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Nonequilibrium thermal rectification at the junction of harmonic chains
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A thermal diode or rectifier is a system that transmits heat or energy in one direction better than in the opposite
direction. We investigate the influence of the distribution of energy among wave numbers on the diode effect for
the junction of two dissimilar harmonic chains. An analytical expression for the diode coefficient, characterizing
the difference between heat fluxes through the junction in two directions, is derived. It is shown that the diode
coefficient depends on the distribution of energy among wave numbers. For an equilibrium energy distribution,
the diode effect is absent, while for non-equilibrium energy distributions the diode effect is observed even though
the system is harmonic. We show that the diode effect can be maximized by varying the energy distribution and
relative position of spectra of the two harmonic chains. Conditions are formulated under which the system acts
as an ideal thermal rectifier, i.e., transmits heat only in one direction. The results obtained are important for
understanding the heat transfer in heterogeneous low-dimensional nanomaterials.
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I. INTRODUCTION

Phonons1 are the main heat carriers in dielectric solids,
and a new field of science and technology referred to as
phononics is rapidly developing. The main goal of phononics
is to find ways to control the transfer of thermal energy [1–3].
The possibility of creating thermal transistors [4–6], thermal
diodes [7–17], and thermal logic devices [18–20] has been
demonstrated. Further progress in this area requires better
understanding of heat transfer in low-dimensional systems.

The device, called a thermal rectifier (thermal diode), con-
ducts heat differently in opposite directions. It has been shown
in a number of works that the thermal diode effect can be
achieved in nonlinear systems. The first such idea was to
place a nonlinear material with a strong dependence of os-
cillation frequencies on amplitude between linear materials
that do not show such a dependence [21–23]. Another basic
idea is to introduce asymmetry into the nonlinear system
[9,24–27], which was used, for example, when considering
coupled Frenkel-Kontorova chains with different parameters
[7]. However, at low temperatures, the effects of nonlinearity
are weak and therefore using nonlinearity to achieve the diode
effect may be difficult. Then the question arises whether it
is even possible to implement a thermal rectifier using linear
systems. Answering this question is important, e.g., for the de-
velopment of efficient methods for the recovery of low-grade
thermal energy [28–33].
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1In the present paper we use the word “phonon” as a synonym for

a harmonic wave.

The presence of the diode effect in linear systems has
been debated in the literature. In particular, Kalantar et al.
argued that harmonic-oscillator chains connecting two har-
monic reservoirs at different temperatures cannot exhibit a
thermal diode effect, regardless of the structural asymmetry
[34]. They referred to the heat flux rectification in harmonic
junctions, which they observed during the simulation, as a
nonphysical effect [35]. The rectifying effect was not ob-
served in a one-dimensional harmonic chain with a harmonic
on-site potential even with a mass gradient, which means
that even an asymmetric harmonic system does not guar-
antee asymmetric heat transfer [36]. Maznev et al. argued
that the linear structures do not break the reciprocity in re-
flection and transmission and therefore they cannot show a
thermal diode effect [37]. In Ref. [17] it was shown that in
an asymmetric nanostructure ballistic phonons do not pro-
duce the thermal diode effect under equilibrium conditions,
while under nonequilibrium conditions, e.g., described by a
displaced Bose-Einstein distribution, a finite diode effect can
be achieved. The nonequilibrium heat transfer through a har-
monic one-dimensional chain of atoms with a mass impurity
in the regime of ballistic phonon transfer was studied, and
the possibility of achieving tunable thermal rectification in a
completely harmonic system was shown [38]. A thermal rec-
tification mechanism was demonstrated for a harmonic model
with a temperature-dependent effective potential [39].

From the works mentioned above, it is clear that in some
cases linear systems do not support the thermal diode effect,
while in other cases they do. The question arises what the nec-
essary conditions are for the diode effect in harmonic systems.
In the present paper, these conditions are derived for a simple
one-dimensional model.

Before starting to discuss the diode effect, we briefly
mention some relevant facts about heat transport in linear
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FIG. 1. Junction of semi-infinite harmonic chains of particles
with mass mi, connected by bonds of stiffness ki and interacting with
the on-site potential of stiffness di (i = 1, 2). Particles are numbered
by the index n. The chains are connected at n = 0, 1 by the bond of
stiffness k. The on-site potential is visualized by brown and green
curves showing potential wells.

and nonlinear low-dimensional systems. Many authors have
shown that the Fourier thermal conductivity law does not
work in defect-free low-dimensional structures. Violation of
the Fourier law is manifested, e.g., by the dependence of the
effective thermal conductivity coefficient κ on the specimen’s
length L (see, e.g., [40–50]). For linear systems, ballistic heat
transport is observed with κ ∼ L [51–58], while in nonlinear
systems there is the so-called anomalous thermal conductiv-
ity with κ ∼ Lα , where the exponent is in the range 0 <

α � 1. Thus, since the Fourier law is violated in many low-
dimensional systems, the notion of thermal conductivity is
defined ambiguously and cannot be used for analysis of the
diode effect. Therefore, below we characterize the diode effect
in terms of heat (energy) fluxes rather than conductivities.

The main purpose of this study is to investigate the in-
fluence of the distribution of energy among phonon modes
(wave numbers) on the diode effect in a harmonic asymmetric
system and to show how this effect can be maximized. The
junction of two harmonic chains with harmonic on-site po-
tentials (elastic foundations) is considered to demonstrate that
the thermal diode effect can only be observed if the energy
distribution among wave numbers is in nonequilibrium (i.e.,
nonuniform at high temperatures). The effect is maximal and
the system acts as an ideal thermal rectifier when waves with
wave numbers in some interval have zero energy and spectra
of the chains intersect in a certain way.

