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Abstract– We consider two transient thermal processes in uniformly heated harmonic crystals: (i) equalibra-
tion of kinetic and potential energies and (ii) redistribution of the kinetic energy among the spatial directions.
Equations describing these two processes in two-dimensional and three-dimensional crystals are derived.
Analytical solutions of these equations for the square and triangular lattices are obtained. It is shown that the
characteristic time of the transient processes is of the order of ten periods of atomic vibrations. The difference
between the kinetic and potential energies oscillates in time. For the triangular lattice, amplitude of the oscil-
lations decays inversely proportional to time, while for the square lattice it decays inversely proportional to
the square root of time. In general, there is no equipartition of the kinetic energy among spatial directions,
i.e. the kinetic temperature demonstrates tensor properties. In addition, the covariance of velocities of differ-
ent particles is nonzero even at the steady state. The analytical results are supported by numerical simulations.
It is also shown that the obtained solutions accurately describe the transient thermal processes in weakly non-
linear crystals at short times.
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1. INTRODUCTION

A quantitative description of nonequilibrium ther-
mal processes in crystals is one of the challenging
problems in modern physics. The problem is topical
due to the recent development of nanotechnologies
[1–3]. In particular, the processes of transition
towards the thermodynamic equilibrium state in solids
are of a great interest [4, 5]. A nonequilibrium state is
caused, for example, by shock waves [6–9] or by a
short laser impulse [10–14]. In such cases, the kinetic
energies of the thermal motion in different spatial
directions may differ significantly [7–9]. In other
words, the kinetic temperature exhibits tensor proper-
ties.2 In addition, the kinetic and potential energies of
the thermal motion may be different.

Computer simulations [15] show that transition
towards the equilibrium state is accompanied by two
processes, namely: (i) equilibration of the kinetic and
potential energies and (ii) redistribution of the kinetic

energy among the spatial directions.3 This paper
focuses on analytical description of the transient ther-
mal processes in harmonic crystals.

The harmonic crystal is a lattice composed of
material points interacting via linearized (harmonic)4

forces. This mathematical model is often used in liter-
ature to describe the thermal processes in solids [16–
21, 23, 24]. In principle, equations of motion for a har-
monic crystal can be solved analytically. However, due
to random5 initial conditions, this approach leads to
stochastic solutions.

Modeling of thermal processes is usually focused
on the behavior of statistical characteristics, such as
the kinetic temperature or its generalization, the ten-
sor temperature [7, 9] rather than the random motion
of individual particles. The problem in terms of the
statistical characteristics is formulated using correla-
tion analysis [16–19]. In the framework of this
approach, a closed system of equations is derived for
the covariances (mathematical expectations of the

1 The article was translated by the authors.
2 In particular, at the front of a shock wave propagating along the

x direction, the following relation applies: Txx > Tyy, where

kBTxx = m〈 〉, kBTyy = m〈 〉, and kB is the Boltzmann con-
stant

2
xv

2
yv

3 Exchange between energies corresponding to motion of particles
in different spacial directions is considered. There is no energy
exchange between the normal modes.

4 Force is linearly dependent on particle displacement.
5 As a rule, particles are given random initial velocities in thermal

problems.

THERMAL
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products) of the particle displacements and velocities.
The initial conditions for the covariances are deter-
ministic. A solution of the system describes the evolu-
tion of the kinetic temperature. No assumptions about
velocity distribution function are made in the deriva-
tion. The behavior of the distribution function during
the transition towards equilibrium and its convergence
to Gaussian distribution are discussed, for example, in
papers [20–22].

Correlation analysis is used to describe thermal
processes in harmonic crystals in papers [16–19]. In
particular, the heat transfer is investigated. An analyt-
ical solution of the stationary heat transfer problem in
a harmonic chain is obtained in the pioneering work of
Rieder et al. [16]. The solution shows that heat propa-
gation is not described by the Fourier law. This anom-
aly in harmonic and anharmonic crystals is investi-
gated, for example, in papers [19, 24–27]. In particu-
lar, an equation describing the propagation of heat in
the one-dimensional harmonic crystal is obtained in
paper [19].

Correlation analysis also describes transient pro-
cesses in uniformly heated crystals [17, 28]. In paper
[17], harmonic chain with random initial velocities
and zero initial displacements is considered. Initially,
the total energy of the system is equal to the kinetic
energy, and the potential energy is zero. It is shown
that the kinetic and potential energies equilibrate in
time, while their difference (Lagrangian) undergoes
decaying oscillations described by the Bessel function
of the first kind. The generalization to the case of a
chain on an elastic foundation is given in paper [28].

