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Motion of localized disturbances in scalar harmonic lattices
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We present analytical and numerical investigations of energy propagation in systems of massive particles that
interact via harmonic (linear) forces. The particle motion is described by a scalar displacement, and the particles
are arranged in a simple crystal lattice. For the systems under consideration we prove the conservation of the
total energy flux analytically. Then, using a sample case of a square lattice, we confirm the analytical results
numerically. We create disturbances of a special kind which can move with a predefined velocity with a minor
change in their shape. We show that a clot of energy, associated with each disturbance, moves similarly to a
free body of matter in classical mechanics. We also numerically study a simultaneous propagation of a number
of energy clots as an analogy to the motion of point masses in the conventional mechanics of particles. The
obtained results demonstrate that an energy flow in lattices can be described in terms of numerous separated
energy bodies, making a step towards a linkage between lattice dynamics and the kinetic theory of heat transfer
in solids.
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I. INTRODUCTION

Energy transfer processes with various natures have been
studied widely because of their fundamental and practical
implications [1–7]. To date, a number of such processes have
been considered in detail, such as the energy transfer be-
tween molecules and ions in solids [8], thermal dynamics of
nanostructures [9,10], thermal energy transfer [11–15], energy
processes in structures subjected to extreme loads [1,2,16],
and electromagnetic radiant energy transfer [17]. The theo-
ries of mechanical-to-vibrational energy transfer showed that
external mechanical impact can be transformed into lattice
vibrations, which might further cause damage to the crystal
[1–3,18]. A review of the current progress in the field of
nonlinear targeted energy transfer is presented in [19]. Wave
energy transfer plays an important role in electromagnetic,
acoustic, seismic processes [20–27]. The energy transfer in
lattices helps to model various physical, mechanical, and bi-
ological processes, even in such complex systems as flexible
polymers and DNA [28].

Understanding heat transfer processes is of high practical
importance, for instance, efficient removal of heat from a
reactor core or other high-energy thermal devices [29–31].
Theoretical [32–41] and experimental [42–47] studies showed
that at micro- and nanolevels, nondiffusive ballistic and
anomalous heat energy transfer is common, especially for low
dimensions. This behavior is due to the fact that one of the
leading mechanisms of heat transfer in solids is connected to
elastic waves, facing fewer obstacles at low scales. Therefore,
heat transfer processes in crystalline solids can be effectively
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described on the basis of kinetic models, in which energy is
transferred by phonons, quasiparticles that mimic the proper-
ties of material particles [7,11,48–52]. The similarity between
mass and energy transfers is well-known, for example, for
diffusive processes [53]. However, an analogy between en-
ergy transfer and mass transfer for wave processes is still
less understood. There are also important results in this area,
such as soliton-like solutions for anharmonic systems, that
demonstrate explicitly the wave-particle duality [54–56].

Previously, the lattice dynamics approach was successfully
used by our group to describe heat transfer in solids, especially
on micro- and nanoscales, when the ballistic heat propagation
took place [13,14,57–67]. However, kinetic equations, based
on the quasiparticle approach, are much simpler than the
equations for lattice dynamics and make it possible to obtain
visual, easily interpretable solutions [7,11,48,49], allowing us
to calculate explicitly such important quantities like kinetic
temperature and heat flux [7]. Unfortunately, the transition
from dynamics to kinetics is quite complicated and still is not
fully understood, especially when considering classical rather
than quantum models of solids.

The approach of energy dynamics for describing wave
energy transfer in terms of mass transfer is presented in [68]
for a one-dimensional system of interacting particles. This
approach can be used for various physical phenomena at
different scale levels. In the present work, we consider har-
monic scalar crystal lattices and analyze the energy transfer by
analogy with mass transfer in conventional mechanics. Then,
using a sample model of a square lattice, we obtain more
detailed formulations and perform computer simulations to
confirm the analytical statements.

The general outline of this paper is as follows. An intro-
duction and a brief literature review were given in the present
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section. In Sec. II, we introduce the basic quantities and per-
form an analytical analysis of energy transfer in harmonic
scalar lattices. In Sec. III, we apply the results obtained in
Sec. II to the case of a square lattice and perform computer
simulations. In Sec. IV, we summarize the obtained results.
Complex mathematical derivations and formulations are left
to Appendixes.

II. SCALAR LATTICES

A. Equation of motion

We consider a set of equal particles, each having mass m.
In the reference configuration, the particles are located at the
nodes of an ideal crystal lattice. We restrict our consideration
to simple infinite lattices—lattices that are shift invariant with
respect to a vector connecting any two nodes. These lattices
are also inversion invariant: They are centrosymmetric with
respect to any node. Vectors connecting a node with neigh-
boring nodes are denoted by aα , where integer α is a neighbor
index. To follow the central symmetry we presume that a−α =
−aα . All the geometrical information about the particular type
of lattice is stored in the set of α numbers and aα vectors. The
lattice under consideration coincides with its Bravais lattices,
and a primitive cell of the lattice contains a single node. This
differs from the case of a complex lattice [59], which can
be considered a combination of several Bravais lattices, in
which a primitive cell contains several nodes; such systems
are beyond the scope of the current paper.

