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Abstract
Entanglement constitues a key feature of Quantum Mechanics (QM), not only
will understanding it give a deeper insight in fundamental features of nature, but
it also will yield the way for future applications, for one quantum computation
and quantum communication, as well as applications which are not within the
reach of our imagination today. As photon or spin 1

2 states already are sub-
ject to thorough investigations concerning entanglement [1], we shall review to
what extent Bell Inequlities, Entanglement and Decoherence maintain validity
regarding massive meson-antimeson systems, here we will especially focus on
the neutral Kaon system. The main motivation for investigating neutral meson-
antimeson systems lies in the hope to close both, locality and detection loopholes
[2]. Analogies and Differences will be discussed, and the principles of time evo-
lution and CP violation as well as their connection to Bell Inequalities will be
summarized.

1 Introduction
1.1 Beginning of Quantum Physics
Quantum Physics has its roots in 1838: discovery of cathode rays by Michael
Faraday, followed by a number of works concerning black body radiation and
energy levels of physical states which lead to the quantum hypothesis by Max
Planck in 1900 [3]: E = hν The exploration of Quantum machenical behaviour
eventually lead to the formulation of the EPR-paradox in 1935 by Einstein
Podolsky and Rosen [4]. Since than it has been a neverending quest for quantum
physicists to refute local reality theory with a loophole free experiment violating
Bell inequality.

1.2 Bell inequality and entanglement
The fundaments of quantum mechanics are based on entanglement, an effect
which Einstein himself described as "spukhafte Fernwirkung", i.e. spooky action
at distance. Entangled states cannot be described by two seperate wavefunc-
tions but by only one. As a consequence, the notion of local realism has to be
abandoned, since the wavefunction contains all states in a specific entanglement,
and the single states cannot be acted upon without affecting all other states in
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the very same entangled state. For the sake of completeness it should be men-
tioned, that it is possible to measure one state in an entangled three (or more)
particle state with leaving the other particles entangled, however the "degree"
of entanglement is altered.

1.3 Bell inequality (BI) for photons and spin 1
2 fermions

There are numerous methods to investigate whether a state is seperable or not.
All seperable states can be described by local hidden variable theory (LHV)
which fulfill the BI. Thus we shall use Bell inequalities as a reliable test for
entanglement. For the sake of completeness the derivation of BI for photons
and spin 1

2 fermions has been included in the appendix and has been taken from
[7]. Nevertheless, the three most important inequalities in this context are listed
below (a, a′, b, b′ represent individually measured spin components):
- CHSH-inequlity [6] :

S = |E(a, b)− E(a, b′)|+ |E(a′, b′)− E(a′, b)| ≤ 2 (1)

- Bell inequlity [7] 1:

|E(a, b)− E(a, a′)| ≤ 1 + E(a′, b)
|E(a, b)− E(a, a′)| ≤ 2± {E(a′, a′)− E(a′, b)} (2)

- Wigner inequality [7]:

P (a; b) ≤ P (a; a′) + P (a′; b) (3)

1.4 Loopholes
Since the beginning of experiments testing entanglement, it has always been
a major task to close loopholes which allow to maintain the possibility of ex-
plaining the presumably quantum mechanical effects by LHV, exploiting the
shortcomings of experimental setups. The most important loopholes are:

detection loophole: In order to guarantee a violation of Bell’s inequality
for maximally entangled (non–maximally entangled) states, the detectors must
have overall efficiencies of at least 0.83 (i.e.for CHSH-inequality) and 0.67 (i.e.
for partially entangled states) [8] so that the experiment does not require an
additional "‘fair sampling assumption"’, i.e. representative distribution of unde-
tected states with and without entanglement.

locality loophole: Also known as "‘light-cone-loophole"’. It describes the ne-
cessity to make sure that the exchange of information within the duration of one
measurement and between the two measuring devices is not possible. Attempts
to close it include independent random detector orientations, as introduced by
Aspect, and large scale spatial seperation of the detectors up to several hundred
meters, as carried out by Weihs at al. in addition to random switching based
on another quantum system.

1Note: It shall not be subject to this review, however one should keep in mind that BI also
produces "‘falls negatives"’, i.e. entangled states, which are describable by LHV theory but
not seperable are identified as not entangled. Finding the best possible tests belongs to the
research field of entanglement witnesses. [See appendix for a short summary].
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1.5 Results
Recent experiments conducted with entangled beryllium ions [9] efficiencies
reached 0.97, thereby the detection loophole was successfully closed. Never-
theless, it was not possible to close the locality loophole due to the small spatial
seperation between the entangled ions. An experiment with distant entangled
photons [11] closing the locality loophole notwithstanding, detection efficiencies
were too low to close the detection loophole.[2] To name a few results: The
experiment carried out by Aspect at al. [10] gave S = 2.697 ± 0.015, The ex-
periment conducted by Weihs at al. ´mentioned above with the analyzers being
400m apart from each [11] other gave S = 2.73 ± 0.02, violating the CHSH-
inequality (eq. 1) by over 35 standard deviations.