In the present paper, we consider an analytical
description of transient thermal processes in two- and
three-dimensional uniformly heated harmonic crys-
tals. Initially, the particles have random velocities and
displacements. Using correlation analysis, we derive
deterministic equations describing two transient pro-
cesses: (i) equilibration of the kinetic and potential
energies and (ii) redistribution of the kinetic energy
among the spatial directions. We obtain exact analyti-
cal solutions of these equations for the square and tri-
angular lattices. Numerical integration of the lattice
dynamic equations provide a check for the analytical
results. The influence of weak nonlinearity is investi-
gated. The results obtained in the present paper pro-
vide an estimate of the time-scale of transient thermal
processes in harmonic crystals, as well as the condi-
tions under which the temperature demonstrates ten-
sor properties.

2. LATTICE DYNAMICS EQUATIONS 
(STOCHASTIC PROBLEM)

Consider an infinite simple lattice consisting of
identical particles connected by linear springs. Parti-
cles are identified by their radius vectors in the unde-

formed state. The equation of motion of a particle with
radius vector r has the form

(1)

where u(r), v(r) are the displacement and velocity of a
particle with radius vector r; aα is a vector connecting
two neighboring particles; eα = aα/|aα|;  = ; C
is the bond stiffness; m is particle mass. Summation is
carried out over non-collinear directions of the bonds
α. For the square lattice α = 1, 2, and for the triangular
lattice α = 1, 2, 3 (see Fig. 1).

The following operator form of the equations of
motion is used:

(2)

Here $ is the tensor difference operator of the second
order.6 The following initial conditions for equation
(2) are considered:

(3)

where u0, v0 are independent random vectors with zero
mean. Hereinafter, the initial conditions are denoted
by index “0.”

Equation (2) with initial conditions (3) completely
determine the dynamics of the crystal. This problem
can be solved analytically. The resulting displacements
and velocities of the particles are random quantities.
Analysis of motion of individual particles is important,
for example, in problems of fracture [29, 30]. Descrip-
tion of the thermal processes usually focuses on the
behavior of statistical characteristics, such as covari-
ances (mathematical expectations of the product) of
velocities and displacements of the particles. The ini-
tial conditions for the covariances are deterministic. A
closed system of equations describing the dynamics of
the covariances is derived in the following section.

6 It follows that the motion of particles is governed by a differen-
tial-difference equation.
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Fig. 1. Vectors eα for square and triangular lattices.
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3. THE DYNAMICS EQUATIONS
FOR THE COVARIANCES

(A DETERMINISTIC PROBLEM)
We consider an infinite number of realizations of

the same crystal. The realizations differ by random
velocities and displacements of the particles (see
Eq. (3)). We introduce the covariances of displace-
ments and velocities for all pairs of particles. For par-
ticles i, j the covariances are given by the following for-
mulae:

(4)

where ri, rj are radius vectors of corresponding parti-
cles; ui = u(ri); vi = v(ri). Hereinafter, the angular
brackets denote the mathematical expectation. It is
also assumed that the displacements and velocities are
centered random variables, i.e., 〈ui〉 = 0, 〈vi〉 = 0.

We consider thermal processes in a uniformly
heated crystal. In this case,

(5)

The argument ri – rj is omitted for brevity. Note that a
set of points defined by vectors ri – rj forms the same
lattice as the particles. Therefore, problems formu-
lated for the covariances are solved “on the same lat-
tice” as the equations of motion (2).

Differentiating covariances (4) with respect to time
and taking into account equations of motion (2) and
relations (5), yields

a system of the first-order differential equations:

(6)

a system of the second-order differential equation for
ξ and κ:

(7)

a system of the second-order differential equation
for ν:

(8)

the fourth-order equation

(9)

Here $2 = $ ⋅ $; νT is the transpose of tensor ν. Note
that displacements covariance ξ also satisfies equation
(9). Equations (6)–(9) allow one to calculate all
covariances at any moment of time.

ξ = 〈 〉 κ = 〈 〉

ν = 〈 〉

( , ) , ( , ) ,
( , ) ,

i j i j i j i j

i j i j

r r u u r r v v
r r u v

ξ = ξ − κ = κ −
ν = ν −

( , ) ( ), ( , ) ( ),
( , ) ( ).

i j i j i j i j

i j i j

r r r r r r r r
r r r r

ξ = ν + ν κ = ⋅ ν + ν ⋅ ν = κ + ξ ⋅
ν − = ν −

�

� �*, * , ,

( ( ))* ( );T
i j j ir r r r

$ $ $

ξ = ⋅ ξ + ξ ⋅ + κ
κ = ⋅ κ + κ ⋅ + ⋅ ξ ⋅

��

��

2 ,
2 ;

$ $

$ $ $ $

ν = ⋅ ν + ν + ν ⋅
ν = ⋅ ν + ν + ν ⋅
��

��

( 2 *) ,
* ( * 2 ) * ;

$ $

$ $

κ − ⋅ κ + κ ⋅
+ ⋅ κ − ⋅ κ ⋅ + κ ⋅ =

���� �� ��

2 2

2( )

2 0.