The actual state of a particle is determined by a scalar
variable u = u(r), where r is a node position vector. For
brevity we call u a displacement, keeping in mind that it is
a generalized displacement that can be the displacement, the
angle, or some other kinematic variable. Since u is a scalar,
the lattice is referred to as a scalar one. The lattice is defined
in space of dimension d . The most common case for scalar
lattices isd = 2; in particular, a two-dimensional (2D) square
lattice will be used in this paper as a sample system for
computations. However, all analytical results obtained are also
valid for d = 1, d = 3, and even higher dimensions.

The considered system is harmonic; therefore, the in-
teraction between particles is proportional to generalized
deformations, which are differences u(r + aα ) − u(r). Then
the equation of motion takes the form

m
d2u

dt2
=

∑
α

Cα[u(r + aα ) − u(r)], (1)

where t is time, Cα ≡ C−α is an effective stiffness, and the
summation is performed over all neighboring particles in-
volved in the interaction.

As an illustrative system, we will consider in this paper an
infinite two-dimensional square lattice of identical particles
(see Fig. 1). We assume that each particle is connected to its
four nearest neighbors by identical elastic massless springs.
We study the out-of-plane lattice motions within the frame-
work of the harmonic approximation. In the equilibrium state,
the lattice is stretched (the elastic forces are not zero), and the
lattice period (the equilibrium distance between the particles)
is a. For the square lattice, α ∈ {−2; −1; 1; 2}, and the vectors
aα are a±1 = ±ae1 and a±2 = ±ae2, where e1 and e2 are the

FIG. 1. Sketch of a square lattice with lattice period a and lattice
basis vectors e1 and e2. The particles are numbered by integer indexes
i, j.

unit vectors of the Cartesian basis (see Fig. 1). The position
vector r takes discrete values localized at the lattice nodes. In
the case of the square lattice

r def= aie1 + a je2, i, j ∈ Z, (2)

where Z is a set of all integers. With the representation of r
from Eq. (2), the displacement can be written as u(r) = ui, j ,
which results in the following scalar form of (1) (valid for only
the square lattice):

d2ui, j

dt2
= C

m
(ui+1, j + ui, j+1 + ui−1, j + ui, j−1 − 4ui, j ), (3)

where C is an effective stiffness, equal to the ratio of the
stretching force to the lattice period.

B. Energy and flux

We consider a disturbance of the lattice, which is a devi-
ation of the coordinates and velocities from their equilibrium
values. The total energy of the disturbance is

E
def=

∑
r

ε(r), (4)

where ε(r) is the local energy,

ε(r)
def= m

2
v2(r) + 1

4

∑
α

Cα[u(r + aα ) − u(r)]2, (5)

and v
def= u̇ is the velocity of the particle. The local energy

is a sum of the kinetic and potential components, which are
proportional to mass m and stiffness C, respectively. The sum-
mation in Eq. (4) is done over all the particles in the system;
in Eq. (5) it is over all neighbors of the selected particle. As
the system is conservative, the total energy of the system is
constant: E = const.

Following [68], let us introduce the first energy moment
and the position of the energy center:

M def=
∑

r

r ε(r), rc
def= M

E
. (6)
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The vector rc defines the center of the spatial energy distri-
bution in the lattice. Definitions of M and rc are analogous to
the static moment and the center of mass, respectively, that are
used in classical mechanics to describe the spatial distribution
of massive particles. Therefore, here, rc will be referred to as
the center of energy or the energy center. In the present work,
we limit our consideration to the disturbances for which the
total energy (4) and the first energy moment (6) are finite.

Using differentiation of Eq. (6), we now introduce the total
energy flux h and the energy transfer velocity vc (the velocity
of the energy center):

h def= dM
dt

, vc
def= drc

dt
= h

E
. (7)

From the last formula we have h = Evc; hence, the total
energy flux h describes the propagation of energy over the
lattice in the same way that the total momentum describes the
propagation of mass in space. Calculating the time derivative
of M using Eqs. (1), (5), and (6) gives the following represen-
tation for the total energy flux:

h = 1

2

∑
r, α

aα Cα u(r) v(r + aα ). (8)

Further differentiation using (1) gives

dh
dt

= 0 ⇒ h = const, (9)

the conservation of the total energy flux in a simple harmonic
scalar lattice. A detailed derivation of formulas (8) and (9)
is given in Appendix A. From (9) it follows that the energy
transfer velocity is conserved: vc = const. Then the position
of the energy center at any moment of time is

rc = ◦
rc + vct, (10)

where
◦
rc is the initial value of rc. Thus, the center of energy

for any finite energy disturbance in a simple harmonic scalar
lattice moves rectilinearly and uniformly. Here, we have a
complete analogy with the motion of the center of mass of

a free body in classical mechanics. Constants
◦
rc and vc in

Eq. (10) are uniquely determined from the initial conditions
by Eqs. (4)–(8). Explicit formulas for these vectors in the case
of a square lattice are given in Appendix B.

