝜎 = �
𝜎𝜎11 𝜎𝜎12 𝜎𝜎13
𝜎𝜎21 𝜎𝜎22 𝜎𝜎23
𝜎𝜎31 𝜎𝜎30 𝜎𝜎33

� ≡ �
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥

� 

  

1.2 Hydrostatic and deviatoric components  

Mainly, the stress tensor can be separated into two components. One component is a 

hydrostatic or dilatational stress that acts to change the volume of the material only; the other 

is the deviatoric stress that acts to change the shape only. 
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  �
𝜎𝜎11 𝜎𝜎12 𝜎𝜎13
𝜎𝜎21 𝜎𝜎22 𝜎𝜎23
𝜎𝜎31 𝜎𝜎30 𝜎𝜎33

� = �
𝜎𝜎𝐻𝐻 0 0
0 𝜎𝜎𝐻𝐻 0
0 0 𝜎𝜎𝐻𝐻

� + �
𝜎𝜎11 − 𝜎𝜎𝐻𝐻 𝜎𝜎12 𝜎𝜎13
𝜎𝜎21 𝜎𝜎22 − 𝜎𝜎𝐻𝐻 𝜎𝜎23
𝜎𝜎31 𝜎𝜎30 𝜎𝜎33 − 𝜎𝜎𝐻𝐻

� 

where the hydrostatic stress is given by 𝜎𝜎𝐻𝐻 = 1
3

(𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎3) 

 

1.3 Linear Elasticity   

Material that return to its original shape and size after loading and unloading of forces. 

[12]. It can therefore be classified as being non-dissipative. If a material is subjected to small 

strains, they generally show this characteristic and their behavior is easily analyzed through 

linear elasticity. In this behavior of material stress and strain are proportional to each other and 

can be generalized by the statement of Hooke’s law, termed as [13]: 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖(1.3.1) 

where klε  is known as elastic strain tensor and 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖is termed as 4th order tensor of elastic 

components.    

In the study of mechanical properties of material, “isotropic” material shows the unique 

values of properties in all direction and does not depend on the direction, once the load is acted 

on the material [14]. The elasticity tensor for isotropy material consists of two parameters know 

as Lame’s constant, 𝜆𝜆 and 𝜇𝜇. Whereas 𝜇𝜇 is known as shear modulus of the material and the 

stress tensor along with these two parameters is termed as following: 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜆𝜆𝐸𝐸𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝑁𝑁𝐸𝐸𝑖𝑖𝑖𝑖(1.3.2) 

The constitutive equation is written in terms of deviatoric and mean stress. This equation 

is important when metal plasticity is included so, the bulk modulus is termed as following:  

𝐵𝐵 =
𝜎𝜎𝑖𝑖𝑖𝑖

3𝐸𝐸𝑖𝑖𝑖𝑖
=
𝜎𝜎𝑑𝑑
𝐸𝐸𝑖𝑖𝑖𝑖

(1.3.3) 

The elastic deviatoric constitutive formulation is thus:  

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑑𝑑𝛿𝛿𝑖𝑖𝑖𝑖 = 2𝑁𝑁𝑒𝑒𝑖𝑖𝑖𝑖 + 𝐵𝐵𝐸𝐸𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖(1.3.4) 
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1.4 Metal Plasticity 

As discussed above, plasticity is a general phenomenon that exits in material, that mainly 

occurs when the applied stress reaches to yield point. The name plastic comes from a Greek 

word, πλαστική, which means “to shape" [14]. In this context it is applied to ductile metals as 

shape of material changes under an adequate amount of load in supplied. In this deformation 

deviatoric stress and strains are accounted to describe the plasticity behavior and the 

deformation happens due to slip or shear in particles and accordingly deformation does not 

depend on hydrostatic stress [13]. 

Incremental plasticity theory assumes that the rate of deformation can be described as 

the summation of an elastic and a plastic component [13,14,15]. The total strain rate is termed 

as following: 

𝐸𝐸
.

= 𝐸𝐸𝑖𝑖𝑖𝑖𝑒𝑒
.

+ 𝐸𝐸𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖
.

(1.4.1) 

where  𝐸𝐸𝑖𝑖𝑖𝑖𝑒𝑒
.

is termed as elastic component and 𝐸𝐸𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖
.

is known as plastic component. The simplest 

form after integration is defined as [15]: 

e pl
ij ijε ε ε= + (1.4.2) 

So, as to distinguish plasticity models, three relations are generally divided that shows 

the evolution of elastic and plastic response: 

·Yield surface: defines the state of stress and when yielding occurs. 

·Flow rule: defines the direction of the inelastic deformation in metal plasticity. 

·Hardening law: defines the variation of material strength, how the yield varies with 

plastic deformation. 

  

1.4.1 Yield Surface 

The yield surface defines the state of stress and calculate both the elastic and plastic 

behavior of material once the plasticity begins. When the stress state lies on the surface the 
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material is said to have reached its yield point or defines an initial yield point. The stress taken 

to define the yield point is 0.2% value of plastic strain produced. 

We can write the equation of yield surface as a function as following [13,15]: 

𝑓𝑓�𝜎𝜎𝑖𝑖𝑖𝑖 , 𝐸𝐸𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖 ,𝑇𝑇, 𝑘𝑘� = 0(1.4.1.1) 

It is shown that yield surface is a function of stress, plastic strain rate, temperature and 

one or more hardening parameters. If the function f for stress state is less than zero, it shows 

material behaves elastically and within elastic limits and in case if f is zero material shows both 

elastic and plastic behavior. Also, from the above definition, stress state is never be outside the 

yield surface. 

The yield function is usually expressed in terms of a three principal stresses 𝜎𝜎1,𝜎𝜎2,𝜎𝜎3, 

when there is an assumption that initial yield surface is isotropic. If we add another assumption 

that yield function is not a function of hydrostatic pressure, then the final yield function can be 

written in the following form [13]: 

𝑓𝑓1(𝐽𝐽2, 𝐽𝐽3) = 0(1.4.1.2) 

where 𝐽𝐽2 = 1
2
𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖and 𝐽𝐽3 = 1

3
𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖 are the 2nd and 3rd invariants of the deviatoric stress 

tensor. 

According to von Mises or Distortion Energy theory, when von Mises induced in the 

material is either greater than or equal to the yield stress of simple tension test material 

distortion occurs i.e. yielding in a material takes place when shear distortion energy of the 

multi-axial stress state is either greater than or equal to maximum shear distortion energy at 

yield point under actual system (simple tension) [13, 16, 17], It is shown as : 

𝜎𝜎𝑥𝑥 = �(𝜎𝜎1 − 𝜎𝜎2)2 + (𝜎𝜎2 − 𝜎𝜎3)2 + (𝜎𝜎3 − 𝜎𝜎1)2

2
(1.4.1.3) 

This can be re-written in terms of the 2nd invariant of the shear stress tensor (called J2 

flow theory): 
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𝜎𝜎𝑥𝑥 = �3
2
𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖(1.4.1.4) 

This yield stress is a scalar quantity which is known as the Mises equivalent stress, q. 

i.e., 

𝑞𝑞 = �3
2
𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖(1.4.1.5) 

The graphical view of von Mises stress is shown in the Haigh-Westergard principal stress 

space [13]. To show the 3D stress state the three principal stresses is represented as a vector.  

The Distortion energy theory can be viewed as circular cylinder with its centerline 

accounting 𝜎𝜎1 = 𝜎𝜎2 = 𝜎𝜎3 stress line in principal stress space. 