$ $

$ $ $ $

We show that covariances of velocities and dis-
placements ν satisfy conservation laws. It follows from
(6) that

(10)

Multiplying both parts of equation (10) by $n, yields7

(11)

Hereinafter $0 = (, where ( is the unit tensor. It
follows from the Cayley–Hamilton theorem that the
number of independent conservation laws (11) is equal
to the number of space dimensions.

The initial conditions for equations (6)–(9) are
uniquely determined by the initial displacements and
velocities of the particles. In particular, initial condi-
tions for equations (6) have the form

(12)

where ,  are initial velocities and displacements.
Note that in contrast to initial conditions (3) for the
displacements, initial conditions (12) for the covari-
ances are deterministic.

Thus, the lattice dynamics problem with random
initial conditions (3) is reduced to equations (6)–(8)
or (9) for covariances with deterministic initial condi-
tions (12).

4. GENERALIZED ENERGIES
One of the central quantities in the description of

thermal processes is the kinetic temperature T [31] or
its generalization, the tensor temperature 7 [7, 9]8

(13)

where kB is the Boltzmann constant, and d is the space
dimensionality.

In the previous section, it is shown that the kinetic
temperature is insufficient for derivation of a closed
system of equations. Hence, consideration of velocity
covariances is required (see Eq. (9)). In papers [17, 19,
32] it is proposed to consider generalized energies (lin-
ear combinations of covariances). We introduce the
generalized (two-particle) kinetic _ and potential 8
energies [19] for a pair of particles i, j:

(14)

In the case i = j, traces of tensors _ and 8 correspond
to the conventional potential and kinetic energies per

7 A double dot symbol stands for the double scalar product, e.g.,
ab ⋅ ⋅ cd = (b ⋅ c)(a ⋅ d)

8 In papers [7, 9], molecular dynamics simulations of shock waves
in liquids is investigated.

ν − ν = ξ ⋅ − ⋅ ξ� �* .$ $

⋅ ⋅ ν − ν = =( *) const, 0,1,2,....n n$

ξ = 〈 〉 κ = 〈 〉 ν = 〈 〉
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iv

== 〈 〉 = κ =B 1( ) | , tr ,
2 2 2i i i i j

k m m T
d

r v v7 7

− = κ

− = − ⋅ ξ + ξ ⋅

( ) ,
2

( ) ( ).
4

i j

i j

m

m

r r

r r

_

8 $ $



1054

PHYSICS OF THE SOLID STATE  Vol. 59  No. 5  2017

KUZKIN, KRIVTSOV

particle. The argument of generalized energies ri – rj is
further omitted for brevity. We also introduce a gener-
alized total energy * and a generalized Lagrangian +:

(15)
In the previous section, it is shown that covariances ξ
and κ satisfy equation (9). Therefore, generalized
energies _, 8, +, * also satisfy equation (9). For
brevity, we write this equation in operator form

(16)

where   is a linear differential-difference operator.
Note that the symmetric and antisymmetric parts of
tensors ξ, κ, _, 8, +, * satisfy equation (16).9

As a result, covariances and generalized energies
satisfy equation (16). Initial conditions for equation
(16) are uniquely determined by the initial displace-
ments and velocities of the particles (3).

The generalized total energy satisfies several con-
servations laws. From the system of equations (6), it
follows that

(17)

Multiplying equation (17) by $n, we obtain the con-
servation laws

(18)
In the case n = 0, i = j, formula (18) coincides with the
conventional law of energy conservation. From the
Cayley–Hamilton theorem it follows that the number
of independent conservation laws (18) is equal to the
number of space dimensions.

Thus, the dynamics of the generalized energies is
described by equation (16) with deterministic initial
conditions. Solution of this equation determines the
behavior of the tensor temperature (13). Note that the
generalized total energy satisfies conservation laws
(18). In the next section, we use the conservation laws
to calculate the generalized energies in a steady state.

5. STEADY STATE
Numerical simulations show that after a rapid tran-

sitory period, the crystal reaches an almost stationary
state. The steady state is defined as the state of the
crystal in which the second time derivatives of the
covariances are equal to zero. In this section, we
obtain a relation between the generalized energies in
the steady state and the initial conditions. Canceling

9 Consequently, the symmetric and antisymmetric part of gener-
alized energies can be considered independently.

= + = −, .* _ 8 + _ 8

= 0,L&

= ξ κ{ , , , , , },& _ 8 + *

= − ⋅ + ⋅ + ⋅
− ⋅ ⋅ + ⋅

���� �� ��

2

2

2( )

2 ,

L& & $ & & $ $ &

$ & $ & $

L

= ⋅ ν − ν − ν − ν ⋅� ( ( *) ( *) ).
4
m

* $ $

⋅ ⋅ = =const, 0,1,2,....n n$ *

out the time derivatives in equation (16) for *, and
using conservation laws (18), we obtain a closed sys-
tem of equations for the steady state:

(19)

where *0 is the initial value of the generalized total
energy. The first equation of (19) represents the spheri-
cal part of the generalized total energy, while the
remaining equations give the deviatoric part. These
equations can be solved analytically, for example, by
using a discrete Fourier transform (see Subsection 8.2).

