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Scattering problem for electrons in monolayer graphene with short-range perturbations of the types
“local chemical potential” and “local gap” has been solved. Zero gap and non-zero gap kinds of graphene
are considered. The determined S-matrix can be used for calculation of such observables as conductance
and optical absorption.
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During the last years much attention was payed to the problem of the electronic spectrum of graphene (see a review [1]). Two-
dimensional structure of it and a presence of the cone points in the electronic spectrum make actual a comprehensive study of the
external fields effect on the spectrum and other characteristics of the electronic states described by the Dirac equation in the 2 + 1
space–time. We consider in this work the electrons scattering in the 2 + 1 Dirac equation model of the monolayer graphene due to
the short-range perturbations. We do not take into account the inter-valley transitions. Particular attention to this case stems from the
effectiveness of short-range scatterers in contrast to the long-range ones: an effect of the latter is suppressed by the Klein paradox [2].
Short-range potential impurities in graphene were considered in works [3–5]. In our work [6], a new model of the short-range impurities
in graphene was considered taking into account the obvious fact that the Kohn–Luttinger matrix elements of the short-range perturbation
calculated on the upper and lower band wave functions are not equal in a general case. This means that the perturbation must be
generically described by a Hermitian matrix. We considered the diagonal matrix case corresponding to a presence of the potential and
mass perturbation. The bound states dependence on the perturbation parameters was studied in [6] within the framework of this model.

In the present Letter we study the electrons scattering by the short-range impurities within the framework of the model suggested
in [6].

The Dirac equation describing electronic states in graphene reads(
−ih̄v F

2∑
μ=1

γμ∂μ − γ0(m + δm)v2
F

)
ψ = (E − V )ψ, (1)

where v F is the Fermi velocity of the band electrons, γμ are the Dirac matrices

γ0 = σ3, γ1 = σ1, γ2 = iσ2,

σi are the Pauli matrices, 2mv2
F = E g is the electronic bandgap, ψ(r) is the two-component spinor. The electronic gap can appear in the

graphene monatomic film lying on the substrate because of the sublattices mutual shift [7]. The spinor structure takes into account the
two-sublattice structure of graphene. δm(r) and V (r) are the local perturbations of the mass (gap) and the chemical potential. A local
mass perturbation can be induced by defects in a graphene film or in the substrate [7]. We consider here the delta function model of the
perturbation:

δm(r) = −bδ(r − r0), V (r) = −aδ(r − r0), (2)
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where r and r0 are respectively the polar coordinate radius and the perturbation radius. Such short-range perturbation was used in the
(3 + 1)-Dirac problem for narrow-gap and zero-gap semiconductors in [8]. The perturbation matrix elements

diag(V 1, V 2)δ(r − r0) (3)

are related to the a, b parameters as follows

−V 1 = a + b, −V 2 = a − b. (4)

The delta function perturbation is the simplest solvable short-range model. Finite radius r0 plays a role of the regulator and is necessary
in order to exclude deep states of the atomic energy scale. The finite perturbation radius r0 leads to the quasi-momentum space form-
factor proportional to the Bessel function that justifies our neglect of transitions between the Brillouin band points K and K ′ [8].

Let us present the two-component spinor in the form

ψ j(r, t) = exp(−iEt)√
r

(
f j(r)exp[i( j − 1/2)ϕ]
g j(r)exp[i( j + 1/2)ϕ]

)
, (5)

where j is the pseudospin quantum number; j = ±1/2, ±3/2, . . . . In opposite to the relativistic theory, this quantum number has nothing
to do with the real spin and indicates a degeneracy in the biconic Dirac point. The upper f j(r) and lower g j(r) components of the spinor
satisfy the equations set

dg j

dr
+ j

r
g j − (E − m) f j = (a + b)δ(r − r0) f j, (6)

−df j

dr
+ j

r
f j − (E + m)g j = (a − b)δ(r − r0)g j. (7)

These equations have a symmetry:

f j ↔ g j, E → −E, j → − j, a → −a. (8)

Let us introduce the function ϕ j(r) ≡ f j/g j . It satisfies the equation:

1/
[
(a + b)ϕ2

j + (a − b)
][dϕ j

dr
− 2 j

r
ϕ j − E

(
ϕ2

j + 1
)] + δ(r − r0) = 0. (9)