2 Neutral K-Meson System
2.1 Finding the Kaon states
The first record of Kaon detection reaches back to 1947, when G. D. Rochester
and C. C.Butler claimed to have observed the decay of a neutral particle into 2
pions, and a decay of a charged particle into a pion and another neutral particle.
They repeated the experiment in cloud chambers and found a surprising para-
dox [21]. The rate at which these particles showed traces in the chamber guided
them to the conclusion, that these particles must have a strong coupling inter-
action with matter, comparable to that of pions, although their lifetime proved
to be much longer than the expected 10−22s. Ín 1953 Gell-Mann, Nishijima
and Nakano proposed a solution to this dilemma by introducing a strangeness
scheme2. The puzzling story of Kaons began when two decay processes were
observed [17]:

τ+ → π+ + π0 , η = (−)2, 21% (4)
θ+ → π+ + π0 + π0 , η = (−)3, 6% (5)

where P |q〉 = η|q〉 and the percentages give the branching ratios in respect
to all decays. It turned out that τ+ and θ+ showed the strange behaviour of
sharing most of their properties like mass (≈ 500MeV ) and lifetime (≈ 10−8s).
However, as the products of the two decays have different parities, parity con-
servation suggests that τ+ and θ+ have to be different particles. These "‘strange
processes"’ were summarized under the τ+-θ+-puzzle which was solved in 1956
by Lee and Yang [18] who suggested that as in comparison to strong interaction
which conserves parity, weak interaction violates it and as a result τ+ and θ+

in (4) and (5) might be the same particle decaying via weak interaction. Today
this particle is called the K+ meson produced due to cosmic ray induced events
π+ + n → K+ + Λ. The four K-mesons K+,K−,K0 and K0 are pseudoscalar
mesons (JP = 0−), which means that their quark and antiquark spins are an-
tialigned and thus their total angular momentum is zero.
For experimental purposes kaon and antikaon pairs are produced e.g. by strangeness-
conserving decay process: φ → K0K0 where φ(1020) is commonly either pro-

2see appendix: Strangeness number

3



duced by e+e− or pp collisions3, first used in the 1960s (today e.g. at LEAR):

pp→ K−π+K0, pp→ K+π−K0 (6)

The φ state is a non-strange member of the vector meson nonet (JP = 1−)
with the quark content ss. The coming sections will focus on the "‘strange"’
behaviour of the K-meson and its consequences.

2.2 Strangeness
Kaons have characteristic strangeness quantum number according to:

S|K0〉 = +|K0〉 = +|sd〉
S|K0〉 = −|K0〉 = −|sd〉 (7)

The strangeness eigenvalues of kaon states are obviously representing the num-
ber of "strange" quarks, which among others constitute the kaon states. K-
mesons are pseudoscalars, thus the states |K0〉 and |K0〉 change their sign un-
der Parity transformation P, as all pseudoscalars do: P|K0〉 = −|K0〉 and
P|K0〉 = −|K0〉 Charge conjugation C exchanges particles with their anti-
particles, thus applying a CP transformation on the neutral kaon states yields:

CP|K0〉 = −|K0〉, CP|K0〉 = −|K0〉 (8)

These equations allow to define the two eigenstates of CP transformations:

|K0
1 〉 = 1√

2
(|K0〉 − |K0〉), |K0

2 〉 = 1√
2

(|K0〉+ |K0〉) (9)

Applying CP-transformation yields: CP|K0
1 〉 = +|K0

1 〉, CP|K0
2 〉 = −|K0

2 〉
So for the next section, let us keep in mind that there are two CP eigenvalues
λ1,2 = +1,−1 for the two CP eigenstates |K0

1,2〉 which are mixed states of the
neutral Kaon system.