 
Figure 1: von Mises criteria in Haigh-Westergard principal stress space [13] 

To represent von Mises yield criteria in the Pi plane, the plane is defined which is normal 

to the hydrostatic stress line and passing through the origin. If the principal stress axes are 

projected on the Pi plane then their values are �2
3
 of their nominal values [13, 18]. 
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Figure 2: von Mises yield criteria in the Pi plane [13, 18] 

 

1.4.2 Flow Rule 

This rule mainly describes the plastic behavior and the direction of plastic deformation 

through the direction of plastic strain. According to Saint-Venant [18] in 1870 stated that there 

is a correlation between the directions of the principal axes of strain increment tensor and axes 

of the stress tensor as they coincided with each other. Also, Lévy and Mises formulated a flow 

rule that relates the total strain increments to the total shear stresses known as the Lévy-Mises 

equations [18]: 

𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑𝜆𝜆, d𝜆𝜆 is a positive scalar, changes with loading history 

According to this rule the strain generated is due to plastic strain, without any elastic 

strain accounted. Well know Prandtl and Reuss makes necessary modification in this rule and 

extended to involve both elastic and plastic strain the overall relations are known as the Prandtl-

Reuss equations [18]. 

𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑𝜆𝜆(1.4.2.1) 

According to von Mises the plastic strain increments can be obtained from a plastic flow 

potential, which is shown as following [13]: 

𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖 = 𝑑𝑑𝜆𝜆

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖

(1.4.2.2) 
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According to associated flow rule, if plastic flow potential is equal to the yield function, 

then yield function is linked with the plastic strain increments. If we differentiate the von Mises 

yield function with respect to the total stress, then the Prandtl-Reuss equation is the flow rule 

associated with the von Mises yield function [13]. The below equation is to find the plastic 

strain increment components and simultaneously scalar value d𝜆𝜆 can be calculated. 
1
2
𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖�𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖� =

1
2
𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖�𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑𝜆𝜆� 

=
1
2
𝑆𝑆𝑖𝑖𝑖𝑖�𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑𝜆𝜆2�(1.4.2.3) 

By using the definition of the Mises equivalent stress, (q) and the equivalent plastic strain 

increment is well-defined as: 

𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖 = �2

3
𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖(1.4.2.4) 

equation can be solved for d𝜆𝜆 and the plastic strain increment is: 

𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖 =

3𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖

2𝑞𝑞
𝑆𝑆𝑖𝑖𝑖𝑖(1.4.2.5) 

From the above defined equation, �2
3
  is the factor in equivalent plastic strain increment 

and √3  factor in the Mises equivalent stress (q) are chosen and provided with uniaxial tension 

experiments [17]. 

 

1.4.3 Hardening Rule 

This rule deals with the variation of material strength. So, as to get the hardening 

generated inside the material after yield occurs, the applied stress should continuously increase 

so as to get plastic deformation. If the stress is constant no further plastic deformation occurs. 

There are three general models for hardening [13,14]: 

·Isotropic: the center of the yield surface is fixed while the surface expands uniformly 

(Figure 3 a) 
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·Kinematic: the yield surface translates without any change of shape (Figure 3 b). 

·Combined: involves both types of hardening i.e. expansion and translation of yield 

surface (Figure 3 c). 

 

To explain all these models, let’s take a uniaxial loading case, we assume that the sample 

is loaded till yield point. In the figure (3a) the small diameter circle shows the von Mises yield 

surface that corresponds to the loading state at stress σ . If we are in elastic region, we will be 

inside the small circle, for elasto-plasto region we will be on the yield surface, but we can’t go 

beyond it. If the sample is loaded with the stress σ σ+ ∂ , then we will check how yield surface 

evolves under isotropic hardening, as it characterizes by uniform yield surface expansion. At 

stress σ σ+ ∂ , bigger circle shows the yield surface it results in the symmetry of tension and 

compression behavior. In kinematic hardening, shift of yield surface starts without any change 

in size/shape takes place and the new yield surface is shown in figure (3b) σ σ+ ∂  as we gain 

some strength in tension, we lose strength in compression, this asymmetric behavior is known 

as the Bauschinger effect.  

 

 
Figure 3: Isotropic(a), Kinematic(b), and Combined(c) Hardening [13,14] 
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Metals generally shows discussed above hardening behavior; therefore, the stress-strain path 

can be shown as a function of equivalent plastic strain increment [13]: 
 

1.5 Specific Forms of the Equivalent Flow stress 

So as to know which form of equivalent flow stress (𝜎𝜎) is needed to define the Mises 

yield criteria, loading condition and type of material is important. 

If a material is deformed at low strain rate and temperature, then we can use power law 

flow stress equation shown as Ludwik (1909) [19, 20]: 

𝑒𝑒𝑝𝑝𝑖𝑖 = ��2
3
𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑑𝑑𝐸𝐸𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖 (1.5.1) 

A good flow stress equation should include parameters like strain rate, temperature, 

strain and strain rate history and its strain hardening behavior [13]. In reality to include all is 

hard so in general strain, strain rate and temperature dependence are included. 

Flow stress are generally discussed in two ways: first is phenomenological and second 

is dislocation-mechanics-based. The first approach takes into account the changes with plastic 

strain, temperature and strain rate. This approach provides the good result when strain 

hardening factor is accounted as we can also accomplish the magnitude of the curve 

experimentally, when state history in included in the plastic strain [19]. If we also include the 

internal state of material during deformation provides the best result. The material models to 

be described fall into the different categories of flow stress equations. It can also be divided 

into two categories i.e.  rate-independent plasticity model like Von-Mises or J2 plasticity and 

rate dependent models like Isotropic hardening (dislocation structure)[22], Johnson-Cook [25], 

models is of the phenomenological type, while the Steinberg Guinan[23], Zerilli Armstrong 

[24] is of the dislocation-mechanics-based type. 
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1.5.1 von Mises 

The von Mises yield theory states that the deformation in material starts, when the second 

invariant of deviatoric stress J2 reaches a critical value. This theory best applies to ductile 

materials, such as some metals. Before deformation, any response of material can be expected 

a linear and nonlinear elastic behavior. 

In the below case, we assume material deformation starts when von Mises stress are 

either equal or greater than yield strength, 𝜎𝜎𝑥𝑥 . This theory can predict the deformation of 

materials under complex loading. 

This theory does not depend on the first stress invariant, 𝐼𝐼1 as discussed, this theory best 

applies to ductile materials and during the start of deformation process material does not depend 

on the volumetric component of the stress tensor. 

Mathematical expression is as followed [26]: 

𝐽𝐽2 = 𝑙𝑙2     (1.5.1.1) 

where 𝑙𝑙 is termed as yield stress. The value of this stress during shear is (√3) times less than 

tensile stress in tension. 

𝑙𝑙 = 𝜎𝜎𝑦𝑦
√3

  where 𝜎𝜎𝑥𝑥 is termed as tensile yield strength. If we evaluate von Mises stress as 

yield strength and merge equation, then von Mises can be termed as: 

𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑣𝑣 = �3𝐽𝐽2     (1.5.1.2) 

For 2D Planar Case:                                                                               

𝜎𝜎𝑣𝑣 = �(𝜎𝜎1 − 𝜎𝜎2)2 + (𝜎𝜎2 − 𝜎𝜎3)2 + (𝜎𝜎3 − 𝜎𝜎1)2

2
      (1.5.1.3) 
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Figure 4: von Mises yield criterion in 2D Planar loading [26] 

𝜎𝜎𝑣𝑣 = �3
2
𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖, where 𝑆𝑆𝑖𝑖𝑖𝑖 are the components of the stress deviator tensor 

If we take the case of principal plane stress, 𝜎𝜎3= 0 and 𝜎𝜎12 = 𝜎𝜎23 = 𝜎𝜎31 = 0 , the von 

Mises criterion termed as: 

𝜎𝜎12 − 𝜎𝜎1𝜎𝜎2 + 𝜎𝜎22 = 𝜎𝜎𝑥𝑥 = 3𝑙𝑙2 (1.5.1.4) 

 

1.5.2 Johnson-Cook 

In the late 20th century i.e. in 1983 Johnson and Cook [25] proposed a material model 

that is applied when materials are under large strains, high strain rates and high temperatures.  