Integrating in the vicinity of r = r0

lim
δ→0

ϕ j(r0+δ)∫
ϕ j(r0−δ)

dϕ j

(a + b)ϕ2
j + (a − b)

= −1, (10)

we obtain the matching condition

arctan
(
ϕ−

j

√
(a + b)/(a − b)

) − arctan
(
ϕ+

j

√
(a + b)/(a − b)

) =
√

a2 − b2, a2 > b2, (11)

where ϕ−
j ≡ ϕ j(r0 − δ), ϕ+

j ≡ ϕ j(r0 + δ), δ −→ 0. Excluding the spinor component g j from the equation set Eq. (6), Eq. (7) in the domains
0 � r < r0 and r > r0, we obtain the second-order equation:

d2 f j

dr2
+

[
E2 − m2 − j( j − 1)

r2

]
f j = 0. (12)

This equation is related to the Bessel one. We assume E to be real and satisfying the inequality E2 � m2. Then the general solution of
Eq. (12) in the region 0 � r < r0 reads

f j = C1
√

κr J j−1/2(κr) + C2
√

κrN j−1/2(κr), (13)

where κ = √
E2 − m2 is the principal value of the root; Jν(z) and Nν(z) are respectively the Bessel and Neumann functions. The constant

C2 vanishes in the domain 0 � r < r0 since the solution must be regular at the origin. Expressing the g j-component from Eq. (7), we can
write

g j =
√

E − m

E + m

√
κrC1 J j+1/2(κr).

Thus

ϕ−
j (κr0) =

√
E + m

E − m

J j−1/2(κr0)

J j+1/2(κr0)
. (14)

Then we can obtain from Eq. (11):

arctan

(√
a + b

a − b
ϕ+

j (κr0)

)
= arctan

(√
a + b

a − b

√
E + m

E − m

J j−1/2(κr0)

J j+1/2(κr0)

)
−

√
a2 − b2, (15)
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and, therefore,

ϕ+
j (κr0) =

√
E+m
E−m J j−1/2(κr0) − (a − b)T (a,b) J j+1/2(κr0)

J j+1/2(κr0) + (a + b)

√
E+m
E−m T (a,b) J j−1/2(κr0)

, (16)

where T (a,b) is given by the formula:

T (a,b) =

⎧⎪⎪⎨
⎪⎪⎩

tan(
√

a2−b2)√
a2−b2

if a2 > b2,

tanh(
√

b2−a2)√
b2−a2

if b2 > a2.

(17)

On the other hand, an expression for ϕ+
j (κr0) can be written similarly to (14):

ϕ+
j (κr0) = f +

j

g+
j

=
√

E + m

E − m

H (2)
j−1/2(κr0) + S j H (1)

j−1/2(κr0)

H (2)
j+1/2(κr0) + S j H (1)

j+1/2(κr0)
, (18)

where S j(κ) is a phase factor of the out-going wave, i.e. S-matrix element in the angular momentum representation. Substituting Eq. (18)
into Eq. (16), we obtain an explicit expression for S j(E):

S j(E) = −F
(2)
j

F (1)
j

, (19)

where

F (α)
j = (

J j−1/2(κr0)H (α)
j+1/2(κr0) − J j+1/2(κr0)H (α)

j−1/2(κr0)
)

− T (a,b)

[√
E − m

E + m
(a − b) J j+1/2(κr0)H (α)

j+1/2(κr0) +
√

E + m

E − m
(a + b) J j−1/2(κr0)H (α)

j−1/2(κr0)

]
. (20)

Here α takes values 0,1. Since H(2)
n (z) = H(1)∗

n (z) for real z, the scattering matrix is unitary everywhere on the continuum spectrum.
Eq. (19) solves the electron scattering problem for the given potential. The denominator of S j(E) is just the left-hand side of the charac-
teristic equation derived in [6]. Imaginary roots of it correspond to the real energy eigenstates (bound states) lying in the gap, which were
studied in that paper. The characteristic equation reads

F (1)
j (κr0) = 0, (21)

or (
J j−1/2(κr0)H (α)

j+1/2(κr0) − J j+1/2(κr0)H (α)
j−1/2(κr0)

)
= T (a,b)

[√
E − m

E + m
(a − b) J j+1/2(κr0)H (α)

j+1/2(κr0) +
√

E + m

E − m
(a + b) J j−1/2(κr0)H (α)

j−1/2(κr0)

]
. (22)