2.3 CP violation
As a first step, let us assume that CP-symmetry is conserved in the decay
processes. Two main decay branches can be observed and as the important
difference lies in their decay time, the intial states shall be called KS (short
time decay) and KL (long time decay) [12]:
First decay branch: Γ−1

1 ∼ τ1 = 0.89 ∗ 10−10s

KS → π+ + π−, KS → π0 + π0 (10)

and the second decay branch: Γ−1
2 ∼ τ2 = 5.17 ∗ 10−8s

KL → π+ + π− + π0, KL → π0 + π0 + π0 (11)

The essential difference between these decay branches also lies in their CP eigen-
values. While the final two pions state has CP=+1, the final three pions state

3Note: mφ is just slightly above 2mK ∼ 996MeV , however the kaon-antikaon decay
branch is predominant due to the suppression of the decay into three pions (ratio: 84% and
15% respectively), a property described by the Okubo-Zweig-Iizuka (OZI) rule [13]
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has CP=-1. As a first consequence, in order to conserve CP symmetry according
to the equations above, only K0

1 can decay into two pions, analog only K0
2 can

decay into three pions. Also, as a second consequence because the decay into
three pions obviously requires more energy due to the creation of one additional
pion, the K0

2 states decay about 600 times slower. However, in 1964 James
Cronin and Val Fitch of BNL found decays of KL states into two pions (CP =
+1). Cronin and Fitch received the Nobel Prize in Physics for this discovery
in 1980. As measurements became more precise, it was proven that KL → 2π
occur with a small fraction (|ε| ≈ 10−3) regarding all occurring decay processes.
This motivates to set up a new basis :

|KS〉 = 1
N

(p|K0〉 − q|K0〉), |KL〉 = 1
N

(p|K0〉+ q|K0〉) (12)

with p = 1 + ε , q = 1− ε and a normalizing factor N2 = p2 + q2. In case of no
CP violation the |K0

1,2〉 basis is equal to the |KS,L〉 basis of the long and short
lived states.
|KS,L〉 and |K0

1,2〉 respectively, represent kaonic qubit states comparable to qubit
states in quantum information. As these equations show, there is a slight dif-
ference regarding the decay process concerning the amount of Kaons and An-
tikaons. It is common sense that this slight difference accounts for the matter
left over after the matter - antimatter annihilation in the early universe.

2.4 Neutral Kaon mixing
The full importance of kaon mixing will become obvious in connection with the
next section, i.e. CP violation. The underlying theory is based upon the prob-
lem how to explain the common presence of two neutral Kaons with opposite
strangeness quantum numbers. And suggests that before decaying, when both
mesons constitute a common state, both states blend. The theory of neutral
particle oscillation was first investigated by Murray Gell-Mann and Abraham
Pais. The well known time dependent Schrödinger equation:

i~
d

dt
ψ(t) = Hψ(t) (13)

yields, by representing ψ in a basis constituted by ψ1 and ψ2 :

ψ(t) = U(t)ψ(0) = e−iHt
(
ψ1
ψ2

)
(14)

where H denotes the non-Hermitian "‘effective mass"’ Hamiltonian [12]:

H = M − i

2Γ (15)

The diagonal elements are terms representing the strong interactions which con-
serve strangeness. It is due to the off diagonal elements based on weak inter-
action which do not conserve strangeness quantum numbers that the states os-
cillate into another. If the off diagonal elements are real, the ratio is conserved
and the states oscillate back and forth, on the other hand, if the off diagonal
elements are imaginary, they describe the gradual conversion of the both states’
ratio in favor of one of them or in favor of a fixed mixture of both states.
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2.5 Strangeness oscillation
Let now be the non-Hermitian "‘effective mass"’ Hamiltonian H as described
above be subject to our investigation. In order to compute the time evolution,
H has to be diagonalised, which yields Hdiag :

Hdiag =
(
MS − i

2ΓS 0
0 ML − i

2ΓL

)
(16)

Our new found basis constituted by the mixed states |KS〉 and |KL〉 satisfy:
|KS,L〉 = λS,L|KS,L〉 with λS,L = MS,L − i

2ΓS,L
Although |KS,L〉 do not constitute an orthonormal basis, that is: 〈KS |KL〉 6= 1,
they still constitute a basis of the two state space of |K0〉and|K0〉. Applying
the Wigner Weisskopf approximation [12], that is to neglect the interaction of
the decay products and to assume a pure beam at t = 0, the time dependent
Schrödinger equation applied on Hdiag yields the time evolution:

|KS,L〉(t) = e−iMS,Lte−
1
2 ΓS,Lt|KS,L〉 (17)

which finally gives the time evolution of the |K0〉and|K0〉 system [12], thus:

|K0〉(t) = g+(t)|K0〉+ q

p
g−(t)|K0〉, |K0〉(t) = p

q
g−(t)|K0〉+ g+(t)|K0〉 (18)

with:

g±(t) = 1
2
[
±e−iλSt + e−iλLt

]
(19)

Assuming a pure |K0〉 beam after production at t = 0, the probability of finding
a |K0〉 or |K0〉 state in the beam is given by 4

|〈K0|K0(t)〉|2 = 1
4
[
e−ΓSt + e−ΓLt + 2e−Γtcos(∆mt)

]
(20)

and analog:

|〈K0|K0(t)〉|2 = 1
4
|q|2

|p|2
[
e−ΓSt + e−ΓLt − 2e−Γtcos(∆mt)

]
(21)

with Γ = 1
2(ΓL + ΓS) and ∆m = mL −mS .