This model is popular and widely used due to the relative ease of obtaining its constants, 

and easy implementation of its variables, parameters or constant. If different models for some 

individual materials are applied, they provide relatively good results, but those material models 

are highly complicated when to obtain parameters or constant and often consume more time if 

we compare Johnson-cook model. 

The Johnson-Cook material model states the product of the three main relations. These 

material relations are function of the multiplicative effects of the strain, strain rate and 

temperature [28]. There is no representation of thermal or strain rate history effects. The von 

Mises equivalent flow stress can be written as [25]: 

𝜎𝜎𝑥𝑥(𝐸𝐸𝑝𝑝, 𝐸𝐸
.
𝑝𝑝,𝑇𝑇) = [𝐴𝐴 + 𝐵𝐵(𝐸𝐸𝑝𝑝)𝑛𝑛][1 + 𝐶𝐶 𝑙𝑙𝑛𝑛(

.
* )pε ][1 − (𝑇𝑇∗)𝑚𝑚]      (1.5.2.1) 

where 𝐸𝐸𝑝𝑝,  𝐸𝐸
.
𝑝𝑝 are plastic strain and strain-rate, and 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝑛𝑛,𝑚𝑚 are material constants. 
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The strain-rate and temperature equation are termed as: 
 

*

.

pε =
.

.

0

p

p

ε

ε
   and    𝑇𝑇∗ = (𝑇𝑇−𝑇𝑇0)

(𝑇𝑇𝑚𝑚−𝑇𝑇0) 

where 𝐸𝐸
.
𝑝𝑝0 is effective strain rate to determine yield of material and some hardening 

parameters are A,B, n along with *

.

pε  a non-dimensional parameter [40].  𝑇𝑇0, 𝑇𝑇𝑚𝑚 is a reference 
and melting temperature. For conditions where 𝑇𝑇∗< 0, we take m = 0. 

 

1.5.3 Steinberg-Guinan 

The Steinberg-Guinan strength model popularly used for the high-strain-rate regime and 

it is further implemented to low strain-rates and bcc materials. This constitutive model results 

in good prediction of the final deformed state of the impacted samples at low velocities, as well 

as the transient deformation state is up-to mark.  The flow stress of this model is stated as [23] 

𝜎𝜎𝑥𝑥�𝐸𝐸𝑝𝑝, 𝐸𝐸
.
𝑝𝑝,𝑇𝑇� = �𝜎𝜎𝛼𝛼𝑓𝑓�𝐸𝐸𝑝𝑝� + 𝜎𝜎𝑡𝑡�𝐸𝐸

.
𝑝𝑝,𝑇𝑇��; 𝜇𝜇(𝑝𝑝,𝑇𝑇)

𝜇𝜇0
;𝜎𝜎𝛼𝛼𝑓𝑓 ≤ maxσ and t pσ σ≤       (1.5.3.1) 

where  𝜎𝜎𝛼𝛼 is a component that does not involve either change in temperature or heat,  𝑓𝑓�𝐸𝐸𝑝𝑝� is 

a function informs about strain hardening,  𝜎𝜎𝑡𝑡 thermal incubated parameter, 𝜇𝜇(𝑝𝑝,𝑇𝑇) is shear 

modulus as a function of pressure and temperature, and  𝜇𝜇0 is standard shear modulus. 𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥 

saturation value of 𝜎𝜎𝛼𝛼. Peierls stress (𝜎𝜎𝑝𝑝) is a thermal stress parameter.  

The strain hardening function (𝑓𝑓) form is as follows: 

𝑓𝑓(𝐸𝐸𝑝𝑝) = [1 + 𝛽𝛽(𝐸𝐸𝑝𝑝 + 𝐸𝐸𝑝𝑝𝑖𝑖]𝑛𝑛      (1.5.3.2) 

In this equation, work hardening parameters are 𝛽𝛽 and n , and initial equivalent plastic 

strain 𝐸𝐸𝑝𝑝𝑖𝑖. 

𝜎𝜎𝑡𝑡 thermal incubated parameter is carried out using a bisection algorithm from the below 

equation [21]. 

𝐸𝐸
.
𝑝𝑝 = [

1
𝐶𝐶1
𝑒𝑒𝑒𝑒𝑝𝑝[

2𝑈𝑈𝑖𝑖
𝑘𝑘𝑏𝑏𝑇𝑇

(1 −
𝜎𝜎𝑡𝑡
𝜎𝜎𝑝𝑝

)2] +
𝐶𝐶2
𝜎𝜎𝑡𝑡

]−1;𝜎𝜎𝑡𝑡 ≤ 𝜎𝜎𝑝𝑝      (1.5.3.3) 
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where 2𝑈𝑈𝑘𝑘
𝑖𝑖𝑏𝑏𝑇𝑇

 is the energy to form a kink-pair in a dislocation segment of length 𝐿𝐿𝑑𝑑,  𝑘𝑘𝑏𝑏 is 

the Boltzmann constant,  𝜎𝜎𝑝𝑝 is the Peierls stress. The constants  𝐶𝐶1, 𝐶𝐶2 are given by the relations 

 𝐶𝐶1 = 𝜌𝜌𝑑𝑑𝐿𝐿𝑑𝑑𝑚𝑚𝑏𝑏2𝑣𝑣
2𝜔𝜔2 ;𝐶𝐶2 = 𝐷𝐷

𝜌𝜌𝑑𝑑𝑏𝑏2
 

Here dislocation, density and length are defined as 𝜌𝜌𝑑𝑑, 𝐿𝐿𝑑𝑑, distance between Peierls valleys is 

a, 𝑏𝑏 is defined as Burgers vector, Debye frequency (v), width of a kink loop (𝜔𝜔), drag 

coefficient is 𝐷𝐷. 

 

1.5.4 Zerilli-Armstrong 

The key point to use Zerilli-Armstrong [24] models is to describe individual material 

responses during the simulation of Taylor impact tests. In this particular material model 

relations are totally focused on thermal effects and analysis along with that the effects of strain, 

strain rate hardening and thermal softening of material. This models also include internal grain 

structure and size of material. 

The constitutive relation and equations are based on dislocation-mechanics. Major focus 

is on the set of each material structure type (BCC, FCC etc.) and having its own constitutive 

equation based on that materials particular rate-controlling mechanism [28]. Due to this main 

feature in this material model, particular temperature dependent strain rate effects are 

calculated for different types of material. Zerilli and Armstrong [24] state that the simulation 

of the Taylor test provides a decent test of the material model. This is particularly valid if the 

material parameters were not obtained from the Taylor test but from quasi-static material tests. 