Using the relations H(1)
n (z) = Jn + iNn , H(2)

n = Jn − iNn , we can write S-matrix in the form:

S j(E) = − A j(E) + iB j(E)

A j(E) − iB j(E)
= B j(E) + i A j(E)

B j(E) − i A j(E)
, (23)

and, therefore, it can be presented in the standard form [10]

S j(E) = exp
[
i2δ j(E)

]
, (24)

where the scattering phase is given by the expression

δ j(E) = arctan
A j(E)

B j(E)
. (25)

Formulae (23), (24) show that the scattering matrix S j(E) is unitary on the continuum spectrum. The functions A j(E) and B j(E) are
determined as follows

A j(E) = −T (a,b)

[
(a + b)

√
E + m

E − m
J 2

j−1/2(κr0) + (a − b)

√
E − m

E + m
J 2

j+1/2(κr0)

]
, (26)

B j(E) = T (a,b)

[
(a + b)

(√
E + m

E − m

)
J j−1/2(κr0)N j−1/2(κr0) + (a − b)

√
E − m

E + m
J j+1/2(κr0)N j+1/2(κr0)

]
+ [

J j+1/2(κr0)N j−1/2(κr0) − J j−1/2(κr0)N j+1/2(κr0)
]
. (27)
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It is seen from (25), (27) that all δ j(E) vanish, when a and b tend to zero, i.e. in the absence of a perturbation. Using the Bessel functions
expansion [9]

Jn(x) ∼ (1/n!)(x/2)n, (28)

Nn(x) ∼
{−(Γ (n)/π)(2/x)n for n > 0,

(2/π) log(γE x/2) for n = 0
(29)

we conclude that for the low-energy scattering κr0 	 1, δ j(E) is small as (κr0)
| j|+1/2 except of j = ±1/2. Here logγE is the Eyler–

Mascheroni constant. In the case of small radius r0 and low energy E we can neglect all higher angular momentum partial waves taking
into account only phases δ j for j = ±1/2:

tan δ1/2(E) = −T (a,b)
(a + b)

√
E+m
E−m + (a − b)

√
E−m
E+m (κr0/2)2

[(κr0/2) 2
π log(γEκr0/2) − 1

π (2/κr0)] + T (a,b)[(a + b)

√
E+m
E−m

2
π log(γEκr0/2) + (a − b)

√
E−m
E+m

Γ (1)
π ]

≈ T (a,b)

√
E + m

E − m
(a + b)π

(
κr0

2

)
, κr0 −→ 0, (30)

tan δ−1/2(E) = −T (a,b)
(a − b)

√
E−m
E+m + (a + b)

√
E+m
E−m (
r0/2)2

[Γ (1)
π (2/κr0) − (κr0/2) 2

π log(γEκr0/2)] + T (a,b)[
√

E−m
E+m (a − b) 2

π log(γEκr0/2) +
√

E+m
E−m (a + b)

Γ (1)
π ]

≈ −T (a,b)

√
E − m

E + m
(a − b)π

(
κr0

2

)
, κr0 −→ 0. (31)

We see that the phase is proportional to κr0 in the long-wave limit as it is necessary [10,4]. The scattering amplitude f (θ) and
transport cross-section Σtr can be expressed in terms of S j(E) as follow [4]:

f (θ) = 1

i
√

2πκ

∑
j=±1/2,±3/2,...

[
S j(E) − 1

]
exp

[
i( j − 1/2)θ

]
, (32)

Σtr = 2/κ
∑

j=±1/2,±3/2,...

sin2(δ j+1 − δ j). (33)

Near the resonance states the Breit–Wigner form of the phase is valid [10]:

δ j ≈ δ
(0)
j + arctan

Γ j

2(E(0)
j − E)

,

where E(0)
j and Γ j are respectively the position and width of the resonance level, δ

(0)
j is the slowly-varying potential scattering phase.

The presented above formulae can be used in order to calculate the Boltzmann conductivity [11]

σ =
(

e2

2π�

)
2E F

�
τtr, (34)

where the transport relaxation time equals

1/τtr = Ni v F Σtr . (35)

Here Ni is the areal impurity density, E F = v F κF . The above equations transform a dependence of the scattering data on the Fermi energy
and impurity perturbation parameters a and b into the correspondent dependence of the Boltzmann conductivity. Thus characteristic
features of the scattering data determine a behaviour of the electric conductivity. Proper numeric calculations will be presented elsewhere.
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