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It is shown that angular stiffness in the hexagonal lattice model plays a significant role in the geometrical
nonlinear terms in the equations of the continuum limit. A geometrically nonlinear discrete model is formulated
for the hexagonal lattice by considering the interaction of two sublattices. An asymptotic procedure is developed
in order to obtain the nonlinear coupled equations of motion in the continuum limit of the discrete model.
An interaction of longitudinal and shear plane strain waves is studied by using the solutions of the obtained
equations.
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I. INTRODUCTION

The derivation of the model equations for the strain dynam-
ics can be based on a continuum limit of the discrete lattice
model equations. This is especially efficient for materials with
complicated crystalline structure [1–6]. Another application
is connected with non-Fourier laws of heat conduction [7]: A
hyperbolic equation, referred to as the ballistic heat equation,
was obtained as a mathematical consequence of the equations
of lattice dynamics [8,9]. The references on the early works
related to the ballistic heat equation can be found in Ref. [8].

It is known that nonlinear discrete equations usually cannot
be solved analytically. This is why pure numerical approaches
are applied; see, e.g., Ref. [10]. An alternative way is to apply
a combined discrete-continuum approach when a continuum
limit of the discrete equations is analyzed. The obtained
continuum equations of motion should correspond to those
obtained when using the pure continuum approach. This is
especially important for the nonlinear terms in the equations.
There are at least two types of nonlinearity in the contin-
uum equations for nonlinear strain dynamics. The first one
is caused by the nonlinear dependence between the strains
and the displacement derivatives, which is described by the
Cauchy-Green strain tensor in the reference configuration. It
is called the geometrical nonlinearity. The second type of
nonlinearity accounts for deviations from Hooke’s law. It is
referred to as the physical nonlinearity [11].

Nonlinear modeling in lattices is mainly based on the
consideration of nonlinear stiffness of the springs between
the masses [10,12–18]. This corresponds to the physical non-
linearity. However, the simplest one-dimensional (1D) lattice
model with masses connected by linear elastic springs, un-
dergoing only translational displacements, does not produce
continuum limit equations with the geometrically nonlinear
terms [4–6]. The addition of two-dimensional (2D) motion in
the 1D model, such as dipole motion [19], rotational degree
of freedom [20], and effective stiffness modulation [21], may

help to include a geometrical nonlinearity in the discrete
model and in its continuum limit.

The hexagonal lattice has attracted considerable attention
due to its applicability for a graphene modeling and pos-
sible development of new heat conduction laws. The sim-
plest linear model takes only the translational motion of
the lattice masses into account [22–24]. Angular interactions
have been used in Refs. [15,25], and nonlinear modeling has
been developed in Refs. [14,25]. It should be pointed out
that the Cauchy-Born rule linking the continuum model with
particle interaction [26] requires the atomic structure of the
materials to be centrosymmetric, because such a structure
ensures the equilibrium of particles in a lattice. The hexagonal
arrangement of atoms does not meet this requirement: when a
lattice is under “homogeneous deformation” on the cell level,
the deformation may not be homogeneous inside the cell.
An attempt to modify the Cauchy-Born rule to work for a
hexagonal atomic structure is to introduce a rigid body trans-
lation as an internal degree of freedom. The hexagonal lattice
can be decomposed into two sublattices, each of which is
centrosymmetric [27].

The aim of this paper is to study nonlinear strain dynam-
ics of the equations obtained as a continuum limit of the
discrete 2D geometrically nonlinear hexagonal lattice model.
The paper is organized as follows. In Sec. II the lattice is
decomposed into two sublattices, and both translational and
angular interactions are taken into account. This allows us
to write the expressions for the energies for each sublattice
and to obtain the governing discrete equations of motion by
using a variational principle in Sec. III. The continuum limit
results in coupled governing nonlinear continuum equations
for longitudinal and shear strains. In Sec. IV the role of
the angular stiffness in the nonlinear term coefficients of
these equations as well as in the behavior of their localized
strain wave solutions are discussed. Section V concludes and
summarizes the paper.
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FIG. 1. Two-dimensional hexagonal lattice decomposed into two
sublattices.