2.6 Regeneration
A beam constituted by a neutral Kaon system decays in time. According to
the decay processes the KS content disappears after a few τS leaving only KL

behind. This can be seen as (if CP violation is neglected) no more 2π decays
occur. By guiding the beam through matter the KS states can be regenrated.
The matter contribution M to the Hamiltonian H in equation (15) with the
form

M =
(

Mf 0
0 Mf

)
(22)

4see appendix: Time evolution of kaon states
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,where subscript f denotes final, has non-degenerate eigenvalues if the propa-
gation takes place in dense matter. This is due to the quark content of both
neutral Kaons. While the d quark of the K0 = ds can interact and annihilate
with a d quark of a neutron or proton, which leads to a creation of a hyperon,
i.e. baryons with at least one strange quark and three light quarks in total, this
is not possible for the K0 state, since its quark content is ds, this state only
experiences quasi-elastic scattering in matter. A thorough investigation on the
connection between matter density and regeneration effect is given by [14].

3 Bell inequality for K-mesons
K-mesons show very promising properties concerning the detection and locality
loophole. On one hand, Kaons predominantly experience strong interaction,
leaving behind interaction or decay products which can be detected with a very
high efficiency, which facilitates to close the detection loophole. On the other
hand, right after the production the Kaons fly apart with relativistic velocities
which is an additional advantage when dealing with the locality loophole. The
particles |K0〉 and |K0〉 of the state [19]:

|ψ(t = 0)〉 = 1√
2

{
|K0〉l ⊗ |K0〉r − |K0〉l ⊗ |K0〉r

}
= N√

2
{|KS〉l ⊗ |KL〉r − |KL〉l ⊗ |KS〉r} (23)

with N = N2

2pq (see 44), propagate towards different directions, as already sym-
bolized by the subscripts "‘l"’ and "‘r"’, denoting left and right side, respectively.
This looks completely familiar as it looks like the fourth Bell state |ψ−〉:

|ψ−〉 = 1√
2
{|V 〉l ⊗ |H〉r − |H〉l ⊗ |V 〉r}

= 1√
2
{|L〉l ⊗ |R〉r − |R〉l ⊗ |L〉r} (24)

One major difference though is that as photon states cannot decay, the kaon
entangled states have to include a time dependent term. After the production
and normalizing the surviving kaon pair this leads to the ∆τ = τl−τr dependent
state [20]:

|ψ(∆τ)〉 = 1√
1 + e∆Γ∆τ

{
|KS〉l ⊗ |KL〉r − ei∆m∆τe

1
2 ∆Γ∆τ |KL〉l ⊗ |KS〉r

}
(25)

with ∆m = mL − mS and ∆Γ = ΓL − ΓS which again corresponds 5 to the
produced entangled 2-photon state (signal and idler, subscript s und i, respec-
tively):

= 1√
2

{
|V 〉i ⊗ |H〉s − ei∆φ|H〉i ⊗ |V 〉s

}
(26)

where ∆φ denotes an adjustable phase.
5Note: Both photons in (26) have the same weight, but that’s not the case in the 2-kaon

state (25).
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3.1 Measurement methods
Based upon the presented fundamental relations up until now, two different
basis can be considered as potential candidates for measurement. K0-K0 basis
(Strangeness measurment) and KS-KL basis (lifetime measurement). Due to
CP violation the KS-KL basis does not constitue an orthogonal set of states as
mentioned in section 2.5, however, as the violating parameter is considerably
small, it will be approximated by zero for the next sections. In comparison to
photon experiments, kaons show the property to decay. This allows to conduct
nature-driven "‘passive"’ measurements on kaon states in comparison to "‘ac-
tive"’ measurements, where the experimenter decides, which basis he wants to
measure.