𝜎𝜎𝑥𝑥(𝐸𝐸𝑝𝑝, 𝐸𝐸
.
𝑝𝑝,𝑇𝑇) = 𝜎𝜎𝛼𝛼 + 𝐵𝐵 𝑒𝑒𝑒𝑒𝑝𝑝( − 𝛽𝛽𝑇𝑇) + 𝐵𝐵0�𝐸𝐸𝑝𝑝 𝑒𝑒𝑒𝑒𝑝𝑝( − 𝛼𝛼𝑇𝑇)      (1.5.4.1) 

In this model, 𝜎𝜎𝛼𝛼  flow stress component is given as: 

𝜎𝜎𝛼𝛼 = 𝜎𝜎𝑔𝑔 +
𝑘𝑘ℎ
√𝑙𝑙

+ 𝐾𝐾(1.5.4.2) 

where 𝜎𝜎𝑔𝑔 influences in the initial dislocation density, microstructural stress intensity (𝑘𝑘ℎ), 

average grain diameter (l),  𝐾𝐾 is zero for fcc materials, material constants (𝐵𝐵,𝐵𝐵0). 

In the thermally terms, exponents 𝛼𝛼 and 𝛽𝛽 in their broad forms are as follows: 
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𝛼𝛼 = 𝛼𝛼0 − 𝛼𝛼1 𝑙𝑙𝑛𝑛( 𝐸𝐸
.
𝑝𝑝);𝛽𝛽 = 𝛽𝛽0 − 𝛽𝛽1 𝑙𝑙𝑛𝑛( 𝐸𝐸

.
𝑝𝑝)      (1.5.4.3) 

where 𝛼𝛼0,𝛼𝛼1,𝛽𝛽0,𝛽𝛽1 directly depends on the material like (fcc, bcc, hcp, alloys). 

 

1.6 Taylor Test 

In the last 20th century 1940's, Taylor [41, 42] used a flat-ended rod that is impacted to 

a flat rigid target i.e. anvil to determine the dynamic yield stress of the impacted rod. This is 

one of the easiest and best method to achieve high strain rates in material testing, typically in 

the range 104 – 106 s-1. Once the rod is impacted on anvil the front end deforms plastically and 

rear end does not deform. A large amount of stresses is generated at the front end of rod till 

elastic limit is reached and after impact the rod bounce back towards free end. The major 

deformation in rod includes the change in axial and radial position as axial position reduces 

and radial position increases symmetrically [43]. 

This test is conducted to obtain material strength parameters for high strain rate models 

and there are wide range of techniques to optimize these coefficients by performing numerical 

analysis in FEM software for the Taylor test [44]. This test is also used to validate high strain 

rate material models by comparing the simulation of the test to the experimental results this 

technique is simple and cost effective to procure new plasticity model. The coefficients and 

constant used in simulations are those determined using lower strain rate material testing 

techniques and then the Taylor test simulation is used to test the verification of the material 

model to high strain rates [23,24,25,26]. 

This experimental method is connected with dynamic deformation of cylindrical samples 

on a rigid wall (Fig. 5) 



27 
 

 
Figure 5: Illustration of the idea of the Taylor impact test [43] 

The experiment performed in laboratory results in a plastically deformed specimen and 

deformation occurs at the impacted end. So, as to calculate the dynamic yield stress all change 

in dimension is needed. This can be executed by using simple equation: 

 

𝜎𝜎 =

1
2𝜌𝜌𝑉𝑉

2 �1 −
𝑙𝑙𝑓𝑓
𝐿𝐿�

(1 −
𝐿𝐿𝑓𝑓
𝐿𝐿 ) 𝑙𝑙𝑛𝑛( 𝐿𝐿𝑙𝑙𝑓𝑓

)
(1.6.1) 

 

To calculate the dynamic yield stress, we only need information about the impact 

velocity V, the length of the undeformed part of sample lf, and L, Lf – the initial and final length 

of the sample, respectively. 

There is not so much information is available once we start modelling in simulation 

software, but the available information can classify the material. As we need more information 

apart from dynamic yield stress. This can be formulated either from constitutive equations or 

simply formulating your own constitutive material model. 

 

Velocity 

(m/s) 

Initial 

diameter, 𝑑𝑑0 

(mm) 

Initial 

length, 𝑙𝑙0 

Final 

diameter, 𝑑𝑑𝑓𝑓 

Final 

length, 𝑙𝑙𝑓𝑓 

83 19.1 75.1 23.6 70.3 

205 18.9 75.0 36.6 54.5 
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 Table 1: Impact test experimental data [4] 

 

Impact experiments on OFE copper were performed at 83 and 205 m/s to showcase the 

phase in deformation response. The lengths and diameters of the initial and final impacted rods 

from each experiment are listed in Table 1, where the final diameter refers to that of impact 

end of rod [4]. 

 

1.7 Summary of Chapter 1 

The background and theory of all conventional model like Steinberg-Guinan [23], 

Zerilli-Armstrong [24], Johnson-Cook [25], and Von-mises [26], are discussed briefly in this 

chapter. The linear elastic component of the material model is discussed followed by the 

plasticity component. The discussion of the plasticity component involved the form and 

function of the yield surface, flow rule and hardening law which together define the plasticity 

component. All models detailed formulation is discussed so that it is easy to understand during 

implementing their parameters in FEM software 

The definition and applicability of the Taylor test is discussed briefly along with that 

experimental data is taken from one the renowned research paper [4]. This data is our base to 

discuss all the numerically implemented material model in FEM software in the following 

chapters it is discussed and used widely. Once comparing of simulated data of material models 

is analyzed with the experimental data it shows the applicability of different material models 

and tell us about their exactness of predicting results.  
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CHAPTER 2. METHODS 

In this chapter, we are going to discuss more about conventional plasticity methods and 

their implementation in Finite element software like Abaqus and Ansys. In the numerical 

modelling of Taylor Test, a 2D planar problem is performed, using the axial symmetry of 

material with a mesh size of 1mm. Rod is 76.2 mm long and 19.05 mm wide [4]. 

Models like Von-Mises [26], Johnson Cook [25], Steinberg Guinan [23] and Zerilli 

Armstrong [24] are discussed with their applied parameters on same yield strength so, as to 

compare their results with experimental data of similar impact test and taking into account the 

comparison statistics. A brief summary is discussed at the end of this chapter in which all the 

results of material model is concluded. 

 

2.1 von Mises Plasticity Model 

The von Mises yield criterion, which has been used to describe the dynamic 

characteristics of material deformation was actively used in the middle of the last century, this 

plasticity provides best results when applied to ductile materials i.e. on metals. This theory is 

termed as von Mises stress 𝜎𝜎𝑣𝑣which is a scalar value calculated from the Cauchy stress tensor. 

The material start deforming when the von mises stress either reached to yield strength 𝜎𝜎𝑥𝑥 of 

material or once gets increased. This model predicts the plastic deformation of material at high 

velocity impact/loadings as this independent of first stress Invariant, the yield stress of material 

does not directly relate with hydrostatic component of stress tensor [26]. 

This model is implemented in FEM software with the following parameters for OFHC 

Cu at 83 m/s. After applying following parameters in FEM software, the final deformed profile 

is shown along with a graph of final deformed sample profile including change in axial position  

 
Table 2: Von-Mises Simulation Parameters (Author) 

No Constant Value Unit 

1 E – Young’s modulus 124 Gpa 

2 𝜈𝜈 - Poisson’s ratio 0.34 - 
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3 Density 8960 Kg/m3 

4 Bulk modulus 129 Gpa 

5 Shear modulus 46 Gpa 

6 Stress 300 Mpa 

7 Strain 0.2 - 

 

 
Figure 6: von Mises Deformed Profile (Author) 

 
Figure 7: von Mises Profile Graph with deformation (Author) 

2.2 Johnson-Cook Plasticity Model 

Johnson-Cook is a particular type of isotropic hardening model so as to characterize the 

dynamic behavior of materials subjected to high strain and strain rates along with temperature. 