C. Traveling waves

Equation (1) possesses a solution in the form of traveling
harmonic waves,

u(r) = U sin(κ · r − ωt + φ), (11)

where U is the amplitude, κ is the wave vector, ω is the
wave frequency, and φ is the phase shift. Substituting function
(11) into the equation of motion (1) results in the dispersion
relation ω = ω(κ). The direction of the phase wave motion
for Eq. (11) is defined by the wave vector κ. However, it is
generally accepted that the direction of energy propagation
can be different since it is associated with the direction of the
group velocity vector:

vg
def= dω

dκ
. (12)

Solution (11) satisfies the following initial conditions:
◦
u(r) = U sin(κ · r + φ),

◦
v(r) = −ωU cos(κ · r + φ),

(13)
where the circle accent denotes the initial values of the vari-
ables. To have a localized disturbance, the initial conditions
(13) will be modified by replacing constant U by the following
envelope function:

U (r)
def= γ A cos2k

(πr

D

)
(14)

for r � D/2, and otherwise, U (r) = 0. Here, r
def= |r|, A is

a constant amplitude, and γ is the dimensionless correction
factor. The parameter k is the shape factor; it determines the
shape of the envelope, which is cylindrical for k = 0 and bell
shaped for k = 1. The value of the correction factor is chosen
depending on k in order to have the same total energy for
disturbances with different shapes.

The disturbance, defined by initial conditions (13) and
(14), is localized in a circle of diameter D. The energy center
of the disturbance should move with constant energy transfer
velocity vc, defined by (7). This velocity can be obtained from
initial conditions in view of conservation of the total energy
and the total energy flux. On the other hand, the disturbance
is supposed to move in the direction of the group velocity vg.
Thus, we have the following questions, which are among the
main issues of the current work:

(i) Is the group velocity vg close to the velocity of the
energy center vc, or can a noticeable difference be observed?

(ii) Can we describe the motion of the disturbance as a
motion of a point mass in conventional mechanics?

(iii) Will the localization of the disturbance remain during
its motion?

These questions will be studied below using computer sim-
ulations in the case of a square lattice.

III. SQUARE LATTICE

A. Wave vector and group velocity

1. Basic formulas

For the square lattice, function (11) satisfies the equation of
motion (3) if the following dispersion relation holds:

ω = 2ωe

√
sin2 qx

2
+ sin2 qy

2
, (15)

where ωe
def= √

C/m is the elementary frequency, qx = q · e1

and qy = q · e2 are the dimensionless wave numbers, q =
aκ is the dimensionless wave vector, and e1 and e2 are the
unit vectors shown in Fig. 1. Relation (15) can be obtained
by representing solution (11) in exponential form, u(r) =
Re (Zei(κ·r−ωt ) ), where Z is an appropriate complex constant
and i is the imaginary unit. Then substitution of the exponent
into Eq. (3) results in the dispersion relation, Eq. (15).

The group velocity vector (12) can be calculated as

vg = dω

dκ
= 1

a

(
∂ω

∂qx
e1 + ∂ω

∂qy
e2

)
. (16)

The corresponding derivatives using Eq. (15) give, for projec-
tions vgx = vg · e1 and vgy = vg · e2 of the group velocity, the
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FIG. 2. Velocity vector field. The arrows indicate the magnitude
and direction of the velocity vector.

following representations:

vgx = c sin qx

2
√

sin2 qx

2 + sin2 qy

2

, vgy = c sin qy

2
√

sin2 qx

2 + sin2 qy

2

,

(17)

where c
def= aωe is the sound velocity, that is, the velocity of

the infinitely long waves in the lattice. The modulus of the
group velocity is

vg
def=

√
v2

gx + v2
gy = c

2

√
sin2 qx + sin2 qy

sin2 qx

2 + sin2 qy

2

. (18)

It can be shown from Eq. (18) that vg � c.

2. Vector field

The field of velocities, given by Eq. (17), is shown in
Fig. 2. Red arrows indicate the magnitude and direction of
the velocity vector as a function of the wave numbers.

As can be seen from Fig. 2, the magnitude of the velocity
vectors decreases with the increase of the value of the wave
vector. When qx or qy is equal to π , the velocity approaches
zero, and we have a standing wave. Figure 2 elucidates that
the direction of the group velocity coincides with the direc-
tion of the wave vector only in some particular cases. Let us
introduce q = |q|, e = q/q; then these particular cases can be
represented as follows.

(i) For the bond direction, qxqy = 0, and then vg =
c cos ( q

2 ) e.
(ii) For the diagonal direction, |qx| = |qy|, and vg =

c cos ( q
2
√

2
) e.