3.1.1 Active measurement

The experimenter decides what he wants to measure.
Strangeness: As discussed in section 2.6 a slab of matter inserted into the

beam can "‘filter"’ the |K0〉, thereby playing the role of a polarizer in anal-
ogy to the same situation in photon experiments. In order to achieve high
detection efficiencies, either an infinitely dense absorber material is needed, or
ultrarelativistic kaons, which by Lorentz-contraction see the absorber material
as extremely dense, thus making kaon-nucleon strong interaction much more
likely than weak decays [2]

Lifetime: On the other hand, the decision to let the Kaons propagate freely
through space and measuring their decay time is equivalent to a measurement in
KS-KL basis. With the time evolution given by (17), one only has to set a time
limit τ + ∆τ , until which processes are identified as |KS〉 decays, or |KL〉 else.
[2] states the misidentification probability is reduced to 0.8% when ∆τ = 4.8τS
and by using detectors with best possible resolution, almost ideal efficiencies are
achievable.

3.1.2 Passive measurement

The experimenter remains passive and only examines the decay products.
Strangeness: One can identifiy |K0〉 and |K0〉 with the semileptonic decay6:

|K0〉 → π− + l+ + νl, and K0 → π+ + l− + νl (27)

with l = e, µ. However, detection efficiency for passive strangeness measurement
is rather low, due to |KS〉 and |KL〉 states’ semileptonic decay ratios, which are
' 0.66 and ' 1.1 ∗ 10−3, respectively [2].

Lifetime: As shown by equation (10) and (11), by additionally neglecting
CP violation the |KS〉 and |KL〉 states are can be identified by there nonleptonic
-by contrast to the semileptonic- decay products, i.e. 2π or 3π.

6Semileptonic decay: decay of a hadron through weak interaction into a lepton, its neutrino
and another hadron with the rule ∆S = ∆Q
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3.2 Testing BI
3.2.1 Summary

Three different bases for neutral 2-kaon systems have been introduced 7, all of
which have corresponding 2-photon states.

Kaon state Quasispin state photon state

|K0〉 |↑〉z |V 〉
|K0〉 |↓〉z |H〉

|KS〉 |→〉y |L〉
|KL〉 |←〉y |R〉

|K0
1 〉 |↖〉x |−45◦〉

|K0
2 〉 |↗〉x |+45◦〉

The three inequalities: CHSH-inequalitiy eq.(1), BI eq.(2) and Wigner like BI
eq.(3), as well as the various measurement methods (active, passive, lifetime,
quasispin) and the known |K0〉 and |K0〉 production processes, their time evo-
lution and representations by |KS〉 and |KL〉 can now be combined to test for
entanglement.

3.2.2 Implementation

Two methods shall be summerized: Time measurement with fixed quasispin and
quasispin measurement at a fixed time.

• Time measurement

A general form of CHSH-inequalitiy eq.(1) which gives freedom of
choice in time (ti, i = 1, 2, 3, 4) and quasispin (kq, q = n, n′,m,m′):

Skn,k′n,km,k′m(t1, t2, t3, t4) =
∣∣Ekn,km(t1, t2)− Ekn,k′m(t1, t3)

∣∣
+
∣∣Ek′n,km(t4, t2)− Ek′n,k′m(t4, t3)

∣∣ ≤ 2 (28)

With fixed quasispin, e.g. strangeness= +1, the kq with q = n, n′,m,m′

are |K0〉. The time dependent expectation values E(tl, tr) are suf-
ficiently approximated Eapp(tl, tr) = −cos(∆m∆t)e−Γ(tl+tr) by ne-
glecting additional terms which vanish due to the smallness of ΓL
and tl,r represent the time. Finally, combining Eapp(tl, tr) and
eq.(28) gives Ghirardi, Grassi and Weber’s result [23]:∣∣∣e−Γ

2 (t1+t2)cos(∆m(t1 − t2))− e−Γ
2 (t1+t4)cos(∆m(t1 − t4))

∣∣∣
+
∣∣∣e−Γ

2 (t2+t3)cos(∆m(t2 − t3)) + e−
Γ
2 (t3+t4)cos(∆m(t3 − t4))

∣∣∣ ≤ 2
(29)

7The strangeness eigenstates |K0〉 and |K0〉. The mass (lifetime) eigenstates |KS〉 and
|KL〉. The CP eigenstates |K0

1 〉 and |K0
2 〉
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This inequality can be rearranged so that its violation only depends
on the ratio: x = ∆m

Γ [12]. In order to violate the inequality, x has
to be outside the interval ]0; 2[. However, the experimental value for
kaons is right in between with xexper = 0.95.
Very Important: [24]The ratio x = ∆m

Γ only applies if the initial
state is a |ψ−〉. In this case, only the type of meson can be varied.
Yet it (|ψ−〉) is the most important case, as up to now only |ψ−〉
states are available. Regarding the four mesons: K,B,D,BS only
BS mesons could violate eq. (29) theoretically.

x meson system
0.95 K0K0

0.77 B0B0

< 0.03 D0D0

> 19 B0
SB

0
S

However |B0
S〉 and |B0

S〉 have the quark content |sb〉 and |sb〉, respectively. This
renders the active measurement method for kaon quasispin inapplicable for the
B-meson system. Passive measurements on the other hand do not make sense
for testing Bell inequalities, since decays are left to nature’s will and alice and
bob cannot decide which decaymode they want to measure.