II. MODEL DESCRIPTION

The junction of two semi-infinite harmonic chains with
harmonic on-site potentials is described below. Dispersion
relations for the chains are derived.

A. Junction of linear chains

The junction of two semi-infinite harmonic chains with
harmonic on-site potential is shown in Fig. 1. The correspond-
ing equations of motion for the chains are

miün = ki(un−1 − 2un + un+1) − diun, n �= 0, 1, (1)

where mi, ki, and di (i = 1, 2) are the mass of particles, the
stiffness of the interparticle bonds, and the stiffness of the on-
site potential of the ith chain, respectively. For chain 1 the
equation of motion (1) is valid for n < 0 and for chain 2 it is
valid for n > 1.

For the interfacial particles with n = 0 and 1, the equa-
tions of motion are

m1ü0 = −k1(u0 − u−1) + k(u1 − u0) − d1u0, (2)

m2ü1 = −k(u1 − u0) + k2(u2 − u1) − d2u1. (3)

Equations (1)–(3) are considered with initial conditions cor-
responding to the excitation of waves in one of the chains
and zero initial conditions in the other chain. A detailed
description of the initial conditions is given in Sec. VI [see
Eq. (50)]. Two problems are considered. In the first problem,
the vibrations are excited in chain 1 and the energy flux from
chain 1 to chain 2 is calculated. In the second problem, the
vibrations are excited in chain 2 and the flux from chain 2
to chain 1 is calculated. Using the resulting fluxes from these
two problems, we estimate the diode effect (see Sec. IV for
details).

We note that since the principle of superposition is fulfilled
for the linear system, it is possible to consider the case when
both chains are heated. The energy flow from chain 1 to chain
2 will not affect the energy flow in the opposite direction.

As one can see, a very simple harmonic model is analyzed
in the present study, while more complicated models have
been described in the literature. The interfacial thermal re-
sistance for nanomaterials was discussed in [59]. Advances
in the understanding of some phonon phenomena in solid
materials are presented in the review in [60]. Heat flow across
molecular junctions and the effect of thermal rectification
were analyzed for a chain of molecules sandwiched between
two solids at different temperatures [61]. The optimal design
of the cylindrical thermal rectifier was discussed in [62].
Heat rectification by two qubits [63], strongly interacting spin
chains [64], and two interacting classical particles subject to
an on-site potential and a Langevin thermal bath [65] was
demonstrated. In [66] a method was developed for calculating
the thermal conductivity of a classical harmonic lattice with
alternating masses and coupling coefficients and interacting
with Langevin heat baths. Propagation of phonons, heat trans-
fer, and rectification effect were analyzed for two-dimensional
carbon and other materials in [67–74]. Despite the fact that
more realistic models for a thermal diode are available in
the literature, we decided to limit ourselves to considering a
simple toy model in order to demonstrate the effect of energy
distribution on the diode effect at a qualitative level.

B. Dispersion relations for the chains

Looking for the solution to Eq. (1) in the form of a har-
monic wave un ∼ exp[iqn − iωi(q)t] with wave number q and
frequency ωi(q), we find the dispersion relation for the ith
chain:

ω2
i (q) = di

mi
+ 4ki

mi
sin2 q

2
, i = 1, 2. (4)

Here and below only real wave numbers q, corresponding to
traveling-wave solutions, and positive frequencies are con-
sidered. Then according to Eq. (4) the frequencies satisfy

054221-2



NONEQUILIBRIUM THERMAL RECTIFICATION AT THE … PHYSICAL REVIEW E 108, 054221 (2023)

inequalities

ωmin
i � ωi(q) � ωmax

i ,

ωmin
i =

√
di

mi
, ωmax

i =
√

di + 4ki

mi
. (5)

The group velocity, corresponding to Eq. (4), is equal to

vi(q) = a
dωi

dq
= a√

mi

ki sin q√
di + 4ki sin2 q

2

, i = 1, 2, (6)

where a is the lattice constant, which is assumed to be the
same for both chains. Below we also consider the group ve-
locity as a function of the wave frequency �:

vi(�) = a

2�

√(
�2 − di

mi

)(
4ki + di

mi
− �2

)
. (7)

The group velocity vanishes at � = ωmin
i (for di �= 0) and � =

ωmax
i . Equations (6) and (7) are further used for calculation of

the heat (energy) fluxes and energy transmission coefficient.

III. PHONON SCATTERING AT THE JUNCTION

Below, the amplitudes of the waves reflected by the
junction and transmitted through the junction and the corre-
sponding energy transmission coefficient are calculated.

Referring to Fig. 1, it is assumed that the incident phonon
(wave) of amplitude I and wave number q1 travels in chain
1 from the left to the right and hits the junction. This wave
is partly reflected and partly transmitted so that the reflected
and transmitted waves have the amplitudes R and T and
wave numbers −q1 and q2. The frequencies of the incident,
reflected, and transmitted waves are equal to each other and
are denoted by �. Then q1 and q2 are functions of � defined
as

qi(�) = 2 arcsin

√
mi�2 − di

4ki
, (8)

where the principal value of the function arcsin(x) is taken.
The following ansatz is used to find the amplitudes of the

reflected and transmitted waves:

un = I sin(q1n − �t ) − A sin(q1n + �t )

+B cos(q1n + �t ), n � 0, (9)

un = C sin(q2n − �t ) + D cos(q2n − �t ), n � 1. (10)