(iii) For long waves, q � 1, and then vg ≈ ce.
The codirection of the wave vector and the group velocity

in the first two cases also follows from the symmetry: If the
wave vector is directed along a symmetry axis of the lattice,

FIG. 3. The energy center velocity as a function of the wave
numbers.

then any direction of the group velocity other than the axis
direction breaks the symmetry of the system. In the third
case, the codirection is due to the isotropy of the lattice for
long waves (in this case the discreetness of the system can be
neglected).

In cases other than those mentioned above, the directions
of q and vg are normally different: The symmetry reasons here
are not applicable, and the lattice anisotropy is significant. The
situation is similar to a sailboat driven by the wind (the analog
of the wave vector) where the keel of the boat (the analog of
the lattice axis) is directed differently: Then, the direction of
the boat’s motion (the analog of the group velocity) is different
from both mentioned directions.

3. Inverse problem

Commonly, the wave numbers qx and qy are known, and the
group velocity projections vgx and vgy can be calculated from
Eq. (17). However, it can be useful, especially for computer
modeling, to solve the inverse problem: Find the wave vector
from the known value of the group velocity. This can be
done numerically by calculating the relations qx = qx(|v|, ϕ)
and qy = qy(|v|, ϕ), where |v| = (v2

cx + v2
cy)1/2 is the modu-

lus of the velocity of the energy center and tan ϕ = vcy/vcx.
The result of the numeric solving of the inverse problem
using the Wolfram’s Mathematica software is presented in
Fig. 3 in the form of a nomogram, where projections of the
energy center velocities vcx and vcy can be found for any
combination of wave numbers qx and qy. From the nomogram
it can be deduced that inside the circle q2

x + q2
y � (2π/3)2

there is a one-to-one relationship between q and vg. However,
outside this circle, the dependence of the velocity projec-
tions on the wave numbers is multivalued. For example, from
Fig. 3 one can see that velocity (vx, vy) = (0.4, 0.3) can be
obtained for three different sets of wave numbers (qx, qy),
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FIG. 4. Velocity hodograph for qx = 2qy (“chess knight” direc-
tion). The numbers near nodes depict the values of qy.

marked by points I–III: I, (1.00, 2.50); II, (1.84, 2.35); and
III, (2.28, 0.64).

4. Hodograph

As an example, when the wave vector and the group ve-
locity are not codirected, we consider the “chess knight”
direction of the wave vector, qx = 2qy, which follows the
path taken by the knight playing piece in chess. The hodo-
graph for the group velocity in this case is shown in Fig. 4.
The hodograph curve follows the tip of the group velocity
vector for various values of qy. Figure 4 demonstrates that
the directions of q and vg coincide only for small qy; for
other values of qy the directions are surprisingly different.
More complex hodographs can be obtained for other values
of qy/qx, especially if this ratio is irrational.

B. Simulation technique

We consider a square mesh of N × N particles with pe-
riodic boundary conditions. The initial disturbance for the
particles is set using initial conditions (13) and (14) inside
a circle of diameter D, while all other particles have zero
displacements and velocities. To minimize boundary effects,
in all experiments we keep the relation D � 0.1Na.

Let us introduce the following dimensionless time and
space coordinates:

t̄
def= ωet, x̄

def= x/a = i, ȳ
def= y/a = j. (19)

The main parameters for the numeric experiments are the size
of the simulation cell N × N , the shape factor of the distur-
bance k, the wave vectors qx and qy, the initial dimensionless
diameter of the disturbance D̄ = D/a, and the maximum inte-
gration time t̄max. Table I shows the values of these parameters
used in each case under consideration. The parameters that
take a range of values are marked as “var.”

In Figs. 5(a)–5(d), the distribution of the local energy,
displacement, and velocity for a typical initial disturbance is
shown. The wave numbers are qx = π/8 and qy = 0 (for other
parameters see Table I). The disturbance is excited in a bell-
shaped form (k = 1). We consider three main characteristics
of the disturbance: The local energy ε (as the ratio to the
maximum energy εmax), the value of the displacements u for
each particle in the disturbance (as the ratio to the maximum

TABLE I. Parameters of the numerical experiments: qx and qy

are the wave numbers, k is the shape factor of the initial disturbance,
D is the dimensionless initial diameter of the disturbance, N is the
dimensionless size of the simulation cell, and tmax is the dimension-
less integration time. Here, “var” indicates parameters taking a range
of values.

Fig. qx qy k D N tmax

5 π/8 0 1 100 1000 0
6 π/4 0 var 200 2000 400
8 var 0 1 100 2000 var
7 var 0 1 100 1200 700
9 var var 1 100 1000 400
10 var var 1 200 2000 2500

displacement umax), and velocities for each particle in the
disturbance (as the ratio to the maximum velocity vmax). Fig-
ure 5(d) demonstrates a perspective view of the disturbance in
terms of energy and spatial coordinates. Note that the ratio of a
quantity to its maximum value is the same in both dimensional
and dimensionless forms.