It is suitable for high-strain-rate deformation of many materials, including most metals. The 

equivalent von mises flow stress of this model is broadly divided into multiplication of 3 
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sections, first section defines the stress-strain relation, second defines the strain rate and third 

shows the dependency with temperature. It is broadly used in simulations due to its simplicity 

and uncomplicated way of finding its constant. The variables implemented in this model is 

available in almost all simulation software’s.  

In our thesis we have also implemented this model in FEM software with the following 

parameters for OFHC Cu at 83 m/s. Following results in both axial and radial directions are 

observed after implementation. 
Table 3: Johnson-Cook Simulation Parameters (Author) 

No Constant Value Unit 

1 E – Young’s modulus 124 Gpa 

2 𝜈𝜈 - Poisson’s ratio 0.34 - 

3 Density 8960 Kg/m3 

4 A - static yield stress 300 Mpa 

5 B - work hardening coefficient 380 Mpa 

6 n – work hardening exponent 0.31 - 

7 m - thermal softening exponent 1.09 - 

8 Melting Temperature 1356 K 

9 Transition Temperature 300 K 

 

 
Figure 8: Johnson-Cook Deformed Profile (Author) 
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Figure 9: Johnson-Cook Profile Graph with deformation (Author) 

 

2.3 Steinberg-Guinan Plasticity Model 

This model is mainly focused and developed for metals suitable at high strain rates and also 

being further extended for low strain rates. The yield stress increases with the increase in strain 

rate of the material within a certain limit. It is also proven experimentally that at high pressure, 

there is no more dependency of rate in materials. As per the experiments, yield stress is a direct 

function of pressure loaded on material and inversely dependent with the temperature. The 

model is more focused on effective plastic strain, pressure and temperature.[27] 

We have implemented this following model in FEM software for OFHC Cu with following 

parameters: 
Table 4: Steinberg-Guinan Simulation Parameters (Author) 

No Constant Value Unit 

1 E – Young’s modulus 124 Gpa 

2 𝜈𝜈 - Poisson’s ratio 0.34 - 

3 Density 8960 Kg/m3 

4 Initial yield stress 300 Mpa 

5 Maximum yield stress 640 Mpa 
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6 B - Hardening constant 36 - 

7 n - Hardening exponent 0.45 - 

8 Derivative dG/dPG’P 28 - 

9 Derivative dG/dTG’T 0.38 PaK-1 

 

 
Figure 10: Steinberg-Guinan Deformed Profile (Author) 

 
Figure 11: Steinberg-Guinan Profile Graph with deformation (Author) 

 

2.4 Zerilli-Armstrong Plasticity Model 

This model is implemented in the same manner as Johnson-Cook model, but it is based 

on dislocation mechanics. Zerilli-Armstrong model has different types of equation for different 

materials. Material structure like (BCC, FCC etc.) has their individual constitutive equation 
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based on their rate controlling mechanism [28]. This mechanism solely defined the temperature 

dependent strain rate effects of different type of materials.  The general constitutive equation 

of this model is based on effective strain hardening, strain rate hardening and thermal softening. 

The model is implemented for OFHC – copper in FEM software with the following 

parameters and results are as followed. 
Table 5: Zerilli-Armstrong Material Simulation Parameters (Author) 

No Constant Value Unit 

1 E – Young’s modulus 124 Gpa 

2 𝜈𝜈 - Poisson’s ratio 0.34 - 

3 Density 8960 Kg/m3 

4 Initial yield stress 300 Mpa 

5 C2 - Zerilli-Armstrong constant 890 Mpa 

6 C3 - Zerilli-Armstrong constant 0.0028 K-1 

7 C4 - Zerilli-Armstrong constant 0.000115 K-1 

8 n - Hardening constant 0.37 - 

9 EPS 0.2 - 
 

 
Figure 12: Zerilli-Armstrong Deformed Profile (Author) 



35 
 

 
Figure 13: Zerilli-Armstrong Profile Graph with deformation (Author) 

 

2.5 Comparison of results 
Table 6: Comparison of conventional models (Author) 

S.No 

Initial 

Dimension 

Experimental 

Data 
Von-Mises 

Johnson-

Cook 

Steinberg-

Guinan 

Zerilli-

Armstrong 

Leng

th(L) 

Diam

eter(

D) 

L D L D L D L D L D 

1- 

76.2 

(mm

) 

19.05 

(mm) 

71.4 

(-

4.8) 

mm 

23.65 

(+4.6

) mm 

69.5 

(-

6.7) 

22 

(+3.

42) 

71.

1(-

5. 

15) 

21.

3(+

3.0

1) 

70.

42(-

5.7

8) 

22.

70 

(+3.

49) 

69.3(

-6. 

90) 

24.8

5(+5

.8) 

Erro

r 

(%) 

- - - - 
28.3

5 

24.0

5 

6.8

0 

33.

11 

17.

0 

22.

44 

30.4

3 

22.4

1 

 

2.6 Summary of Material Models 

All conventional models relate the flow stress to the high strain, strain rates and large 

temperature during impact test. In general material models used in impact testing are grounded 
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on plasticity approach. The von-mises is one of the simplest approaches to acquire dynamic 

deformation of large strain rates by simply using the plastic stress and strain relation but due to 

constant constraint the profile evolution and final deformation of sample does not match with 

experimental data and profile. Among the four conventional model, Johnson-Cook material 

model is widely used and this model provide the best result among the above discussed models, 

but once the results are compared with experimental data there is huge percentage of error in 

lateral displacement that should be taken into account along with reviewing its practical origin 

and non-coupling with the physical effects, once compared with other plasticity models like 

Zerilli-Armstrong and Steinberg-Guinan model. As well as model like Zerilli-Armstrong and 

Steinberg-Guinan model are showing results that are not so much bad in radial direction but if 

we compare the axial position certainly they have large percentage of error and also both these 

models are limited for certain identified materials like steel, lead, copper, etc.  
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CHAPTER 3. FINDINGS - NEW CONSTITUTIVE MODEL 

After comparing all the conventional material models in FEM software there seems to 

be a large percentage of error both in radial and axial directions, which shows that conventional 

models are unable to predict the exact physics of the process. This needs to be fix by using a 

new conventional model that is capable of predicting exact physics of the whole process. In 

this chapter we are going to briefly discuss about the concept behind new model and its 

implementation to Finite element software (FEM).  

From previous known research in this field, the plastic- isotropic hardening material 

model is a most effective model that can conquer large strain and strain rate hardening in impact 

test where thermal softening is insignificant. Initially in this chapter we will review this 

plasticity model and then will make necessary changes so as to achieve our desired new model. 

 

3.1 Hardening 

In general, sample gets deformed till yield and then become harden as shown in figure 

for 1-D case. Perfectly plastic deformation in material is established when the stress is 

maintained at yield point, once the stress is either dropped or reduced material tends to return 

to its original shape and size but due to plasticity in material it has some induced strain and this 

become the hardening case i.e. after yield stress, the stress increases continuously to get plastic 

deformation. Also, if the stress is constant at any point after the yield point then there will be 

no more plastic deformation in the material and no elastic unloading. 
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Figure 14: Stress-Strain Curve [2] 

The initial yield surface can be written in the form: 

𝑞𝑞0�𝜎𝜎𝑖𝑖𝑖𝑖� = 0(3.1.1) 

When, there is perfectly plastic region, the yield surface does not change. For a general 

case, the formula can be written as: 

𝑞𝑞0�𝜎𝜎𝑖𝑖𝑖𝑖 , 𝐽𝐽𝑖𝑖� = 0(3.1.2) 

In the above general formula 𝐽𝐽𝑖𝑖 shows the hardening characteristics of material and used 

to calculate the change in yield surface. This parameter can be scalar or higher order tensor. At 

the start of deformation process this parameter is zero. 