Equation (9) describes the incident and reflected waves having
wave numbers q1 and −q1, respectively, and moving in chain
1. At the same time, Eq. (10) describes the transmitted wave
having wave number q2 and moving in chain 2. The parame-
ters A, B, C, and D, determining the amplitudes

R =
√

A2 + B2, T =
√

C2 + D2, (11)

and phases of the reflected and transmitted waves, are to be
found. Their derivation is presented in the Appendix and the
result is

C = 2Iψk1 sin q1

ψ2 + φ2
, D = 2Iφk1 sin q1

ψ2 + φ2
, (12)

where φ and ψ are determined by the parameters of the chains
and frequency � [see Eq. (A7)]. Then the amplitude of the
transmitted wave is

T =
√

C2 + D2 = 2Ik1 sin q1√
ψ2 + φ2

. (13)

Using the formula (13), we calculate the energy transmis-
sion coefficient as follows. The average energy fluxes in the
incident, transmitted, and reflected waves are equal to

jI = 1
2 m1I2�2v1(�),

jT = 1
2 m2T 2�2v2(�),

jR = − 1
2 m1R2�2v1(�),

(14)

respectively (these formulas are derived, e.g., in [75]; a dis-
cussion of the definition of the flux and group velocity is
presented in [76]). The incident wave brings the energy equal
to jI�t to the junction in time �t . This energy is divided
between the energies of the reflected and transmitted waves,
which are equal to | jR|�t and jT �t , respectively. Then the
energy transmission coefficient is defined as [75]

Te = jT
jI

= m2v2(�)T 2

m1v1(�)I2
. (15)

Here T/I is a function of the wave frequency �, given by
Eq. (13). Then the transmission coefficient Te is a function of
�. We note that this frequency dependence was also obtained
using two different approaches and analyzed in [75]. It was
shown in particular that under some conditions the interface
is acoustically transparent, i.e., waves with some frequencies
pass the junction without reflection.

The formula (15) for the transmission coefficient is valid
only if the wave numbers q1 and q2 in the solution given by
Eqs. (9) and (10) are real. Then the frequency � should belong
to spectra of both chains, i.e., satisfy the inequalities

�min � � � �max, �min = max
(
ωmin

1 , ωmin
2

)
,

�max = min
(
ωmax

1 , ωmax
2

)
,

(16)

where ωmin
i and ωmax

i are defined by Eq. (5). Incident waves
with frequencies smaller than �min or larger than �max are
completely reflected and the corresponding transmission co-
efficient is equal to zero.

In the following section, we use the expression for the
transmission coefficient (15) for estimation of the diode effect.

IV. THERMAL DIODE EFFECT

Below the diode coefficient is derived for an arbitrary dis-
tribution of energy over wave numbers and then some special
cases are considered.

A. Diode coefficient (general formula)

Below we derive the general expression for the diode co-
efficient, relating fluxes through the junction in two opposite
directions. To calculate the diode coefficient two problems are
considered.

In the first problem, phonons with some energy distribution
among wave numbers are excited only in chain 1, while chain
2 initially has zero energy. Phonons in chain 1 running from
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the left to the right are party transmitted through the junction
into chain 2 and the energy flux from all such phonons is
averaged over a sufficiently long time. This averaged energy
flux from chain 1 to chain 2 is designated as J12.

In the second problem, phonons are excited only in chain
2, while chain 1 initially has zero energy. The distribution
of energy among wave numbers is the same as in the first
problem. The flux J21 from chain 2 to chain 1 is calculated by
switching indices 1 and 2 in the solution of the first problem.

Using solutions of the two problems, we calculate the diode
coefficient ε defined as

ε = J12 − J21

J12 + J21
. (17)

If the energy flux is the same in both directions, i.e., J12 = J21,
then ε = 0 and the diode effect is absent. If the fluxes J12 and
J21 are different then the diode effect is present. The system
acts as an ideal thermal rectifier (|ε| = 1) if the energy flux in
one direction is equal to zero, while the flux in the opposite
direction is not.

We calculate the energy flux J12 from chain 1, where ther-
mal vibrations are initially excited, to chain 2, which initially
has zero energy, as

J12 = 1

π

∫ π

0
jT (q)dq, (18)

where jT (q) is the flux in the transmitted wave, corresponding
to the incident wave with wave number q, amplitude I (q), and
frequency

� = ω1(q). (19)

Then using Eqs. (14) and (15), we obtain

jT (q) = Te(�) jI = 1
2Te(�)m1I2(q)�2v1(�). (20)

The amplitude of the incident wave I (q) is related to the
average energy per particle E (q) in this wave as

I2(q) = 2E (q)

m1�2
. (21)

The function E (q) determines the distribution of energy
among wave numbers. This is the key quantity for the present
study. The distribution is uniform [E (q) = const] at thermal
equilibrium at high temperatures and nonuniform either at low
temperatures or far from thermal equilibrium. The case of low
temperatures is discussed in Sec. IV E.

Substituting Eqs. (20) and (21) into the expression (18) for
the energy flux J12, we obtain

J12 = 1

π

∫ π

0
Te(�)E (q)v1(�)dq. (22)

Then changing the integration variable q ↔ � in Eq. (22)
using Eq. (19) and the definition of the group velocity (6)
yields

J12 = a

π

∫ �max

�min

Te(�)E (q1(�))d�, (23)

with the function q1(�) defined by Eq. (8). Here we use
the fact that the transmission coefficient is equal to zero for
frequencies outside the interval given by Eq. (16).

The energy flux J21 from chain 2 to chain 1 is calculated by
switching indices in Eq. (23). Using the fact that the energy

transmission coefficient Te(�) is invariant with respect to the
change of indices 1 ↔ 2, we obtain

J21 = a

π

∫ �max

�min

Te(�)E (q2(�))d�. (24)

Then according to (23) and (24), the fluxes J12 and J21 are
generally different, provided the distribution of energy among
wave numbers is not uniform, i.e., E (q) is not constant.