• Quasispin measurement

In this case, a test on Wigner like BI eq.(3) seems appropriate, the
introduced three bases can provide the three required angles such
that inserting in eq.(3) gives:

P (|KS〉; |K0〉) ≤ P (|KS〉; |K0
1 〉) + P (|K0

1 〉; |K0〉) (30)

This shows violation of Wigner-like BI (which holds under the as-
sumption of locality) is in direct connection with CP-violation. Also,
by using the transition amplitudes [12]:

〈K0|KS〉 = − q

N
, 〈K0|K0

1 〉 = − 1√
2
, 〈KS |K0

1 〉 = 1√
2N

(p∗ + q∗)

Although a direct measurement of the unphysical state K0
1 is not

possible, a tremendous simplification is possible, which relates the
validity of BI with the CP violation parameter, a testable validity
of:

|p| ≤ |q| (31)

This again shows the strong connection between CP violation and
entanglement and the importance of testing CP violation in order
to confirm QM. The already mentioned semileptonic decay rule pro-
vides such as test for CP violation.

Let us again consider the semileptonic decays (obeying the ∆S = ∆Q rule):
K0(ds)→ π−(du)l+νl
K0(ds)→ π−(du)l+νl
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In order to have a comparable quantity for the leptonic charge asymmetry, we
will introduce a quantity δ, such that:

δ = Γ(KL → π−l+νl)− Γ(KL → π+l−νl)
Γ(KL → π−l+νl) + Γ(KL → π+l−νl)

(32)

with l = µ, e.
Depending on whether the decay produces a lepton or an antilepton, the KL

decay can be traced back to aK0 orK0 decay.Thus the leptonic charge asymme-
try is given by the superpositions given in equation (12) and δ can be expressed
by p and q, resulting in:

δ = |p|
2 − |q|2

|p|2 + |q|2 (33)

using eq. (31) yields:

δ ≤ 0 (34)

replacing K0 with K0 in eq. (30) gives:

|p| ≤ |q| , and δ ≥ 0 (35)

Finally, combining both gives:

|p| = |q| , and δ = 0 (36)

as a criteria equivalent to the Wigner-like BI. However, experimentally the
charge asymmetry is nonvanishing:

δ = (3.27 +−0.12)1̇0−3 (37)

And thus is a clear sign of CP violation, and thereby of BI violation.

3.2.3 Results

Hiesmayr found [24] that concerning a strangeness sensitive measurement out
of the four maximally entangeled states:

|φ±〉 = 1
2 {|KSKS〉 ± |KLKL〉}

|ψ±〉 = 1
2 {|KSKL〉 ± |KLKS〉} (38)

only |φ−〉 violates the BI slightly with S = 2.07. However, by computing S for
other states, slightly higher values like S = 2.1596 seem achievable.

3.3 Complementarity, Kaons as double slits
Bohr’s complementary principle states that one cannot observe an interference
pattern and at the same time know about the path taken by the particle. This
principle can be expressed by the inequality [22]:

P2 + V2 ≤ 1 (39)
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where P denotes the predictability P = |p1 − p2| 8, i.e. which path the particle
will take and V denotes the visibility of the interference pattern. Of course P,
V and p1,2 can dependent on some external variables. These principles, when
applied on the neutral kaon system, have to be slightly changed as through
decay time dependence comes into play. The time evolution of |K0〉 can be
expressed by the two mass eigenstates with [21]:

|K0(t)〉 = 1√
2
eimLt−

ΓL
2 t
{
ei∆mt+

∆Γ
2 t|KS〉+ |KL〉

}
(40)

In case we have a pure |K0〉 beam at t = 0 eq. (40) shows that both paths, i.e.
manifestation as |KS〉 or |KL〉 seem equally possible and therefore visibility is
at its peak. However, since the size of the slits change in time because after a
long period finding a |KL〉 state is more probable, V decreases and P increases.
Further analysis [22] showed that eq. (39) contains all the information on the
system and is always maximal, i.e. = 1 for pure states.