 

3.2 Hardening Rule  

Generally, there are three rules, but we are going to review isotropic hardening. 

 

3.2.1 Isotropic Hardening 

It is the case, when the shape and size increase with the increasing stress without any 

translation movement. 

The yield function is shown as: 

𝑞𝑞0�𝜎𝜎𝑖𝑖𝑖𝑖 , 𝐽𝐽𝑖𝑖� = 𝑞𝑞0�𝜎𝜎𝑖𝑖𝑖𝑖� − 𝐽𝐽 = 0(3.2.1.1) 

We can conclude from this formula; the shape of yield function depends on the initial 

yield function and the hardening parameter 𝐽𝐽 which is responsible for the change in size. [29] 
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The constitutive elasticity equation is as follows: 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜆𝜆𝛿𝛿𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖 + 2𝜇𝜇𝐸𝐸𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖(3.2.1.2) 

Integration Procedure 

Initially, the von mises stress is calculated and it shows elastic behavior:  

𝜎𝜎 = �3
2
𝐺𝐺𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖;𝐺𝐺𝑖𝑖𝑖𝑖 = 𝐺𝐺𝑖𝑖𝑖𝑖0 + 2𝜇𝜇𝜇𝜇𝑒𝑒𝑖𝑖𝑖𝑖(3.2.1.3) 

If the elastic stress is greater than the yield stress, plastic flow starts in the material. 

The following equations for stress and plastic strain can be used: [15] 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖𝑖𝑖𝜎𝜎𝑥𝑥 +
1
3
𝛿𝛿𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖(3.2.1.4) 

𝜇𝜇𝐸𝐸𝑖𝑖𝑖𝑖 = 3
2
𝜂𝜂𝑖𝑖𝑖𝑖𝜇𝜇𝐸𝐸    where, 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝐺𝐺𝑖𝑖𝑖𝑖/𝜎𝜎 

The equivalent plastic strain is obtained explicitly through  

𝜇𝜇𝐸𝐸𝑝𝑝𝑖𝑖 = 𝜎𝜎−𝜎𝜎𝑦𝑦
3𝜇𝜇+ℎ

;      (3.2.1.5)     𝜎𝜎𝑥𝑥 is the yield stress 

ℎis the plastic hardening at the starting. 

 

3.3 Viscoelastic response developed based on Maxwell rheological model 

Solid materials show viscoelastic response, this means that they feature intermediate 

characteristics between purely elastic and purely viscous behavior. 

"Viscoelasticity is a property of materials that exhibit time-dependent strain [31]. When 

deformation in material starts viscoelasticity shows the characteristics between elastic and 

viscous behavior. Viscous material shows relation of stress with strain rate, simultaneously 

elastic materials inhibit the direct relation of stress and strain, accounting constant as young’s 

modulus. 

Even though most of the developments in the theory of viscoelasticity are recent, the 

basic linear and isothermal field theory has been available for a much longer time. As we can 

see there are several contributions by Maxwell, Kelvin and Voigt, the classical theory for linear 

viscoelasticity was first presented in 1874 by Boltzmann [32]  



40 
 

The behavior of a material may be close to perfectly elastic or viscous that not only 

depends on strain rate and temperature, but also depends on particular test such as dynamic 

load testing, ballistic, impact testing, etc. So, as to visualize the response of material, specimen 

is loaded under dynamic condition, under controlled stress-strain behavior, amplitude of 

loading and temperature. 

If we take a case of perfectly elastic material, the loss of energy during loading and 

unloading of material is negligible that shows stress and strain are directly proportional to each 

other, in case of viscous material they are 90º out of phase. In general, material that exhibits 

this behavior are like metals, polymers, etc. 

There exists a complex modulus approach that can define the dynamic behaviour of 

viscoelastic material [33]. The parameters that characterize viscoelastic properties are dynamic 

tensile modulus, and the loss tangent. The two components of tensile modulus define the two 

different characteristics of material i.e. the elastic component count the deformation energy 

stored by the material and second plastic component measures the loss of energy due to the 

internal stress generated inside the material after impact, during relaxation process [34]. 

 

3.3.1 Stress relaxation: 

This is a phenomenon in which the stress in a material reaches a maximum value at time 

𝑡𝑡0 while maintaining the constant strain and after the stress reaches maximum value it reduces 

gradually to a minimum value and then it remains constant with time. In this particular test, a 

strain rate 𝜓𝜓
.
 is calculated for a 𝛾𝛾 duration of time then reaches to a maximum value and 

maintained.  

3.3.2 Rheological models. 

From the above test, we can determine the material moduli through stress-strain relation 

and these parameters can be used to get a response of viscoelastic behavior. This can be 

analyzed while considering mechanical system that demonstrate the response of the material. 

The mechanical system not only simplify the modelling of material but also at the same time 
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provide us the response of material at high impact loading and accordingly we can understand 

the stresses generated inside the material.  

Basic elements: spring and dashpot 

This is a mechanical system consisting of component i.e. Hookean spring and the 

Newtonian damper [35]. We can define the Hook’s law relationship for stress and strain for 

loading and displacement [36]. 

𝜎𝜎(𝑡𝑡) = 𝜇𝜇𝐸𝐸(𝑡𝑡), 𝜇𝜇 is the modulus of elasticity (3.3.2.1) 

The damper is a viscous element and follows Newtonian law for viscosity and represents 

the component of a viscoelastic material [37]. 

𝜎𝜎(𝑡𝑡) = 𝜂𝜂 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

 , 𝜂𝜂 is the viscosity coefficient (3.3.2.2) 

 
Figure 15: Spring and Dashpot element [38] 

Combination of both spring and dashpot elements can be make different models that can 

describe the response of material. 

 

3.3.3 Maxwell model 

In generally this model is a combination of spring and damper in a series arrangement. 

The total strain on the whole model is summation of strain due to spring element stiffness i.e. 

𝜇𝜇 that changes according to the type of study and load applied to material like Elastic modulus, 

shear modulus the next part of strain contribution comes from frictional resistance 𝜂𝜂 which is 

a part of dashpot element. They both follow their individual laws like spring element follows 

Hooke’s law to calculate the stress and strain on the other side the relation is governed by the 
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Newton’s equation for viscous fluid. For this model, the stress remains the same and total strain 

is given by: 

𝐸𝐸
.

= �
𝜕𝜕
𝜕𝜕𝑡𝑡
𝜇𝜇

+
1
𝜂𝜂
�𝜎𝜎(3.3.3.1) 

If the material is under a constant strain, the stresses decay gradually. 

 
Figure 16: Maxwell Element [38] 

3.3.4 Generalized Model 

There are mainly different types of generalized models available with different 

combination of elements but in our thesis, we are stick with single Maxwell element in parallel 

with the spring element. As in future more elements can be combined to even get much closer 

results for good qualitative and conceptual analysis. This generalized model with single 

Maxwell element is known as Zender model [38]. 

 
Figure 17: Zener model [38] 
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The retardation time for this model is the ratio of constant of dashpot element to the 

constant of spring element:  

𝜏𝜏𝑖𝑖 =
𝜂𝜂𝑖𝑖
𝜇𝜇𝑖𝑖

(3.3.4.1) 

 

3.4 Numerical formulation for linear response (Mathematical Description) 

This section is mainly focused on formulation for linear response of a material. This 

mathematical description is based on a generalized Maxwell rheological model. A one-

dimension modeling background for strain of viscoelastic solids is taken. Accordingly, higher 

order can be proposed [30]. 