Substituting the expressions for J12 and J21 into the defini-
tion (17), we obtain the diode coefficient

ε =
∫ �max

�min
Te(�)[E (q1) − E (q2)]d�∫ �max

�min
Te(�)[E (q1) + E (q2)]d�

. (25)

Here q1 and q2 are functions of �, defined by Eq. (8).
Thus, from Eq. (25) it follows that the diode effect is

determined by the transmission coefficient and the distribution
of energy among wave numbers. In particular, the diode effect
is absent (ε = 0) for a uniform energy distribution, i.e., for
E (q1(�)) = E (q2(�)) = const. If the energy distribution is
nonuniform then the diode coefficient is generally not equal to
zero. Further, we use the expression (25) to analyze the diode
effect for several particular energy distributions.

B. Example: Piecewise constant energy distribution

To demonstrate the dependence of the diode coefficient on
the energy distribution, we consider the piecewise constant
function E (q) such that long and short waves have different
energies El and Es,

E (q) =
{

El , |q| � q∗
Es, q∗ < |q| � π,

(26)

where q∗ is the wave number, separating long waves (|q| �
q∗) and short waves (q∗ < |q| � π ). To calculate the fluxes
through the junction, we substitute the energy distribution (26)
into Eq. (22) for J12 and into a similar formula for J21 and
change the integration variable. Then

J12 ± J21 = a

π

[
El

(∫ ω∗
1

ωmin
1

Ted� ±
∫ ω∗

2

ωmin
2

Ted�

)

+Es

(∫ ωmax
1

ω∗
1

Ted� ±
∫ ωmax

2

ω∗
2

Ted�

)]
,

ω∗
i = ωi(q∗). (27)

From this formula it follows, in particular, that J12 = J21 for
a uniform distribution of energy, i.e., for El = Es. For the
nonuniform distribution (El �= Es), the diode coefficient de-
pends on the way the spectra of the two chains intersect with
each other. For example, we consider the case

ω∗
1 � ωmin

2 < ωmax
1 � ω∗

2 . (28)

The case ω∗
2 � ωmin

1 < ωmax
2 � ω∗

1 can be considered simi-
larly by switching indices 1 and 2. Using the formula (27)
and the fact that Te �= 0 in the interval (�min,�max) (here
�min = ωmin

2 and �max = ωmax
1 ), we show that the diode co-

efficient is equal to

ε = Es − El

Es + El
. (29)
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FIG. 2. Three types of energy distribution over phonon modes:
case I, all modes have the same energy as in thermal equilibrium
at high temperatures; case II, short-wavelength modes have higher
energy than long-wavelength ones; case III is opposite to case II.
Cases II and III describe nonequilibrium states.

It is seen that in this case the diode coefficient depends only on
the distribution of energy and it does not depend on the trans-
mission coefficient. The diode coefficient is also independent
of the way the chains are connected with each other (value of
stiffness k). We note that if either El or Es is equal to zero then
the absolute value of the diode coefficient is equal to unity.
Therefore, the system acts as an ideal thermal rectifier. More
general conditions for ideal thermal rectification are obtained
in Sec. V.

C. Example: Slightly overlapping spectra

We consider the case when the spectra of the two chains
overlap slightly, i.e., �min ≈ �max. For example, we restrict
ourselves to the case of �min = ωmin

2 and �max = ωmax
1 . Then

q1(�) ≈ π in the formula (23) and therefore E (q1(�)) ≈
E (π ) can be taken out from under the sign of the integral.
Using a similar approximation for J21, we obtain

J12 ≈ aE (π )

π

∫ �max

�min

Ted�, J21 ≈ aE (0)

π

∫ �max

�min

Ted�.

(30)
Then the definition (17) of the diode coefficient ε yields

ε ≈ E (π ) − E (0)

E (π ) + E (0)
. (31)

This formula is valid for an arbitrary distribution of energy
among wave numbers. In the case of a piecewise constant
distribution of energy it becomes exact and coincides with
(29). We note that, as in the previous example, the diode
coefficient does not depend on the transmission coefficient.

D. Example: Linear energy distribution

We analyze the diode effect for three energy distributions
over phonon modes shown in Fig. 2. Case I corresponds to
high-temperature thermal equilibrium, when the energy of the
chain is uniformly distributed among all phonon modes, and
cases II and III simulate nonequilibrium states in which it is

TABLE I. Average over all phonon-mode energy fluxes through
the junction of two linear chains with the parameters given in
Eq. (35), for three cases of energy distribution over the phonon
modes shown in Fig. 2. The last column gives the diode coefficient
calculated in Eq. (25).

Case J12 J21 ε

I 0.09707 0.09707 0.0
II 0.08688 0.07252 0.09034
III 0.1073 0.1216 −0.06270

assumed that the energy of phonon modes varies linearly with
the wave number:

E (q) = E0 (case I), (32)

E (q) = 2E0
|q|
π

(case II), (33)

E (q) = 2E0

(
1 − |q|

π

)
(case III). (34)

Here E0 is the average energy. In case II the energy of phonons
increases with the wave number, while in case III the opposite
is true. In other words, in case II (case III), most of the energy
of the system belongs to short-wavelength (long-wavelength)
phonons.