Consider the ratio between the generalized kinetic
and potential energies _ and 8 in the steady state.
Rewriting the first equation of (7) in the form

(20)

and canceling out the time derivative, we obtain

(21)

in the steady state. From formulae (21), it follows that
the generalized kinetic and potential energies are equal
in the steady state. The first equation of system (19)
and equation (21) specify the traces of the generalized
energies,

(22)

In the case i = j, formula (22) shows that conventional
kinetic and potential energies are equal in the steady
state. This fact also follows from the virial theorem
[33]. However, in contrast to the approach used in this
study, the virial theorem does not describe the transi-
tion to the steady state.

Deviators of the generalized energies are calculated
using system (19). Note that system (19) is valid both
for two-dimensional10 and three-dimensional cases.

Thus, in the steady state, the generalized kinetic
energy is equal to the generalized potential energy. The
relation between energies in the steady state and the
initial conditions is given by equations (19), (21), and
(22). Solutions of these equations for square and trian-
gular lattices are obtained below. In Subsection 8.2, it
is shown that the temperature tensor (13) in general is
not isotropic, even in the steady state.

6. TRANSITION TO THE STEADY STATE
Transition towards the steady state is accompanied

by two simultaneous processes. Firstly, the kinetic and
potential energies equilibrate. This process is
described by equation (16). Secondly, the energy is

10In the two-dimensional case, the third equation of the system
(19) follows from the first two.
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redistributed among the spatial directions. The redis-
tribution takes place, for example, in the case when
initial kinetic energies corresponding to motions in
different directions are not the same (〈 〉 ≠ 〈 〉). In
this section, we consider the dynamics of this transient
process.

Difference between energies corresponding to dif-
ferent spatial directions is characterized by dev*.11 It
is shown above that tensor * satisfies equation (16).
From conservation law (18) it follows that trace *
does not depend on time. Then deviator * also satis-
fies equation (16):

(23)

If the initial velocities and displacements of the parti-
cles are uncorrelated (ν = 0), then initial conditions
for equation (23) have the form

(24)

where ξ0 is the initial value of the displacements cova-
riance and *0 is the initial generalized total energy.
Formula (24) shows that independent quantities
dev*0 and devξ0 influence the redistribution of
energy among the spatial direction. However, in the
steady state, the value of dev* is affected only by
dev*0 (see Eq. (19)).

Thus, the transition to the steady state is accompa-
nied by two simultaneous processes: (i) equilibration
of the kinetic and potential energies and (ii) redistri-
bution of energy among the spatial directions. These
processes are described by the same equation (16) for-
mulated for + and dev*, respectively. Solutions of the
equation for the square and triangular lattices are
obtained below. In particular, for the triangular lattice
it is shown that at large times the solution of equation
(16) for dev* tends to the solution of system (19),
describing the steady state.

7. THE SQUARE LATTICE

We consider an infinite square lattice with basis
vectors e1, e2 (see. Fig. 1). The particles oscillate in the
plane of the lattice.12 This lattice is used as an example
to illustrate the presented ideas. Initially, particles
have independent random velocities and zero dis-
placements. Under these initial conditions tensors *

11dev* = * – tr(*)(, where d is the dimensionality of space

and ( is the unit tensor
12Note that in literature, the out-of-plane vibrations are often

considered (see, e.g., [34]).

2
xv

2
yv

1
d

=(dev ) 0.L *

= = =

= − ⋅ ξ − ⋅ ξ ⋅ + ξ ⋅

� ���

��

0

2 2
0 0 0

dev dev , dev 0, dev 0,
dev

( dev 2 dev dev ),
4
m

* * * *

*

$ $ $ $

and + are symmetrical.13 We consider the redistribu-
tion of energy among the spatial directions and the
equilibration of kinetic and potential energies.

It is previously shown that the generalized energies
depend on vectors ri – rj connecting the particles.
Points defined by these vectors form the square lattice.
We use the following representation for ri – rj:

(25)
where k, n are integer numbers and a is an equilibrium
distance.

Consider the dynamics of generalized total energy
*. We restrict ourselves to the case when the compo-
nents of the initial particle velocities in directions e1, e2
are independent. Then, the initial conditions for *
have the form

(26)

where δn is the function equal to 1 for n = 0 and equal
to 0 in all the other cases. The change in * during the
transition to the steady state is described by equation
(9), where operator $ has the form

(27)

Taking into account (27), equation (9) decomposes
into independent scalar equations for Hij = ei ⋅ * ⋅ ej:

(28)

Therefore, there is no energy redistribution among the
spatial directions in a square lattice. In particular,
under initial conditions (26) equation (28) has the
solution * = _0, i.e., the generalized total energy is
conserved.