As shown in above figure 4.3., for a single Maxwell element the stress-strain relation is 

formulated as: 

𝜎𝜎
⋅

+ 1
𝜏𝜏
𝜎𝜎 = 𝜇𝜇𝐸𝐸

.
  (3.4.1) 

𝜏𝜏 is the relaxation time. Subsequently the homogenous solution for equation (3.4.1): 

𝜎𝜎 = 𝐶𝐶 𝑒𝑒𝑒𝑒𝑝𝑝( −
𝑡𝑡
𝜏𝜏

) (3.4.2) 

Constant ‘C’ can be determined by the initial conditions. Strain ‘𝐸𝐸’ during the whole 

relaxation test is constant and below shows the stress response during a period of time ‘t’ and 

after that it becomes constant. [39] 

 
Figure 18: Relaxation test of a Maxwell element [30] 
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From figure, the initial stress on the material is governed by the elastic response, i.e., at 

time = 0 the stress on the material 𝜎𝜎(0) = 𝜇𝜇𝐸𝐸(0).With this initial condition, constant C in the 

homogenous solution can be solved. Since the strain in the experiment is constant, i.e., the 

strain rate is zero, it leads to the particular solution of equation. 

If we take a look at the above figure, the initial stress inside the material is due to the 

elasticity and at time t = 0 the stress is calculated as 𝜎𝜎(0) = 𝜇𝜇𝐸𝐸(0) after applying this equation 

the constant C in the homogenous solution can be resolved. As the strain is constant during the 

experiment, accordingly the calculated strain rate is zero. Now, so as to calculate the particular 

solution of equation 3.4.1 taking strain rate to zero is termed as 

𝜎𝜎(𝑡𝑡) = 𝜇𝜇 𝑒𝑒𝑒𝑒𝑝𝑝( −
𝑡𝑡
𝜏𝜏

)𝐸𝐸(0) (3.4.3) 

The relaxation function is termed as 

𝜁𝜁(𝑡𝑡) = 𝜇𝜇 𝑒𝑒𝑒𝑒𝑝𝑝( −
𝑡𝑡
𝜏𝜏

) (3.4.4) 

The above equation indicates the viscoelastic characteristics. The spring constant 

parallel to the Maxwell elements be 𝜇𝜇0 and the constant for Maxwell elements be 𝜇𝜇1. The 

viscosity constant of dashpot in the Maxwell element is taken as 𝜂𝜂1, we are restriction till one 

element for more accuracy other elements can be added. 

The total stress substitute on the model is equal to the summation of the stresses acting 

on the spring and the parallel Maxwell elements. The equation of model is expressed as 

𝜎𝜎(𝑡𝑡) = 𝜇𝜇0𝐸𝐸(0) + 𝜇𝜇1 𝑒𝑒𝑒𝑒𝑝𝑝( − 𝑡𝑡
𝜏𝜏1

)𝐸𝐸(0) (3.4.5) 

𝜏𝜏1 is the relaxation time for Maxwell element, which is the ratio of viscosity constant of dashpot 

to the spring constant in Maxwell element. The relaxation function is expressed as 

𝜁𝜁(𝑡𝑡) = 𝜇𝜇0 + 𝜇𝜇1 𝑒𝑒𝑒𝑒𝑝𝑝( −
𝑡𝑡
𝜏𝜏1

) (3.4.6) 

Below equation is the normalized form: 

𝜉𝜉(𝑡𝑡) =
𝜁𝜁(𝑡𝑡)
𝜇𝜇0

= 1 + 𝜉𝜉1 𝑒𝑒𝑒𝑒𝑝𝑝( −
𝑡𝑡
𝜏𝜏1

) (3.4.7) 
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In the equation (4.4.7) 𝜉𝜉1is the ratio of two spring constant𝜇𝜇1 to𝜇𝜇0 . The Cauchy stress 

for incremental change in strain ∆  , is termed as: 

𝜎𝜎(𝑡𝑡) = � 𝜁𝜁(𝑡𝑡 − 𝑒𝑒)
𝑡𝑡

0

𝜕𝜕𝐸𝐸
𝜕𝜕𝑒𝑒

𝑑𝑑𝑒𝑒(3.4.8) 

The initial response begins at any time 𝑒𝑒. The relaxation function of material is given as 

𝜁𝜁(𝑡𝑡 − 𝑒𝑒) = 𝜇𝜇0 + 𝜇𝜇1 𝑒𝑒𝑒𝑒𝑝𝑝( −
𝑡𝑡 − 𝑒𝑒
𝜏𝜏1

) (3.4.9) 

We can rewrite the (3.4.8) this equation as 

𝜎𝜎(𝑡𝑡) = � 𝜇𝜇0
𝑡𝑡

0

𝜕𝜕𝐸𝐸(𝑒𝑒)
𝜕𝜕𝑒𝑒

𝑑𝑑𝑒𝑒 + � 𝜇𝜇1
𝑡𝑡

0
𝑒𝑒𝑒𝑒𝑝𝑝( −

(𝑡𝑡 − 𝑒𝑒)
𝜏𝜏1

)
𝜕𝜕𝐸𝐸(𝑒𝑒)
𝜕𝜕𝑒𝑒

𝑑𝑑𝑒𝑒 (3.4.10) 

 

Since, 𝜇𝜇0and 𝜇𝜇1is a spring constant and the sum of responses for strain 𝜕𝜕𝐸𝐸(𝑒𝑒) over the 

time ‘t’ is𝐸𝐸 (t), equation (3.4.10) is thus revised as 

𝜎𝜎(𝑡𝑡) = 𝜇𝜇0𝐸𝐸(𝑡𝑡) + 𝜇𝜇1 𝑒𝑒𝑒𝑒𝑝𝑝( −
(𝑡𝑡 − 𝑒𝑒)
𝜏𝜏1

)𝐸𝐸(𝑡𝑡) (3.4.11) 

resulting in 

𝜎𝜎(𝑡𝑡) = 𝜎𝜎0(𝑡𝑡) + 𝐼𝐼1(𝑡𝑡) (3.4.12) 

Here 𝜎𝜎0(𝑡𝑡) is the quasi-static stress for the elastic element, and 𝐼𝐼1(𝑡𝑡) defines the internal 

stresses in the Maxwell element, i.e., 

𝐼𝐼1(𝑡𝑡) = 𝜇𝜇1 𝑒𝑒𝑒𝑒𝑝𝑝( − (𝑡𝑡−𝑥𝑥)
𝜏𝜏1

)𝜎𝜎(𝑡𝑡) (3.4.13) 

From equations (3.4.10) and (3.4.11), and 𝐸𝐸(𝑒𝑒) = 𝜎𝜎0(𝑒𝑒)/𝜇𝜇0, equation (3.4.13) can be 

expressed in the other form as 𝐸𝐸(𝑒𝑒) = 𝜎𝜎0(𝑒𝑒)/𝜇𝜇0, this equation converted into other form as, 

𝐼𝐼1(𝑡𝑡) = 𝜉𝜉1 𝑒𝑒𝑒𝑒𝑝𝑝( − (𝑡𝑡−𝑥𝑥)
𝜏𝜏1

)𝜎𝜎(𝑡𝑡) (3.4.14) 

Generally, in a relaxation test, the internal stress variable 𝐼𝐼1(𝑡𝑡) reaches to zero if the time 

approaches infinity. This shows that when a material is under deformation due to load applied 

on it, the internal stresses are generated which can be integral part of material during 

deformation and this stress relax after a certain period of time period 𝑙𝑙𝑖𝑖𝑚𝑚
𝑡𝑡→∞

𝐼𝐼1(𝑡𝑡) = 0. 



