Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

НАЗВАНИЕ ФАКУЛЬТЕТА ИПММ

НАВАНИЕ КАФЕДРЫ Теоретическая механика

Elena Vilchevskaya

Lecture 4

Tensor analysis

Saint Petersburg State Polytechnic University 2014

Orthogonal tensors

A tensor **Q** of order two is said to be *orthogonal* if it satisfies the equality

$$\mathbf{Q} \cdot \mathbf{Q}^T = \mathbf{Q}^T \cdot \mathbf{Q} = \mathbf{E}.$$

We see that $\mathbf{Q}^T = \mathbf{Q}^{-1}$ for an orthogonal tensor

Furthermore, $\det \mathbf{Q} = \pm 1$.

We call \mathbf{Q} a *proper* orthogonal tensor if $\det \mathbf{Q} = +1$; we call \mathbf{Q} an *improper* orthogonal tensor if $\det \mathbf{Q} = -1$.

The operator defined by the orthogonal tensor **Q** preserves the magnitudes of vectors and the angles between them.

It can be shown that the proper orthogonal tensor has the representation

$$\mathbf{Q} = \mathbf{E}\cos\omega + (1 - \cos\omega)\mathbf{e}\mathbf{e} - \mathbf{e} \times \mathbf{E}\sin\omega.$$

Polar decomposition

A symmetric tensor is said to be *positive definite* if its eigenvalues are all positive.

Any nonsingular tensor **A** of order two may be written as a product of an orthogonal tensor and a positive definite symmetric tensor. The decomposition may be done in two ways: as a **left polar decomposition**

$$\mathbf{A} = \mathbf{S} \cdot \mathbf{Q}$$

or as a right polar decomposition

$$\mathbf{A} = \mathbf{Q} \cdot \mathbf{S}'$$
.

Here **Q** is an orthogonal tensor of order two, and **S** and **S** are positive definite and symmetric.

теударственный политехнический

Deviator and ball tensor representation

For **A** we can introduce the representation

$$\mathbf{A} = \frac{1}{3}I_1(\mathbf{A})\mathbf{E} + \operatorname{dev}\mathbf{A}.$$

Such a representation is found useful in the theory of elasticity. Moreover, it is used to formulate constitutive equations in the theories of plasticity, creep, and viscoelasticity.

The tensor dev**A** is defined by the above equality. It has the same eigenvectors as **A**, but eigenvalues that differ from the eigenvalues of **A** by $(1/3)I_1(\mathbf{A})$

$$\tilde{\lambda}_i = \lambda_i - \frac{1}{3} \operatorname{tr} \mathbf{A}.$$