Consider the equilibration of the kinetic and
potential energies. The initial conditions for the gener-
alized Lagrangian + have the form

(29)

It can be shown that components Lij = ei ⋅ + ⋅ ej of the
generalized Lagrangian satisfy equations (28). The
equation for L12 with initial conditions (29) has a trivial
solution. The equations for L11 and L22 are rewritten as
follows:

(30)

Equations (30) are similar to the equation for the
dynamics of Lagrangian in the harmonic one-
dimensional chain, obtained in paper [17]. The solu-

13It was noted earlier that the antisymmetric part of tensors * and
+ satisfy equation (16). In this case, the initial conditions for the
anti-symmetric parts are zero.
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tion of equation (30) with initial conditions (29) has
the form [17]

(31)

where J is the Bessel function of the first kind. Using
the asymptotic formulae for the Bessel functions, we
show that the generalized Lagrangian oscillates with
an amplitude inversely proportional to the square root
of time. Taking into account the conservation law of
generalized total energy * = _0, in the steady state we
have

(32)

It follows from formulas (13) and (32) that the tensor
temperature in a stationary state is isotropic only if the
initial velocities are uniformly distributed among spa-
tial directions (tensor _0 is isotropic).

Thus in a square lattice, the potential and kinetic
energies corresponding to the same spatial direction
equilibrate. The equilibration is governed by the same
law as in a one-dimensional chain [17]. There is no
redistribution of energy among the spatial directions.
In general, the tensor temperature (13) is not isotropic.

8. THE TRIANGULAR LATTICE

8.1. General Relations

In this section, we discuss transient thermal pro-
cesses in a triangular lattice (see Fig. 1). As already
mentioned, the generalized energies depend on vec-
tors ri – rj. The set of points, defined by vectors ri – rj,
also forms the triangular lattice. Analytical solutions
are obtained for a periodic cell. Particles in the cell are
numbered by a pair of indices k, n:

(33)

where 2N + 1 is the number of particles along one side
of the periodic cell; i, j are the unit vectors of the Cate-
sian basis; vectors e1, e2, e3 are shown in Fig. 1. The
periodic cell has a diamond shape. Generalized ener-
gies _k, n, 8k, n are defined at the points with indices
k, n. In paper [35], it is shown that this numbering is
convenient for the analysis of the triangular lattice.

The generalized energies are calculated using dif-
ference equations (19) and differential-difference
equations (16) and (23). The equations are solved
using the discrete Fourier transform. For example, the
direct and inverse discrete Fourier transforms of the

= ω δ + ω δ0 0
1 2 1 1 2 2 2 2(4 ) (4 ) ,* *k n n kK J t K J te e e e+

= = 0
1 .
2

_ 8 _

− = + = −

= = − + = +

1 2

1 2 3 1 2

( ), , ,..., ,

1 3, , ,
2 2

i j a k n k n N Nr r e e

e i e i j e e e

generalized total energy *k, n = *(a(ke1 + ne2)), have
the form

(34)

where i is the imaginary unit. Hereinafter, the Fourier
image is denoted by a hat sign. Indices k, n and s, p are
omitted from now for brevity.

Solutions obtained via the discrete Fourier trans-
form (34) describe the processes in finite crystals
under periodic boundary conditions. Solutions for
infinite crystal are obtained in the limit N → ∞.

8.2. The Steady State and the Tensor Temperature

Consider the steady-state values of generalized
energies _, 8 and tensor temperature (13) in the tri-
angular lattice. The traces of the generalized energies
are given by equation (22), and the deviators are
expressed in terms of dev*:

(35)

Therefore, the problem reduces to calculation of dev*
from the system of difference equations (19). The fol-
lowing relation is used:

(36)

The expression (36) is a particular solution of the last
equation in (19). Numerical solution of lattice dynam-
ics equations (2) show that formula (36) leads to cor-
rect results.

We represent the deviators of tensors *, *0 in the
Cartesian basis i, j

(37)

The discrete Fourier transform (34) is applied to sys-
tem (19) taking into account formulae (36) and (37).
Then projection of the resulting Fourier transforms
onto vectors i, j, yields

(38)
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Solving system (38) with respect to ,  and apply-
ing the inverse discrete Fourier transform, we obtain

(39)

where θs and θp are defined by formula (34). In the
thermodynamic limit (N → ∞), sums in formula (39)
are transformed into integrals. Solution (39) is
obtained under arbitrary initial conditions. Evidently,
in a general case dev* ≠ 0, so there is no energy equi-
partition among spatial directions.

Consider the case when particles have independent
random initial velocities and zero initial displace-

ments. Then, *0 = _0δkδn, where _0 = . It

can be shown that the following identities are satisfied:

(40)

Substituting *0 into solution (39) and using identities
(40), yields for k = n = 0

(41)

Formula (41) shows that there is no equipartition of
kinetic energy among spatial directions in harmonic
triangular lattice. If projections of initial velocities on
axes x and y are uncorrelated, then formula (41) yields
a simple expression for the components of the tensor
temperature (13):

(42)

where Txx = i ⋅ 7 ⋅  i, Tyy = j ⋅ 7 ⋅ j; ,  are initial
values of Txx and Tyy. Thus, in general, the temperature
tensor (13) is not isotropic even in the steady state.