46 
 

3.5 Implementation of model through VUMAT 

In General, Abaqus/Explicit has an interface that allows you to implement constitutive 

equations. In Abaqus/Explicit the user-defined material model is implemented in user 

subroutine VUMAT form. 

VUMAT is used when there is no existing material model included in Abaqus/Explicit 

material library so, as to predict the accurate behavior of material that needs to be modelled. 

By using this user subroutine code, it is possible to define the new constitutive model of 

different complexity. User-defined material models can be used with Abaqus/Explicit 

structural element type along with that multiple user materials can be implemented so as to 

involve all the process during a mathematical modelling. In this section, we will briefly 

illustrate about how a VUMAT code is implemented inside Abaqus and consequently our new 

model will be implemented. 

A VUMAT code requires proper definition of constitutive equation, particularly in our 

thesis, we write Cauchy stress equations for large strain applications then defining the proper 

stress state at the same time it requires classification of dependence on time, field variables, 

internal state. After writing all the necessary equations it needs to transform into an incremental 

equation using a suitable integration procedure i.e. implicit, explicit or midpoint method these 

are then used to update the stresses and dependent state variables. 

VUMAT needs following input parameters and defined input procedure in Abaqus. 
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Figure 19: ABAQUS - VUMAT working [15] 

To code a particular material model, we should follow the requirement of Abaqus to link 

Fortran language. As we have used 2017 version of Abaqus to link this version with Fortran, 

Visual studio 2012 version is linked with Intel parallel studio XE 2016. Once both of this 

software is downloaded then path of compiler is added to the environment variable of system 

properties and other linking test like ‘Patch’ test, after that verification of Abaqus is carried out 

to finally link Fortran language. 

After that edit all the material properties that is required like elastic modulus, poison 

ratio and all the state variables in user material option. The next step is to input FEM model in 

Abaqus like geometry, mesh and element type, loading conditions, interaction and its properties 

along with predefined field to add material required velocity. 

Once we create a job, we need to link the Fortran .for extension file to a job and the 

VUMAT file defined material model started with subroutine header that include VUMAT 

variables like NBLOCK, PROPS, etc. then different conventions are used that shows stress and 

strain relation and stored as vectors in our case “plane strain and axisymmetric” elements are 

termed as: s11, s22, s33, s12. Constitutive equation is formulated using stress and strain which 

yields the same results with any plastic option in general model without VUMAT. 

In our model the necessary updates are carried out with yield stress. So, as to implement 

and investigate the internal stresses generated in the material, we take into account the new 
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model in VUMAT and results for our model is true for large-strain calculations. As Abaqus 

uses Newton’s method to solve equation. So, our implemented code uses the same method so 

that the accuracy doubles after each step of iteration. 

 

3.6 Results 

After implementing the new VUMAT code in Abaqus results are shown as a deformed 

profile, along with a chart showing change in axial and radial position. 
 

 
Figure 20: New model deformed profile (Author) 

 
Figure 21: New model profile graph with deformation (Author) 
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CHAPTER 4. RESULTS - MODEL COMPARISON AND PROFILE EVALUATION 

In this chapter all the plasticity models’ results are discussed in a tabular format so, as to 

know which plasticity model predicts the best result once compared with the experimental data. 
Table 7: Final comparison of all plasticity models (Author) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial Dimensions Experimental 

Results 

Deformed Profile 

Results 

Error(%) 

von Mises Approach 

Length (mm) 76.2 71.4 (-4.8) 69.5 (-6.7) 28.35 

Diameter(mm) 19.05 23.55 (+4.5) 22.65 (+3.4) 24.05 

Johnson Cook Approach 

Length (mm) 76.2 71.4 (-4.8) 71.05 (-5.15) 6.80 

Diameter(mm) 19.05 23.55 (+4.5) 22.06 (+3.01) 33.11 

Zerilli Armstrong 

Length (mm) 76.2 71.4 (-4.8) 69.3 (-6.90) 30.43 

Diameter(mm) 19.05 23.55 (+4.5) 24.85 (+5.8) 22.41 

Steinberg Guinan 

Length (mm) 76.2 71.4 (-4.8) 70.42(-5.78) 17.00 

Diameter(mm) 19.05 23.55 (+4.5) 22.70(+3.49) 22.44 

New Model (VUMAT) 

Length (mm) 76.2 71.4 (-4.8) 71.2(-5.0) 4.00 

Diameter(mm) 19.05 23.55 (+4.5) 24.71(+5.66) 20.49 
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Profile Evaluation: 

In the below, there are charts to compare the different material model profile with the 

experimental profile [4]. The profiles are compared at different impact timings so as to get the 

exact physics of problem.  

 
Figure 22: Material models comparison at 71.2μs [4, Author] 

 
Figure 23: Material models comparison at 58.4μs [4, Author] 
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Figure 24: Material models comparison at 45.67μs [4, Author] 

 
Figure 25: Material models comparison at 32.95μs [4, Author] 

 
Figure 26: Material models comparison at 32.95μs [4, Author] 
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CHAPTER 5. CONCLUSION AND RECOMMENDATION 

Different plasticity models are discussed like Von-Mises [26], Johnson Cook [25], 

Steinberg Guinan [23] and Zerilli Armstrong [24] in the literature review after a brief 

background and understanding of these models in Chapter 2 all the conventional models are 

implemented through Finite element software like Abaqus, Ansys. The conventional models 

are performed numerically at 83 m/s using Taylor rod-on-anvil impact test along with all 

conventional models are provided with same yield stress and their particular constant 

parameter. 

After that in the same chapter, conventional models deformed profile and results are 

discussed with experimentally performed results [4]. A comparison is conducted, and it is 

concluded that Johnson-Cook provides the best result for axial displacement once compare 

with the experimental data and at the same time Steinberg Guinan provides the good 

predictability of radial displacement of rod(specimen) at low velocity but deformation in radial 

and axial deformation was with a large percentage of error. Other models like Zerilli Armstrong 

and Von-Mises models shows a large percentage of error on both sides. 

Chapter 3 shows the implementation of new model as all the conventional models shows 

a large percentage of error either in both radial and axial displacement or in single direction. 

This model is aimed to focus to get the exactness of FEM results with experimental data, so 

more enforcement is done to know about the dynamic yielding of process. The new model 

follows the change in yield stress due to the internal stresses generated inside the material using 

a viscoelastic response of material. 

After presenting all the background and mathematical description, new material model 

is implemented as VUMAT (user-defined material model) in Abaqus 2017 a general-purpose 

FEM software, coding of user-defined model is carried out in a by default language of Abaqus 

i.e. Fortran. After applying this code in Abaqus, results and verification of this model are 

compared with the experimental data and other conventional models and it illustrate that 

outcomes are far better than all other discussed conventional models, it is seen that the 
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percentage of error in axial direction is reduced from the largest of 30% to 4% and for radial 

direction error reduces from maximum 33% to 20%. 

 

For furthermore validation of results, transient deformation of states at different impact 

timings are compared for selected conventional model, new implemented model with 

experimental data [4]. It is clearly shown in (Figure: 22,23,24,25,26) that implemented new 

model shows good prediction of transient states of deformation as well as from table (Table: 

7) good prediction of final deformed state of impacted samples at 83 m/s if compared with 

conventional models. 

This thesis has laid the groundwork for further research into significance and behavior 

of material models for high strain, high strain rates and temperature simulations. There are 

certainly some open areas where more enhancement of new model can be implemented i.e. 

implementing a greater number of Maxwell elements so as to get better results in radial 

direction and second recommendation to consider the micro mechanisms of plastic deformation 

and the defect structure evolution as that changes with strain rate increase i.e. implementation 

of structure parameter such as grain size. 
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