We set the model parameters

m1 = 1.4, k1 = 0.7, d1 = 1.4, m2 = 1.0,

k2 = 1.0, d2 = 0.6, k = 1.3
(35)

and calculate J12 and J21 using Eqs. (23) and (24) for three
cases of energy distribution over phonon modes described by
Eqs. (32)–(34) and shown in Fig. 2. Here and below definite
integrals are evaluated numerically using Simpson’s rule.

The results are presented in Table I. Notably, the energy
flux for case I (uniform distribution) does not depend on the
direction of the energy flow and the diode coefficient is equal
to zero. For cases II and III the energy flux does depend on the
direction of energy flow and the diode effect is observed.

In Fig. 3 the phonon spectra and the energy flux through
the junction are analyzed as functions of the wave number q.
As can be seen in Fig. 3(a), the phonon spectrum of chain
1 is narrower and it is within the spectrum of chain 2. This
means that all phonons traveling from chain 1 partly enter
chain 2, but the opposite is not true: Only phonons with
wave numbers in the range 0.2050 < q/π < 0.5634 are partly
transmitted through the junction when they travel from chain
2 to chain 1; otherwise, the conditions (16) are not satisfied.
This can be seen in Figs. 3(b)–3(d): The energy flux is nonzero
for all phonons traveling from chain 1 to chain 2 and it is
nonzero only in the range specified above when traveling from
chain 2 to chain 1. However, in case I the areas under the
corresponding curves jT (q) in Fig. 3(b) are exactly the same,
meaning that the integrals J12 and J21 are equal and the diode
effect is absent (ε = 0). In nonequilibrium cases II and III
[see Figs. 3(c) and 3(d)], the areas under the solid and dashed
curves are not equal and the diode effect takes place.
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FIG. 3. (a) Phonon dispersion curves for chain 1 and chain 2. The
energy flux through the junction [the integrand of Eq. (22)] is plotted
as a function of q for (b) case I, (c) case II, and (d) case III. The solid
lines correspond to the energy flow from chain 1 to chain 2, while the
dashed lines correspond to the energy flow in the opposite direction.
The model parameters are given in Eq. (35).

E. Example: Equilibrium energy distribution corresponding
to Bose-Einstein statistics

The nonuniform distribution of energy among wave
numbers can be caused, e.g., by quantum effects at low
temperatures. In the present section we consider the equilib-
rium distribution of energy, following from the Bose-Einstein
statistics (see, e.g., [77]),

Ei(q) = kB�ϕ

(
h̄ωi(q)

kB�

)
, ϕ(x) = x

ex − 1
, (36)

where kB is the Boltzmann constant, � is temperature, and h̄ is
the reduced Planck constant. In the classical limit h̄ωi/kB� �
1, the distribution Eq. (36) is uniform, i.e., Ei ≈ kB�.

We note that, unlike all previous cases, the energy distri-
bution (36) depends on the dispersion relation of the chain
number i and therefore it is generally different for chains 1
and 2. We generalize the derivations, presented in Sec. IV A,
to account for this fact. Again, we consider the two problems,
described in Sec. IV A, and calculate the fluxes J12 and J21.
However, in this section we assume that in the two problems
the initial vibrations are excited with the same � rather than
the same total energy. Then, using the same reasoning as in
Sec. IV A, we obtain the expression for the flux

J12 = 1

π

∫ π

0
TeE1(q)v1(q)dq

= kB�

π

∫ π

0
Teϕ

(
h̄ω1(q)

kB�

)
v1(q)dq. (37)

Then change of the integration variable in Eq. (37) yields

J12 = akB�

π

∫ �max

�min

Te(�)ϕ

(
h̄�

kB�

)
d�. (38)

The right-hand side of this expression is invariant to the
switching of the indices 1 and 2 and therefore the fluxes in
both directions are equal, i.e., J12 = J21 and ε = 0.

Thus, under the equilibrium energy distribution (36), the
diode effect is absent at all temperatures. A similar result was
obtained in [17] for a more complicated system using a kinetic
model of heat transfer and the Landauer-Büttiker formalism.
We also note that the diode effect is absent for a large class of
energy distributions that can be obtained by changing ϕ(x) in
Eq. (36) by an almost arbitrary function.2

V. MAXIMAL THERMAL DIODE EFFECT

The conditions for the maximum thermal diode effect are
derived and discussed below.

A. Conditions for an ideal thermal rectifier

We obtain conditions corresponding to the maximum pos-
sible thermal diode effect (|ε| = 1). From the definition (17)
it follows that the diode coefficient ε is equal to 1 if J21 = 0
and J12 �= 0. In other words, the energy transport is possible
only from chain 1 to chain 2. Consider the formula (24) for
the flux J21. The formula contains an integral of the product
of non-negative functions Te(�) and E (q2(�)). Since Te is
generally not equal to zero in the interval (�min,�max) then
the flux J21 vanishes only if E (q2(�)) is equal to zero for all
frequencies in this interval. Combining this with the condition
J12 �= 0, we obtain

ε = 1 ⇔
{

E (q) = 0 ∀ q ∈ (q2(�min), q2(�max))∫ �max

�min
Te(�)E (q1(�))d� �= 0,

(39)

with the functions qi(�) defined in Eq. (8). Similar conditions
for ε = −1 are obtained by switching indices 1 and 2 in the
formula (39).

Thus the system acts as an ideal thermal rectifier if waves
with wave numbers corresponding to the passband [i.e., inter-
val (�min,�max)] have zero energy for one chain and nonzero
energy for another chain. This condition is satisfied, e.g., in
the case when energies of either short or long waves are equal
to zero. These two particular cases are considered below.