Consider the covariance of velocities in the steady
state

(43)

1Ĥ 2Ĥ
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In the one-dimensional case [17], the covariances are
equal to zero for all k > 0. In two dimensions, only the
spherical parts of tensors (43) are equal to zero (see
formula (22)). In the general case, the deviatoric parts
of tensors (43) are not equal to zero. They are calcu-
lated using equations (14), (35), and (39). Analysis of
formula (39) shows that the covariance of velocities is
inversely proportional to the square of the distance
between the particles. In addition, norm14

||dev_(kaα)|| is independent of the direction given by α.

In order to check the accuracy of analytical solu-
tion (39), we compare it with the numerical solution of
lattice dynamics equations (2). Hereinafter, the Verlet
integration scheme with time-step 5 × 10–3 ,  =
2π/  is used. Periodic boundary conditions are
applied. The periodic cell contains 106 particles. Ini-
tially particles have independent random velocities
directed along one of the basis vectors and zero dis-
placements. Comparison of the numerical solution of
the lattice dynamic equations (2) with the analytical
solution (39) is shown in Fig. 2. It is seen that the solu-
tions are virtually indistinguishable.

Thus, the analytical solution demonstrates that the
temperature tensor in a harmonic crystal, generally
speaking, is not isotropic (Txx ≠ Tyy). In addition, the
velocity covariance for neighboring particles 〈vivj〉 is
not equal to zero, i.e. particles' velocities are not statis-
tically independent.

14Here we use the norm ||-|| = - ⋅⋅ -.

τ* τ*
ω*

Fig. 2. Generalized kinetic energy in the steady state for
harmonic triangular lattice. The value ||dev_(kaα)|| is pro-
portional to the covariance of velocities for a pair of parti-
cles. The distance between particles is equal to ka, where a
is an equilibrium distance (see formula (43)). Solid line
connects points obtained using formula (39) for N = 150;
squares and circles correspond to the numerical solution of
lattice dynamics equation (2) (α = 1, 2).
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8.3. Redistribution of Energy Among Spatial Directions

In Section 6, it is shown that the equation (23) for
dev* describes the redistribution of energy among
spatial directions. In the present section, we solve this
equation for a triangular lattice.

Suppose that particles have independent random
initial velocities and zero initial displacements. We
restrict ourselves to the case when components of
velocities along the directions i and j are independent.
Then the initial conditions have the form

(44)

Consider the discrete Fourier transform of equation (23),

(45)

Tensor dev  is represented in the Cartesian basis (37).
Corresponding components ,  of tensor dev
are related by the first equation of system (38).15 Mul-
tiplying equation (45) by ii – jj, and taking formula
(38) into account, yields an equation for  with the
corresponding initial conditions:

(46)

where As, p and Bs, p are defined by (39). Solving equa-
tion (46) and applying the inverse Fourier transform,
yields

(47)

A similar expression for H2 is obtained using the
first equation of system (38). In particular, it is shown

15This formula follows from conservation law (18).
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that H2 = 0 for k = n = 0. As a result, for k = n = 0 we
have

(48)

Comparison of analytical solution (48) with the
numerical solution of lattice dynamic equations (2) is
shown in Fig. 3. Given the scale in the plot, the results
agree. The difference between the energies corre-
sponding to x and y direction tends to half of the initial
value. This result coincides with the solution of sta-

tionary problem (41) dev* = dev*0.

Thus, the redistribution of energy among spatial
directions in a triangular lattice with random initial
velocities and zero displacements is described by for-
mula (48). The system tends to the steady state in
which relations (41) are satisfied. The characteristic
time of the transition process is of the order of ten peri-
ods of atomic vibrations  (see Fig. 3).

8.4. Equilibration of the Kinetic and Potential Energies
Consider the equilibration of the kinetic and

potential energies. It is described by equation (16) with
respect to the generalized Lagrangian +. Suppose that
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1
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τ*

Fig. 3. Redistribution of energy among spatial directions in
harmonic triangular lattice. Hxx, Hyy are components of
the generalized total energy *(ri – rj) for i = j. Solid line—
analytical solution (48); circles—numerical solution of lat-
tice dynamics equations (2); dashed line—analytical solu-
tion (41) of the steady state problem.
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the particles have independent random initial veloci-
ties uniformly distributed among the spatial directions
and zero initial displacements. Then initial conditions
for equation (16) have the following form

(49)

where K0 is the initial value of the kinetic energy and (
is a unit tensor. In order to solve (16), we assume that
$ ⋅ + = + ⋅ $. Then, taking into account initial con-
ditions (49), equation (16) reduces to

(50)