A weak reverse-wave effect is observed when using the
initial conditions (13) and (14): Simultaneously with the main
disturbance moving in the forward direction, an additional
disturbance with much lower energy moving in the opposite
direction is realized. To minimize this effect, the following
method is used: The initial displacements and velocities (13)
are multiplied by constant coefficients, so that the initial po-

(a)
max

1

0

50 100

(b)
u/umax

1

-1
50 100

(c)
v/vmax

1

-1

50 100

(d)

x̄
ȳ

max

x̄

x̄

x̄

FIG. 5. (a) Local energy, (b) displacement, and (c) velocity of
the disturbance, shown as functions of the dimensionless spatial
coordinate x̄, and (d) a perspective view of the initial disturbance.
The maximum values of the local energy, displacement, and velocity
are indicated by “max.”
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max

1.00

0.86

0.71

0.57

0.43

0.29

0.14

0.00

x̄

ȳ

x̄

ȳ

k = 0

k = 1

max

t = 0
t = 200

t = 400

k = 1

k = 0

t = 0 t = 200 t = 400

100

(a)

(b)

propagation

direction

propagation

direction

FIG. 6. Evolution of the energy distribution during propagation
of the disturbance with the shape factors k = 0 and k = 1 (a) as a
projection to the lattice plane and (b) in a perspective representation.
The propagation direction is shown by arrows. The other parameters
are shown in Table I. εmax is the maximum local energy for the initial
bell-shaped disturbance.

tential and kinetic energy become equal to half of the total
energy (these coefficients are always close to 1). After such
a change in the initial conditions, the reverse wave becomes
insignificant and therefore not visible in the figures.

The details of the numeric integration method are given in
Appendix C.

C. Motion of a single disturbance

1. Shape factor and disturbance evolution

We study two different shapes of the disturbance (14):
Cylindrical (k = 0) and bell shaped (k = 1). The evolution
of the energy distribution during its propagation is shown in
Fig. 6 as a projection on the lattice plane [Fig. 6(a)] and in a
perspective view [Fig. 6(b)]. Table I gives the parameters used
for the case under consideration. To make the total energy
for both disturbances the same, we set a correction factor in
Eq. (14), γ = 0.45 for k = 0 and γ = 1 for k = 1.

As can be seen from Fig. 6, the energy centers for both
types of disturbances propagate rectilinearly and uniformly.
At the initial moment, the projection on the lattice plane for
both disturbances has circular symmetry. At t = 400, for the
cylindrical type of disturbance (k = 0), the projection on the

qx = π

qx = 5π/6

qx = 2π/3

qx = π/2

qx = π/4

100

t

0

100

200

300

400

500

600

700

FIG. 7. Motion of disturbances with various wave numbers qx .

lattice plane transforms to a trilobite-like shape, while for
the bell-shaped function (k = 1) the disturbance possesses an
elliptical shape. This difference is due to the smoothness of
the bell-shaped function. Figure 6(b) shows that the initial
disturbances in both cases propagate for a distance at least
5 times greater than the diameter of the initial disturbance
without significant energy dispersion. This demonstrates a
high stability of the disturbance. Further, only the bell-shaped
disturbances will be considered.

2. Motion and dispersion of the disturbance

In Fig. 7, the motion of the bell-shaped disturbance along
the bond direction for different wave numbers qx is presented
as a projection to the lattice plane. The parameters are listed
in Table I. For better visualization, the projection of the distur-
bance at each moment of time is marked by the corresponding
color. A decrease in the wave number (an increase in the
wavelength) results in an increase in vc, which is clearly seen
in Fig. 7. A clot of energy, associated with the disturbance,
moves similarly to a free body of matter in classical me-
chanics: For any value of qx, it propagates rectilinearly and
uniformly. For qx = π we obtain a standing wave: vc = 0.
It can be seen from Fig. 7, that the disturbance projection
transforms from circular to rhombic (qx > π/2) or elliptic
(qx < π/2). Thus, the energy dispersion is anisotropic: At a
higher velocity, the disturbance acquires a flattened shape in
the direction of its motion.

3. Group velocity and energy center velocity

To confirm the possibility to describe the propagation of
the disturbance in terms of the kinetic model, we need to
compare the values of the energy center velocity vc (7) and
the group velocity vg (12). Such a comparison is presented
in Fig. 8 for the square lattice; the corresponding parameters
are shown in Table I. The group velocity (the black upper
line) is calculated from Eq. (17); therefore, it characterizes
only the delocalized harmonic wave process (11) and does not
take into account the peculiarities of the shape function. On
contrary, the energy center velocity can be calculated only for
a localized disturbance; therefore, the shape function here is
essential. We calculate the energy center velocity using two
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0

0.2

0.4

0.6

0.8

1.0
v

0 π/4 π/2 3π/4 π
qx

max

3.00
2.57
2.14
1.71
1.29
0.857
0.429
0.00

FIG. 8. Velocity of the energy clot as a function of wave num-
ber qx . The black upper line corresponds to the group velocity vg

analytically obtained from Eq. (17), the red line corresponds to
the numerical calculations of the actual value of the energy center
velocity vc, and the green squares correspond to the initial value of
vc. The disturbance is plotted as an energy profile and a projection to
the lattice plane. Here, εmax is the maximum local energy for the case
qx = π/10.

methods. One method (the green squares) calculates the initial
value of the velocity using Eq. (B2). Another method (the
red line) calculates the energy center position using Eq. (B1)
in the process of the computer simulations, and the actual
velocity is obtained numerically from the change in the energy
center location. We also show in Fig. 8 the energy distribution
as an energy profile and as a projection to the lattice plane.
The parameters are shown in Table I.