B. Example: Short or long waves having zero energy

We begin with the case when short waves are absent, i.e.,

E (q) =
{

fl (|q|), |q| � q∗
0, q∗ < |q| � π,

(40)

where fl (|q|) is a non-negative function, describing the dis-
tribution of energies of long waves. In this case, the general
conditions for ideal thermal rectification (39) are simplified as
follows. Since the function q2(�) is monotonically increas-
ing in the interval [0, π ], then the first condition from (39)
is satisfied if q2(�min) > q∗ and hence �min > ω2(q∗). The

2The only formal restriction on the function ϕ in Eq. (36) is that it
should be non-negative with a finite integral with respect to the wave
number in order to guarantee that the total energy per particle is also
finite.
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second condition from (39) yields �min < ω1(q∗). Then the
conditions (39) can be replaced by ω2(q∗) < �min < ω1(q∗).
These inequalities are satisfied only for �min = ωmin

1 . There-
fore, Eq. (39) reduces to

ε = 1 ⇔ ωmin
1 > ω2(q∗). (41)

This condition can also be rewritten in terms of wave numbers
as

ε = 1 ⇔ q2
(
ωmin

1

)
> q∗. (42)

A similar condition for ε = −1 is obtained from Eq. (41) by
switching indices 1 and 2.

Similarly, we consider the case when long waves have zero
energy, i.e.,

E (q) =
{

0, |q| � q∗
fs(|q|), q∗ < |q| � π,

(43)

where fs(|q|) is a non-negative function, describing the distri-
bution of energy of short waves. Using the same reasoning as
in the previous case, we obtain

ε = 1 ⇔ ωmax
1 < ω2(q∗) (44)

and

ε = 1 ⇔ q2
(
ωmax

1

)
< q∗. (45)

Thus the system acts as an ideal thermal rectifier if no
energy is stored in short or long waves and the spectra of the
chains intersect in such a way that Eq. (41) or (44), respec-
tively, is satisfied, while the functions fl and fs can be chosen
arbitrary. We note that the conditions (41) can only be satisfied
if chain 1 has the on-site potential.

C. Example: Linear energy distribution

Below we show that the absolute value of the diode coeffi-
cient can be large even if the energy distribution E (q) is equal
to zero only at one point. For this purpose, linear distributions
(33) and (34) are considered.

We vary the relative positions of the spectra of the two
chains and calculate the diode coefficient ε using Eq. (25). The
parameters of chain 2 (and therefore its spectrum) are fixed:

m2 = 1.0, k2 = 1.0, d2 = 0.6. (46)

From Eq. (5) we find the minimum and maximum phonon
frequencies as well as the width of the phonon spectrum of
chain 2,

ωmin
2 =

√
0.6 ≈ 0.775, ωmax

2 =
√

4.6 ≈ 2.145,

�ω2 = ωmax
2 − ωmin

2 ≈ 1.370. (47)

For chain 1 we set m1 = 1 and change the stiffness of the
on-site potential d1 (and therefore ωmin

1 ), keeping the width of
the phonon spectrum unchanged:

�ω1 = ωmax
1 − ωmin

1 =
√

3 − 1 ≈ 0.732. (48)

Then the stiffness k1 is calculated as

k1 = m1

4
�ω1

(
�ω1 + 2ωmin

1

) ≈ 0.1876 + 0.4331
√

d1. (49)

The stiffness of the spring connecting the chains is, as always,
k = 1.3.

FIG. 4. Dependence of (a) the energy flux through the junction
and (b) the diode coefficient on the relative position of the phonon
spectra of two harmonic chains. The spectrum of chain 2 is fixed
and the position of the spectrum of chain 1 is determined by the
minimum frequency ωmin

1 , while the width of the spectrum remains
constant [see Eq. (48)]. Three top panels in (a) show phonon spectra
for particular values of ωmin

1 . Solid and dashed curves in (a) show J12

and J21, respectively. Black, red, and blue lines in (a) and (b) show the
results for the three cases of energy distribution over phonon modes
(see Fig. 2). The meaning of the vertical dashed lines numbered 1–4
is explained in the text.

In Fig. 4(a), depending on ωmin
1 , the energy fluxes through

the junction are shown by the solid (J12) and dashed (J21)
lines. The black, red, and blue curves correspond to three
different energy distributions over phonon modes given by
Eqs. (32), (33), and (34), respectively (see Fig. 2). The top
three panels show the phonon spectra of chains 1 and 2 for
specific values of ωmin

1 = 0.4, 1.0, and 1.6, when the spectrum
of chain 1 overlaps with the lower part of the spectrum of
chain 2, is within the spectrum of chain 2, and overlaps with
the upper part of the spectrum of chain 2, respectively. The
four vertical dashed lines numbered 1, 2, 3, and 4 in Figs. 4(a)
and 4(b) correspond to the cases ωmax

1 = ωmin
2 , ωmin

1 = ωmin
2 ,

ωmax
1 = ωmax

2 , and ωmin
1 = ωmax

2 , respectively.
The results shown in Fig. 4(a) confirm that in case I with

a uniform energy distribution over phonon modes J12 = J21,
but for nonequilibrium cases II and III, i.e., for nonuniform
distributions of energy over phonon modes, the energy flux
depends on the direction. In Fig. 4(b) the diode coefficient is
shown as a function of ωmin

1 with black, red, and blue curves
for cases I, II, and III, respectively. In case I ε = 0, which
means that in thermal equilibrium the diode effect is absent for
any mutual arrangement of the phonon spectra of the chains.
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FIG. 5. Numerical simulation model: two harmonic chains of N
particles under periodic boundary conditions un = un+2N . The chains
are connected by bonds of stiffness k. The chain parameters are
particle mass mi, bond stiffness ki, and on-site potential stiffness di

(i = 1, 2).