It can be seen that the assumption significantly simpli-
fies equation (16). The comparison with the numerical
solution of lattice dynamics equations (2) shows that
equation (50) correctly describes the dynamics of the
Lagrangian L = tr+|i = j. Equation (50) is equivalent to
a system of three independent equations for vectors
Li = + ⋅ ei

(51)

Initial conditions for Li have the form

(52)

Equation (51) with initial conditions (52) has a simple
mechanical analogy. It is equivalent to the problem of
vibrations of a triangular lattice in which one particle
has a non-zero initial displacement, while the veloci-
ties and displacements of all other particles are equal
to zero. The solution of this mechanical problem is

= δ δ = = ⋅ =� �� ���
0 , 0, 4 , 0,
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KL e L

given in Appendix. The analogy yields the following
expression for Lagrangian L = tr+|i = j:

(53)

The second formula in (53) corresponds to the dis-
persion relation for a triangular lattice [36].

To check the accuracy of formula (53), we carried
out a numerical integration of lattice dynamics equa-
tions (2). The Verlet integration scheme with time-
step τ = 10–3  is used. Figure 4 shows the equilibra-
tion of kinetic and potential energies. It is seen that
analytical solution (53) and numerical solution of the
lattice dynamics equations coincide with each other.

Analysis of formula (53) shows that the Lagrang-
ian oscillates with an amplitude that is inversely pro-
portional to time. This is the essential difference from
the square lattice, where the Lagrangian decays
inversely proportional to the square root of time (see
Section 7). The difference between the kinetic and
potential energies decays by two orders of magnitude
when time is of the order of 10 .

8.5. Calculation of Displacement Covariance
in Thermal Expansion Problems

In papers [37, 38], it is shown that the displacement
covariance plays an important role in describing the
thermal expansion of crystals. In particular, the ther-
mal expansion coefficient for an anharmonic triangu-
lar lattice depends on the ratio between the compo-
nents of the following tensor in the steady state:

(54)

Without loss of generality, we consider the case α = 1.
Then, components Axx = i ⋅ ! ⋅ i and Ayy = j ⋅ ! ⋅ j of
tensor ! in the Cartesian basis (33) characterize the
longitudinal and transverse deformations of the bonds
caused by the thermal motion. In paper [38], it is
shown that the thermal expansion coefficient of the
triangular lattice essentially depends on the ratio
Ayy/Axx.

We calculate tensor ! in the framework of the har-
monic crystal model considered in the present paper.
The diamond-shaped periodic cell is considered (see
Eq. (33)). Equations (7) for covariances of displace-
ments are solved numerically with the following initial
conditions:
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Fig. 4. Equilibration of kinetic and potential energies in
harmonic triangular lattice with random initial velocities.
Solid line—analytical solution (53); circles—numerical
solution of lattice dynamics equations (2).
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Note that the value κ0 does not effect the ratio Ayy/Axx.
The Verlet integration scheme with time-step 10–3  is
used. The solution yields the following relation
between the components of tensor !

(56)

Formula (56) is in a good agreement with the results of
molecular dynamics simulations carried out for the
Lennard-Jones crystal in paper [38], where the follow-
ing result was obtained: Ayy/Axx ≈ 1.435.

Thus, it is possible to estimate the ratio between the
longitudinal and transverse deformations of the bonds
in a harmonic crystal. This estimate is required in
order to calculate the thermal expansion coefficient in
crystals using the approach outlined in papers [37, 38].

9. INFLUENCE OF NONLINEARITY

In this section, we investigate the influence of weak
nonlinearity on two transient thermal processes
described previously: (i) equilibration of kinetic and
potential energies and (ii) redistribution of the kinetic
energy among spatial directions.

Two-dimensional triangular lattice is considered.
The nearest neighbors interact via the Lennard-Jones
potential:

(57)

where ε is the bond energy; a is the equilibrium dis-
tance. Periodic boundary conditions are used. Ini-
tially, the particles have independent random veloci-
ties uniformly distributed in a circle of radius v0. The
dissociation velocity vd =  is used as a “scale

τ*

≈ 1.43.yy

xx

A
A

( ) ( )⎡ ⎤Π = ε −⎢ ⎥
⎣ ⎦

12 6

( ) 2 ,a ar
r r

ε2 /m

factor.” The initial displacements of the particles are
equal to zero.

Varying the amplitude of the initial velocities of the
particles (the temperature), one can change the influ-
ence of the non-linearity on the behavior of the sys-
tem. We show that at low velocities of the particles
(low temperatures) the transient thermal processes in
the Lennard-Jones crystal are well described by a har-
monic model.

Consider the effect of nonlinearity on the equili-
bration of the kinetic and potential energies. The
dependence of the Lagrangian on time is obtained
using molecular dynamics simulation and it is shown
in Fig. 5. It is seen that transition to the steady state is
accompanied by equilibration of the kinetic and
potential energies. In the case v0 = 0.05vd, the numer-
ical solution for L(t) practically coincides with the
analytical solution for the harmonic crystal (53). An
increase of initial velocities leads to faster equilibration
of kinetic and potential energies than in the harmonic
crystal.