From Fig. 8 it follows that the energy center velocities vc

calculated using both methods (the red line and green squares)
are almost indistinguishable in the scale of the graph. The
group velocity vg (the black upper line) coincides well only
with the decreasing part of the vc dependence on the wave
number. The increasing part of the dependence, observed
when the wavelength of the initial disturbance is close to its
diameter (qx < π/10), has no correlation with the values of
vg. Thus, if at least several periods of the harmonic wave
process (11) can be fitted in the initial diameter D, vg and vc

are in good correlation, and such disturbances can be used in
kinetic models as models of phonons. Otherwise, a notable
deviation should be expected, which should be taken into
account when dynamic and kinetic models are compared.

D. Motion of several disturbances

Figure 9 shows the motion of three energy clots that
have emerged from the same starting position. The param-
eters are presented in Table I. The initial disturbance is a
superposition of three disturbances having the same total en-
ergy and equal absolute value as the energy center velocity
(v̄ = 0.9). The directions of the energy center velocities are
different; we choose the following as an example: Bond direc-
tion (v̄x = 0), diagonal direction (v̄x = v̄y), and chess-knight

ȳ

x̄

max

max

1.00

0.86

0.71

0.57

0.43

0.29

0.14

0.00

bond
100 diagonal

“chess-knight”

FIG. 9. Evolution of the energy distribution for the simultaneous
motion of three energy clots obtained from a superposed initial dis-
turbance; εmax is the maximum local energy for the individual initial
disturbances. Bold arrows show the motion directions.

direction (v̄x = 2v̄y). The corresponding wave numbers
(qx, qy) are (2π/7, 0), (2π/7, 2π/7), and (2π/15, π/3).
Figure 9 demonstrates the resulting energy distribution in the
lattice at three moments in time: t = 0, 200, and 400 (the ini-
tial peak is partially shown). As can be seen, each disturbance
moves rectilinearly and uniformly; the energy dispersion is
not significant when the disturbances pass several of their
initial diameters.

In Fig. 10 the energy distribution during the motion of two
disturbances initially placed at sites A1 and A2 is presented.
The corresponding wave numbers (qx, qy) are (π/7, 2π/3)
and (π/7, 9π/7); for other parameters, see Table I. Short
arrows show the motion direction step by step from point A1

to E1 for the first energy disturbance and from point A2 to E2

for the second one. The energy distributions are visualized at
t = 0, 400, 800, 1200, and 1600. As we can see from Fig. 10,

ȳ

x̄

maxmax 1.00
0.86
0.71
0.57
0.43
0.29
0.14
0.00

A1
B1

C1 = C2

D1
E1

A2B2
D2E2

FIG. 10. Motion of the disturbances: Arrows show the motion
directions for t = 0 (A1, A2), 400 (B1, B2), 800 (C1 = C2), 1200 (D1,
D2) and 1600 (E1, E2); εmax is the maximum local energy at C1 = C2.
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both energy disturbances propagate uniformly, each with a
constant velocity (v = 0.5). At t = 800 (C1 = C2) the energy
clots join, forming a greater energy clot with a maximum
that is far more than 2 times higher than for the individual
disturbances. This is due to the fact that, although the sys-
tem is linear, the energy is not additive (being a quadratic
function of velocities and displacements). After point C1 = C2

the disturbances separate without any changes in propagation
direction and without significant energy dispersion. This ex-
ample demonstrates the high stability of the disturbances and
their opportunity to conserve their velocities and shapes after
“collisions.” Since the system is harmonic, there are no true
collisions—we simply have a superposition of two solutions.
However, low dispersion for the considered solutions allows
us to observe the motion of the energy clots in analogy to
the motion of point masses in the conventional mechanics of
particles.

IV. DISCUSSION AND CONCLUDING REMARKS

We have analytically and numerically studied energy trans-
fer in scalar harmonic lattices. Using the first moment of the
energy distribution, the notions of the energy center and the
total energy flux were introduced for localized disturbances.
It was proved analytically (for an arbitrary infinite simple har-
monic scalar lattice) and confirmed numerically (for a square
lattice) that the total energy flux is conserved and the energy
center moves rectilinearly and uniformly, mimicking the mo-
mentum and the center of mass of a set of free particles in
conventional mechanics. We applied the methods for energy
dynamics, introduced for one-dimensional systems in [68],
to multidimensional discrete systems. The obtained results
confirmed the validity of energy dynamics for the case of
energy transfer in many directions. Although the considered
processes correspond to energy kinematics rather than dy-
namics (the crystal is uniform and harmonic; therefore, the
disturbances move as free particles, and no energy forces are
applied to them), the processes under consideration are impor-
tant for understanding energy transfer in lattice systems and
establish a link between the lattice dynamics and the phonon
kinetics.