In nonequilibrium cases II and III, the diode effect is observed,
i.e., ε �= 0.

Note the diode coefficient ε vanishes for some value of
ωmin

1 , which is the same for cases II and III. This fact is
explained as follows. For energy distributions (33) and (34),
corresponding to cases II and III, numerators in the expres-
sion for the diode coefficient (25) differ only by a sign and
therefore they vanish simultaneously.

We also note that the phonons with wave vectors approach-
ing the boundary of the first Brillouin zone have a group
velocity approaching zero [see Eq. (6)]. Therefore, ideal ther-
mal rectification is achieved in the limit of vanishing overlap
of the phonon spectra of two chains, when the energy flux
through the junction also vanishes. This means that for practi-
cal applications, a trade-off must be considered when the two
spectra overlap enough to have a noticeable heat flux but not
too much to have a large diode coefficient.

Summing up, for any mutual arrangement of the phonon
spectra of two chains, the diode effect is present only for
nonequilibrium energy distributions (cases II and III). As fol-
lows from Fig. 4(b), the diode effect is small when one of
the spectra is inside the other. On the other hand, the diode
effect is maximal and ε approaches the maximum values ±1,
predicted by the approximate formula (31), when the phonon
spectra of two chains overlap only near their edges.

VI. NUMERICAL RESULTS

In this section we confirm the analytical results obtained
above by numerical simulations. In simulations, chains 1 and
2 are finite and form a periodic cell of 2N particles, i.e., the
conditions un = un+2N are satisfied. Particles n = 0, . . . , N −
1 belong to chain 1, while particles n = N, . . . , 2N − 1 be-
long to chain 2. Under periodic boundary conditions, there are
two junctions between the chains (springs between particles
N − 1 and N and between particles 0 and 2N − 1) (see Fig. 5).

It is assumed that at t = 0 chain 1 is heated and chain 2
has zero energy. For t > 0 energy starts to flow from chain
1 to chain 2. Initial conditions for chain 1 are formulated as
the sum of N/4 phonon modes numbered by the index i =
1, . . . , N/4 [78],

un = IN/4 cos(πn) +
N/4−1∑

i=1

Ii cos[pin ± ω1(pi )t + �i], (50)

where n = 0, . . . , N − 1. The ith harmonic has wave num-
ber pi = 4π i/N , frequency ω1(pi ), random phase shift �i

uniformly distributed in the interval (0, 2π ), and amplitude

TABLE II. Numerically found energy fluxes through the junction
of two linear chains with the parameters given in Eq. (35) for three
cases of energy distribution over the phonon modes shown in Fig. 2.
The last column gives the diode coefficient defined in Eq. (17).

Case J12 J21 ε

I 0.09762 0.09732 0.00154
II 0.08697 0.07299 0.08740
III 0.1076 0.1217 −0.06149

I2
i = 2E (pi )/Nm1ω1(pi )2. The amplitude is chosen such that

the harmonic has energy E (pi ). Phase shifts of different har-
monics are uncorrelated, i.e., 〈�i�i〉 = 0 for i �= j, where
〈· · · 〉 stands for mathematical expectation. The plus or minus
sign in front of the ω1(pi )t term is taken with equal probability
in order to have an equal contribution to the energy from the
waves running to the right and to the left. Initial displacements
of the particles are calculated using Eq. (50) at t = 0, while
initial velocities are calculated as time derivative of Eq. (50)
at t = 0. The considered distributions of energy over phonon
modes are given by Eqs. (32)–(34) and are shown in Fig. 2.

Simulations are carried out for 2N = 4096 and model pa-
rameters given by Eq. (35). The equations of motion (1)–(3)
are integrated numerically with the use of the symplectic
sixth-order Störmer method [79] with time step equal to 10−2.

In simulations, the total energy of the chain 2 is
calculated as

E2 =
2N−1∑
n=N

εn, (51)

where the energy per nth particle is defined as

εn = m2

2
u̇2

n + kl

4
(un − un−1)2 + kr

4
(un+1 − un)2 + d2

2
u2

n.

(52)

Here kl and kr are the stiffnesses of the bonds connecting the
nth particle with the left and right neighbors, respectively. The
first term on the right-hand side of this expression gives the
kinetic energy of the nth particle, the second and the third
terms describe the halves of the potential energies of the left
and right bonds of the nth particle, and the fourth term is
the energy of interaction of the nth particle with the on-site
potential.

In Fig. 6 the curves E2(t ) averaged over 500 realizations are
shown by the thick solid lines. It can be seen that E2 increases
almost linearly with time. The slopes of the solid lines give
2J12 = dE2/dt [the factor 2 is introduced to account for the
presence of two junctions in the finite-size chain with the peri-
odic boundary conditions (see Fig. 5)]. The calculated values
of J12 are presented in Table II. Then the model parameters
are switched, i.e., m1 ↔ m2, k1 ↔ k2, and d1 ↔ d2, and the
dashed lines presented in Fig. 6 are obtained by averaging
over 500 realizations. From these lines the fluxes are found as
2J21 = dE2/dt and are also presented in Table II. The diode
coefficient ε is calculated using Eq. (17). The thin lines in
Fig. 6(b) show the time evolution of E2 for the energy flow
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FIG. 6. Energy of chain 2 as a function of time averaged over 500
realizations. The results for the three different energy distributions
over the phonon modes shown in Fig. 2 are presented for (a) case
I, (b) case II, and (c) case III. The slopes of the thick solid lines
correspond to the energy fluxes J12 and the dashed lines to the fluxes
J21. Thin lines in (b) show two particular realizations to give an idea
of the dispersion of simulation results.