3.4 Decoherence
This section should only constitute a summary to explain why not maximally
entangled states can account for maximal violation of BI (except for the case of
|φ−〉.
Unitary time transformations, which have to be used to describe the kaons prop-
agation from the source of their creation until the point where they are eventu-
ally measured or they decay, are derived from the time dependent Schrödinger
equation (SE). However, SE only covers closed quantum systems, which the de-
caying neutral kaon system certainly is not as it interacts with the environment
through decay. In order to make sure that a proper time transformations is
applicable, one has to include an interaction term with the environment and
thereby closing the system again. The master equation includes terms of the
system and its interaction with the environment by adding a dissipative term
D[ρ]:

d

dt
ρ = −iHρ+ iρH† −D[ρ]

with the Hamiltonian H and the density matrix ρ. In order to satisfy the re-
quirement of a closed system, also the decay products have to be included in the
state’S descriptions. Naturally, additional terms lead to change in normalization
and as time progresses, the weight of surviving states decreases in favour of the
weight of the decay products which have no contribution to the violation of BI.
Thus finding states which are more resistant concerning dissipation seems key
in the quest to violate BI, and also in [24] a possibile state has been presented,
which it less entangled, but more resistant to decoherence than the maximally
entangeled Bell states. Another figurative explanation for decoherence could go
as follows: Decoherence describes the loss of ability to interfere, in other words
the fringe visiblity of interference pattern decreases. Taking a case as discussed
in section Complementarity, Kaons as double slits as time passes and more and
more short lived states decay, eventually the long-state-slit will cover most of the

8p1 + p2 = 1 and p1,2 represent the probabilities that the particle will take the first or
secend path.
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figurative double-slit, whereas the short-state-slit will be almost near to extinct.
In case the all KS states vanish, the "‘double slit"’ K0 will have suffered total
decoherence, as the which path-information is maximal since there are only KL

states left. Regeneration as discussed before can restore the double slit again.

4 Open Questions
Interesting Questions:

What is the reason for CP-violation? What other manifestation does CP-
violation have? Where are the limits to quantum effects? where on the energy
scales, where concerning spatial and temporal extension?
Often discussed: CP-violation and entanglement among neutrinos in the early
universe. What exactly accounts for the imbalance in matter anti-matter? Neu-
trino oscillation comparable to strangeness oscillation? if so, can there be an
adequate formalism corresponding the neutral kaon system concerning entangle-
ment. What possible applications could be thinked of, which use these effects?
Can we find other, more suitably particles to test CP-violation and BI? What
about neutrons, as they have much longer lifetimes?

Most important for now:

How to produce states other than |ψ−〉 which are highly wished for to test BI,
9 even if it is just a |φ−〉 which violates BI only slightly.

5 Appendix
5.1 Strangeness Number
The introduction of a new quantity called strangeness was supposed to account
for a number of surprising events in particle physics as described in section 2.1:

S = 2
(
Q− I3 −

B

2

)
(41)

where Q denotes the electric charge, which is presumed to be exactly conserved,
I3 is the third component of the isospin and B denotes the baryon number whose
conservation rests upon very strong evidence, the proton lifetime [21].

5.2 Time evolution of Kaon states
Time evolution of the |KS,L〉 states:

|KS,L〉(t) = e−iλS,Lt|KS,L〉 (42)

constructed via the |K0〉,|K0〉 states with:

1
N

(
p −q
p q

)(
|K0〉
|K0〉

)
=
(
|KS〉
|KL〉

)
(43)

9As |ψ−〉 suffers from not being able to violate BI with active measurements, as has been
pointed out before.
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inversion gives:

N2

2pq

(
q q
−p p

)(
|KS〉
|KL〉

)
=
(
|K0〉
|K0〉

)
(44)

The time evolution of neutral Kaon states is:

|K0〉(t) = e−iλS,Lt|K0〉 − q

p
(1− e−iλS,Lt)|K0〉

|K0〉(t) = e−iλS,Lt|K0〉 − q

p
(1− e−iλS,Lt)|K0〉 (45)

With a pure K0 beam at the beginning (t = 0), producable through the strong
decay: π−+p→ K0 +Λ0, the probability of finding a K0 at time t in the beam
is calculated to be [21]:

P (K0, t; |K0|) = |〈K0|K0(t)〉|2 =
∣∣∣∣〈K0|N2p

{
e−iλSt|KS〉+ e−iλLt|KL〉

}
〉
∣∣∣∣2

=
∣∣∣∣12e−iλSt − 1

2e
−iλLt

∣∣∣∣2
= 1

4

{
e−iΓSt + e−iΓLt + 2Re{e−i∆mt}e−Γt

}
= 1

4
{
e−iΓSt + e−iΓLt + 2cos(∆mt)e−Γt} (46)

or finding a K0 at time t:

P (K0, t; |K0|) = |〈K0|K0(t)〉|2 =
∣∣∣∣〈K0|N2p

{
e−iλSt|KS〉+ e−iλLt|KL〉

}
〉
∣∣∣∣2

=
∣∣∣∣ q2pe−iλSt − q

2pe
−iλLt

∣∣∣∣2
= 1

4
|q|2

|p|2
{
e−iΓSt + e−iΓLt − 2cos(∆mt)e−Γt} (47)

with: ∆m = mL −mS and Γ = 1
2 (ΓL + ΓS)

5.3 Regeneration process
Under negligence of CP violation and after a reasonable amount of time, an
initially pure K0 beam evolved into a almost pure KL beam. The piece of
matter then "‘acts"’ on the KL states:

|KL〉 = 1√
2

(|K0〉+ |K0〉)→ 1√
2

(a|K0〉+ b|K0〉) (48)

with b < a < 1. Reformulating the state gives:

1√
2

(a|K0〉+ b|K0〉) = 1√
2

( c2 |K
0〉+ −c2 |K

0〉+ d

2 |K
0〉+ d

2 |K
0〉)
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with c = a− b and d = a+ b and rearranging:

... = 1
2
√

2
(c|K0〉 − c|K0〉) + 1

2
√

2
(d|K0〉+ d|K0〉)

yields:

... = c

2 |KS〉+ d

2 |KL〉 (49)

of course c and d depend on several specific material parameters. Eq. (49)
shows that |KS〉 states are regenerated. The more effectively the piece of matter
"‘absorbs"’ the |K0〉 states, the higher the rate of regeneration.

5.4 Deduction of Bell inequality for spin1
2 fermions

Following Gedankenexperiment should help to understand the Bell inequality:
A system of two spin 1

2 particles is prepared in a way, that both particles fly off
in different diraction towards one measuring instrument on each side, Alice and
Bob, measuring the spin along two individual components â and b̂, respectively.
LHV suggests that a probability density ρ(λ), with hidden variables λ and
normalization such that: ∫

dλρ(λ) = 1 (50)

can account for all the predictions of quantum mechanics. In the course of the
deduction, there shall be two different settings at Alice denoted by a1,2 and
likewise for Bob’s settings, and A and B shall represent the mean values at A
and B, respectively. The results of a measurement performed by Alice or Bob
can have positive or negative results, i.e. 1 or -1. Let us alo keep in mind, that
as this deduction refers to a LHV, the outcome of measurements performed
at A are only dependent of the settings at Alice, i.e. especially measurements
performed at B do not affect measurements performed at A and vice versa. The
expectation of such a "‘double measurement"’ is given by:

E(a,b) =
∫
dλρ(λ)A(a, λ)B(b, λ) (51)

E(a,b) = 〈ψ|σ · a⊗ σ · b|ψ〉 = −a · b (52)

The following steps will not be accompanied by further comment, as it is de-
scribed in more detail [7].

E(a1, b1)− E(a1, b2) =
∫
dλρ(λ)A(a1, λ)B(b1, λ) {1±A(a2, λ)B(b2, λ)}

−
∫
dλρ(λ)A(a1, λ)B(b2, λ) {1±A(a2, λ)B(b1, λ)}

(53)

|E(a1, b1)− E(a1, b2)| ≤
∫
dλρ(λ) {1±A(a2, λ)B(b2, λ)}

+
∫
dλρ(λ) {1±A(a2, λ)B(b1, λ)}

(54)
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|E(a1, b1)− E(a1, b2)| ≤ 2± |E(a2, b2)− E(a2, b1)| (55)

final rearranging leads to the CHSH-inequality:

S = |E(a1, b1)− E(a1, b2)|+ |E(a2, b2)− E(a2, b1)| ≤ 2 (56)

5.5 Entanglement witness
An Entanglement Witnesses (EW) is applied to ascertain whether a given state
is entangled or not. EW are represented by hermitian operators W, i.e. they
are observables and have real eigenvalues. If ρ denotes the probability density
matrix and S the set of seperable states, following statements apply to EW [15]:

∀ρ ∈ S, tr(Wρ) ≥ 0 (57)

At least one entangled state satisfies:

∃ρ /∈ S, tr(Wρ) < 0 (58)

Each entangled state has at least one EW to detect it with:

∀ρ /∈ S, ∃W with tr(Wρ) < 0 (59)
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