Moving localized disturbances can be observed in various
elastic systems. In particular, they can be found as exact
solutions for continuous media, where the equations of dy-
namics can be reduced to the wave equation in one, two, and
three dimensions, e.g., localized electromagnetic and acoustic
waves [24,69–71]. In the present paper, such localized solu-
tions are obtained numerically for a discrete medium that is
a scalar crystal lattice. We suggested a special form of the
initial disturbance, a harmonic wave with variable amplitude,
given by a shape function. Due to conservation of the total
energy flux, which was proved, the energy centers of the
localized disturbances move uniformly, and this appears to
be an important and representative feature of scalar lattices.
An energy clot associated with such a disturbance moves
without significant dispersion, which allows us to consider it a
quasiparticle.

For the square lattice, we analyzed the correlation between
the directions of the wave vector and the group veloc-
ity, and three cases in which these vectors coincide were

distinguished. Then the vectors of the group velocity and the
energy center velocity were compared for different values
of the wave vector. It was shown that for the disturbances
containing at least several periods of the harmonic wave,
these two velocities are almost equal. Thus, such disturbances
can be used in kinetic models as prototypes of phonons. If
the length of the harmonic wave is close to the initial di-
ameter of the disturbance, notable deviations are observed,
which should be taken into account when dynamic and ki-
netic models are compared. It was shown that in the case of
several localized disturbances they pass through each other
and move continuously, conserving their velocities without
significant energy dispersion, allowing us to observe the mo-
tion of the corresponding energy clots, in analogy to the
motion of point masses in the conventional mechanics of
particles.

Further extensions of the model under consideration can
be associated with two main features of real lattices: Anhar-
monicity and imperfection. In part, these issues were studied
for one dimension in [68], where the method of energy
dynamics was applied, in particular, for anharmonic and im-
perfect systems. Extending these results to the current 2D
case, we can conclude that similar effects can be expected.
First, for the anharmonic case, the interaction of the distur-
bance with the carrier will be observed. This interaction can
affect the disturbance propagation and, in particular, change
the velocity of its energy center. However, in some cases, the
energy center can move uniformly even in the anharmonic
case, as solitons do [54,56]. Another important effect of an-
harmonicity is the mutual interaction of disturbances; such
interaction is essential for the kinetics of collisional phonons
[11,48,56]. Second, the lattice imperfection will affect the
disturbance motion even more than anharmonicity. Indeed,
any imperfection produces a quasiforce, which causes the
energy center of the disturbance to move in the same way
as a massive particle moves in a force field in accordance
with Newton’s second law [68]. A gradual change in the
properties of the lattice can cause effects on the motion of
the energy center similar to those studied in gradient-index
optics [72–74]. All these effects are undoubtedly important,
but they require additional research, which is beyond the
scope of this paper. However, if the anharmonicity is small
and imperfections are rare, the results of this paper can be
used as a first approximation, which can then be improved
using a perturbation method. Moreover, the exact integral of
the energy flux and the constancy of the velocity of the energy
center obtained in this study provide the necessary basis for
the analysis of more complex systems.
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APPENDIX A: ENERGY FLUX

Let us derive (8), which represents the total energy flux
in terms of displacements and velocities. Consider the equa-
tion of motion (1) and the formula for the local energy (5) in
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the form

mv̇ =
∑

α

Cα (uα − u), ε = m

2
v2 +

∑
α

Cα

4
(uα − u)2,

(A1)
where the overdot stands for the time derivative, uα is a short
form of u(r + aα ), and the dependence of the variables on r is
omitted for simplicity. Differentiation of the local energy with
the use of the equation of motion gives

ε̇ = 1

2

∑
α

Cα (vα + v)(uα − u). (A2)

Then, according to Eqs. (6) and (7), for the total energy flux
we have

h =
∑

r

r ε̇ = 1

2

∑
r, α

r Cα (vα + v)(uα − u). (A3)

The lattice possesses central symmetry (invariance in chang-
ing from α to −α); hence, the above formula can be
rewritten as

h = 1

2

∑
r, α

r Cα (v−α + v)(u−α − u), (A4)

where u−α = u(r + a−α ) = u(r − aα ). The lattice is shift in-
variant; therefore, in the above sum we can change r to r + aα ,
which changes u to uα , u−α to u, etc. Then we have

h = 1

2

∑
r, α

(r + aα )Cα (v + vα )(u − uα ). (A5)

Half the sum of Eqs. (A3) and (A5) gives

h = 1

4

∑
r, α

aα Cα (v + vα )(u − uα ). (A6)

Using the above-mentioned properties of the lattice symme-
try (central symmetry and shift invariance), it can be easily
proved that ∑

r, α

aαCαvu =
∑
r, α

aαCαvαuα = 0. (A7)