2 → 1 for two particular realizations to give an idea of the
dispersion of simulation results.

A comparison of the numerical results presented in Table II
with the analytical results presented in Table I shows fairly
good agreement. In case I, J12 is equal to J21 within the
simulation accuracy, and in nonequilibrium cases II and III,
the energy flux depends on the direction, i.e., the diode effect
is realized.

VII. CONCLUSION

The thermal diode effect has been analyzed for the junc-
tion of two harmonic chains. The expression for the diode
coefficient, which relates the heat (energy) fluxes through the
junction in the two opposite directions, was derived analyt-
ically. It was shown that the diode effect is determined by
the transmission coefficient and the distribution of the trans-
mitted energy among the wave numbers (phonon modes). In
particular, for any mutual arrangement of the phonon spectra
of the chains, the diode effect is absent if the energy distri-
bution among the phonon modes is in equilibrium (uniform
or according to Bose-Einstein statistics). For nonequilibrium
energy distributions, the thermal diode effect can be observed
in the harmonic system. Several examples of such distribu-
tions were given and the corresponding diode coefficients
were calculated.

The physical explanation for the diode effect in the har-
monic system is as follows. The energy is transmitted through
the junction by harmonic waves with frequencies in the pass-
band (intersection of the spectra of the chains). For each chain,
the passband determines the interval of wave numbers that
contribute to the flux through the junction. Since the disper-
sion relations of the chains are different, these intervals are
also different for chains 1 and 2. Therefore, for nonuniform
energy distribution, the amount of energy in the waves that can

pass through the junction is generally different for chains 1
and 2. This difference causes the diode effect in the harmonic
system.

It should be noted that perfect thermal rectification is
achieved in the limit of vanishing overlap of the phonon spec-
tra of two chains, when the energy flux through the junction
also tends to zero. This means that in practice a trade-off is
unavoidable: The two spectra must overlap enough to have a
noticeable heat flux but not too much to have a large diode
coefficient.

It has been shown that the system acts as an ideal thermal
rectifier (the energy is transferred through the junction in only
one direction) if the energy distribution satisfies the condi-
tions given by Eq. (39). The conditions are such that waves
with wave numbers corresponding to the passband have zero
energy for one chain and nonzero energy for another chain.
In particular, the conditions are satisfied if the energies of
either short or long waves are zero and the spectra of the
chains satisfy Eq. (41) or (44). Note that the conditions (41),
corresponding to the case of no short waves, can only be
satisfied if one chain has an on-site potential.

Our results reveal the possible reason why some harmonic
systems exhibit a thermal diode effect [38,39,80] and others
do not [17,34–37]; the difference in the results can be related
to the proximity of the considered system to thermal equilib-
rium. The results also suggest that the distribution of energy
among normal modes can be used to maximize the thermal
diode effect.

A possible practical realization of a thermal rectifier based
on the results obtained could be the use of low-pass and high-
pass filters for the heat coming from the left and right sides at
the junction of the two chains.

The results presented have been obtained for a purely har-
monic model. The nonlinearity, which may be weak but is
always present in real crystals, leads to at least two physical
processes that are absent in the harmonic model, namely,
redistribution of energy among wave numbers and transition
from ballistic to anomalous or diffusive heat transfer. How-
ever, both of these processes require some time to manifest,
depending on the nonlinearity [81–84]. During this time the
behavior of the weakly nonlinear system is approximately
described by the harmonic theory, developed, e.g., in the
works in [85–88]. Therefore, we believe that the results pre-
sented are applicable to weakly nonlinear systems on a certain
timescale. However, these qualitative considerations should
be confirmed by a detailed analysis, which is beyond the scope
of the present paper.

In this work, a model with deterministic energy distri-
butions E (q) was considered. We believe that uncorrelated,
normally distributed fluctuations of phonon energies would
lead to the same physical picture and that only a colored noise
might give a qualitatively new behavior of the system [89].
We would like to leave this interesting and nontrivial question
to future studies.
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APPENDIX

The reflection and transmission of a phonon wave incident
on the junction of harmonic chains is described by the ansatz
(9) and (10). To find the relation between A, B,C, D and
the amplitude of the incident wave I , we substitute Eqs. (9)
and (10) into Eqs. (2) and (3), use the identities sin(x +
y) = sin x cos y + cos x sin y and cos(x + y) = cos x cos y −
sin x sin y, and demand that the terms with sin(�t ) and
cos(�t ) cancel separately. Then the following four equa-
tions for A, B, C, and D are obtained:

γ A + k1B sin q1 − k(C cos q2 − D sin q2) = −γ I, (A1)

k1A sin q1 − γ B + k(C sin q2 + D cos q2) = k1I sin q1, (A2)

kA − δC + θD = −kI, (A3)

kB − θC − δD = 0. (A4)

Here

β = k + k2 + d2,

γ = k + k1(1 − cos q1) + d1 − m1�
2,

δ = (β − m2�
2) cos q2 − k2 cos(2q2),

θ = (β − m2�
2) sin q2 − k2 sin(2q2). (A5)

Excluding A and B from Eqs. (A1) and (A2) with the help of
Eqs. (A3) and (A4), we obtain

−φC + ψD = 0,

ψC + φD = 2k1I sin q1,
(A6)

where

φ = −δ
γ

k
− θ

k1

k
sin q1 + k cos q2,

ψ = −θ
γ

k
+ δ

k1

k
sin q1 + k sin q2. (A7)

Solving Eq. (A6), we obtain the expressions (12) for C and D.
Then one can find A and B from Eqs. (A3) and (A4).
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