Consider the effect of non-linearity on the redistri-
bution of energy among the spatial directions. Initial
particle velocities are directed along the x-axis, parallel
to one of the basis vectors of the lattice. Difference
between the components of the temperature tensor Txx,
Tyy corresponding to x and y directions is calculated
using molecular dynamics simulations. The time
dependence of Txx – Tyy is plotted in Fig. 6. The curves
are obtained by averaging over 25 realizations with ran-
dom initial velocities. The figure shows that at times of
the order of , the value Txx – Tyy decreases by approx-
imately a factor of 4 predicted by the harmonic model.
At larger times, it tends to zero relatively slowly.

τ*

Fig. 5. Equilibration of kinetic and potential energies in tri-
angular lattice with Lennard-Jones interactions. Initial
velocities are randomly distributed in a circle with radius
v0. v0/vd: (1) 0.05, (2) 0.25, and (3) 0.5.

Fig. 6. Redistribution of energy among spatial directions in
triangular lattice with Lennard-Jones interactions. Initial
velocities are randomly distributed in a circle with radius
v0. v0/vd: (1) 0.05, (2) 0.25, (3) 0.5, (4) analytical solution
of steady problem for harmonic triangular lattice, and
(5) numerical solution of lattice dynamics equations (2).
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Thus, the transition to a steady state in weakly
anharmonic crystals has two time scales. At short
times (in the order of a few periods ), the transient
processes are well described by a harmonic crystal
model. At larger times (t ≫ ), a new evolutionary
process caused by the non-linearity is observed. In
particular, nonlinearity leads to equipartition of
kinetic energies among spatial directions. Time
required for the equipartition depends on the magni-
tude of nonlinearity (the temperature).

10. CONCLUSIONS

In the present paper, an analytical description of
two transient thermal processes, notably (i) equilibra-
tion of kinetic and potential energies and (ii) redistri-
bution of the kinetic energy among spatial directions
was proposed. A closed system of equations with
deterministic initial conditions describing the two
processes in two-dimensional and three-dimensional
cases was derived. It was shown that in the steady state
the kinetic and potential energies are equal. Kinetic
energy is redistributed among spatial directions, how-
ever, the equipartition theorem is not satisfied in gen-
eral. In other words, the kinetic temperature exhibits
tensor properties. A system of equations relating the
temperature tensor in the steady state with the initial
conditions was derived.

Square and triangular lattices were studied. In the
square lattice, there is no energy redistribution among
spacial directions. Equilibration of the kinetic and
potential energies corresponding to one direction is
described by the Bessel function. In the triangular lat-
tice, the energy is redistributed among spatial direc-
tions. However, the equipartition theorem is not satis-
fied. In addition, the covariance of particle velocities
〈vivj〉, in general, is not equal to zero even in the steady
state. It is inversely proportional to the square of the
distance between the particles. The difference between
the kinetic and potential energies undergoes oscilla-
tions with an amplitude inversely proportional to time.
A characteristic time of the decay of the oscillations is
of the order of ten periods of atomic vibrations. In a
square lattice, similar oscillations decay inversely pro-
portional to the square root of time. The influence of
nonlinearity on the transition towards the steady state
is investigated numerically. It is shown that a small
nonlinearity causes a slow process that is superim-
posed on the fast process studied in the harmonic case.
Thus, the results of the paper are relevant to descrip-
tion of fast transients processes in weakly anharmonic
crystals.
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APPENDIX
OSCILLATIONS OF THE TRIANGULAR 

LATTICE
Consider the triangular lattice consisting of parti-

cles with masses m, connected by springs of stiffness
4C. The boundary conditions are periodic. The peri-
odic cell has a diamond shape. A side of the cell con-
sists of 2N + 1 particles. The radius vectors of the par-
ticle are given by formula (33). The equations of
motion have the form

(A.1)

Initially, the central particle (k = 0, n = 0) is displaced
along the bond e1 by u0. The initial velocities and dis-
placements of the remaining particles are equal to
zero. We introduce the new variables

(A.2)

where vectors ei are determined by formula (33).
Hereinafter, indices k, n of variables w1, w2, u1, u2

are omitted for brevity. Substitution of formula (A.2)
into the equations of motion, yields

(A.3)

The initial conditions have the form

(A.4)

We apply the discrete Fourier transform (34) to equa-
tion (A.3), with respect to indices k, n and use the
identities

(A.5)

As a result, for the Fourier images  = Φ(wi) we have
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Eigenfrequencies Ω1 and Ω2 of system (A.6) are given by

(A.7)

The initial conditions for ,  are as follows:

(A.8)

Solving system (A.6) with initial conditions (A.8) and
applying the inverse discrete Fourier transform, yields

(A.9)

Formulas (A.9) give an exact solution for the problem
of oscillations in the triangular lattice, where one par-
ticle has an initial displacement.
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