Then, we finally get the desired representation (8) for the total
energy flux:

h = −1

2

∑
r, α

aαCαvuα = 1

2

∑
r, α

aαCαvαu. (A8)

Now let us prove the conservation of the total energy flux
(9). Time differentiation of the first equation in Eq. (A8) gives

ḣ = −1

2

∑
r, α

aαCα v̇uα − 1

2

∑
r, α

aαCαvvα. (A9)

From the lattice symmetry it follows that the second sum
is zero. Then substitution of v̇ from Eq. (A1) (where α is
changed to β) gives

ḣ = − 1

2m

∑
r, α, β

aαCαCβ (uβ − u) uα, (A10)

and after reduction for symmetry reasons

ḣ = − 1

2m

∑
r, α, β

aαCαCβuβuα. (A11)

Changing α to −α and β to −β yields

ḣ = 1

2m

∑
r, α, β

aα C−α C−β u−β u−α. (A12)

Shifting from r to r + aα + aβ changes u−β to uα and u−α to
uβ ; then Eq. (A12) takes the form

ḣ = 1

2m

∑
r, α, β

aαCαCβuβuα. (A13)

Half the sum of Eqs. (A11) and (A13) finally gives ḣ = 0.
Thus, we have strictly proved the conservation of the total
energy flux for simple harmonic scalar lattices.

APPENDIX B: ENERGY CENTER POSITION
AND VELOCITY FOR A SQUARE LATTICE

Here, we adopt formulas from Sec. II for the case of a
square lattice. Some additional transformations are performed
in order to make them more convenient for numerical calcula-
tions.

The energy center coordinates from Eqs. (5) and (6) are

xc = ma

2E

∑
i, j

iv2
i, j + Ca

2E

∑
i, j

(
i + 1

2

)
(ui+1, j − ui, j )

2

+ Ca

2E

∑
i, j

i(ui, j+1 − ui, j )
2,

yc = ma

2E

∑
i, j

jv2
i, j + Ca

2E

∑
i, j

j(ui+1, j − ui, j )
2

+ Ca

2E

∑
i, j

(
j + 1

2

)
(ui, j+1 − ui, j )

2. (B1)

The energy center velocities from Eqs. (7) and (8) are

vcx = Ca

2E

∑
i, j

vi, j (ui−1, j − ui+1, j ),

vcy = Ca

2E

∑
i, j

vi, j (ui, j−1 − ui, j+1). (B2)

The constant E in the above formulas is (4):

E = m

2

∑
i, j

v2
i, j + C

2

∑
i, j

(ui+1, j − ui, j )
2

+ C

2

∑
i, j

(ui, j+1 − ui, j )
2. (B3)

The summation is performed for all i = 1, 2, . . . , N and j =
1, 2, . . . , N . Since vc and E are constants, the initial values
of the particle displacements and velocities can be used in
formulas (B2) and (B3).
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The motion of the center of energy is described by vector
formula (10),

rc = ◦
rc + vct,

which in the coordinate form reads

xc = ◦
xc + vcxt, yc = ◦

yc + vcyt .

The constants in the above formulas can be expressed in terms
of initial conditions using Eqs. (B1)–(B3).

APPENDIX C: NUMERIC INTEGRATION SCHEME

Let us introduce the following units of dimensions:

[t] = ωe
−1, [ω] = ωe, [u] = a,

[v] = aωe = c, [E ] = mc2. (C1)

Then, the dimensionless quantities can be defined:

t = t/[t], ui, j = ui, j/[u], vi, j = vi, j/[v],

U = U/[u], ω = ω/[ω], εi, j = εi, j/[E ],

barx = x/[u] = i, ȳ = y/[u] = j. (C2)

Using Eqs. (C1) and (C2), we can rewrite Eq. (3) in the
following dimensionless form:

d2ui, j

dt2 = ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j . (C3)

Initial conditions (13) using Eq. (C2) and φ = 0 take the form

◦
ui, j = U sin(qxi + qy j),

◦
vi, j = −Uω cos(qxi + qy j).

(C4)

The local energy ε, which is defined by Eq. (5), can be
rewritten as

εi, j = v2
i, j

2
+ (ui, j+1 − ui, j )2 + (ui, j−1 − ui, j )2

4

+ (ui+1, j − ui, j )2 + (ui−1, j − ui, j )2

4
. (C5)

To solve Eq. (C3) numerically, we use the method of cen-
tral differences:

v
(n+1)
i, j = v

(n)
i, j + w

(n)
i, j �t, u(n+1)

i, j = u(n)
i, j + v

(n+1)
i, j �t, (C6)

where

w
(n)
i, j = u(n)

i+1, j + u(n)
i, j+1 + u(n)

i−1, j + u(n)
i, j−1 − 4u(n)

i, j (C7)

is the dimensionless acceleration, n is the time iteration num-
ber, and �t is the dimensionless time step, which is less than
or equal to 0.1.
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