II. STATEMENT OF THE PROBLEM

A 2D hexagonal lattice with neighboring interactions be-
tween the masses is shown in Fig. 1. The strain processes in
the lattice are based on a decomposition of the lattice into
two sublattices whose elements are marked by 1 and 2. The
sublattices are shown in in Figs. 2 and 3. The reason for
the decompositions is related to to satisfying the Cauchy-
Born rule [26,27] for the equilibrium of particles in a lattice.
This rule relates the movement of atoms in a crystal to the
overall deformation of the bulk solid. One needs to introduce
sublattices as a way of correlating changes in positions of the
entities in the lattice with descriptions of deformation used in
the continuum theories of elastic phenomena. More detailed
information can be found, e.g., in Refs. [26,27].

The interactions are modeled by the elastic springs. Two
types of interaction are considered: translation interactions
with the stiffness coefficient C1, and the angular ones with the
stiffness coefficient C2.

C

C

FIG. 2. First sublattice.

C

C

FIG. 3. Second sublattice.

The first sublattice marked by 1 in Fig. 1 with both
translational and angular interactions is shown in Fig. 2. The
translation displacements of a central mass corresponding to
the horizontal and vertical directions are denoted by xm,n and
ym,n, respectively. The analogous displacements for the second
sublattice are denoted by Xm,n and Ym,n.

The equations of motion are obtained using the Hamilton-
Ostrogradsky variational principle [11]. This procedure re-
quires knowledge of the potential strain energy, which should
be defined. Both the translational and angular variations are
considered while the dihedral variations [25] are omitted since
no bending is considered. It is assumed that the potential
energy of the interaction between the masses depends on the
translational elongations and angular variations. The physical
nonlinearity is omitted in our consideration since the aim is
to clarify the role of the geometrical nonlinearity. It allows us
to use the power series quadratic dependence on elongations.
Then one obtains for the first sublattice (Fig. 2) that the energy
of translational displacements is

�t,1 = C1

2

(
�l2

1 + �l2
2 + �l2

3

)
,

where the translational elongations for the first sublattice, �li,
are

�l1 =
√

(l + Xm+1,n − xm,n)2 + (Ym+1 − ym,n)2 − l,

�l2 =
{[

l cos
(π

3

)
− (Xm−1,n+1 − xm,n)

]2

+
[
l sin

(π

3

)
+ (Ym−1,n+1 − ym,n)

]2
}1/2

− l, (1)

�l3 =
{[

l cos
(π

3

)
− (Xm−1,n−1 − xm,n)

]2

+
[
l sin

(π

3

)
− (Ym−1,n−1 − ym,n)

]2
}1/2

− l, (2)
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where l is an equilibrium distance between the masses in the
lattice.

Similarly, the energy of translational displacements in the
second sublattice (Fig. 3) is

�t,2 = C1

2

(
�L2

1 + �L2
2 + �L2

3

)
,

where the elongations of the second sublattice are

�L1 =
√

(l + Xm,n − xm−1,n)2 + (ym−1,n − Ym,n)2 − l,

�L2 =
{[

l cos
(π

3

)
+ (xm+1,n+1 − Xm,n)

]2

+
[
l sin

(π

3

)
+ (ym+1,n+1 − Ym,n)

]2
}1/2

− l, (3)

�L3 =
{[

l cos
(π

3

)
+ (xm+1,n−1 − Xm,n)

]2

+
[
l sin

(π

3

)
− (ym+1,n−1 − Ym,n)

]2
}1/2

− l. (4)

The angular variation energy is considered depending on
the cosines of the angles between directions from the central
mass to neighbors in each sublattice [25]. Let us consider the
section between masses with the indices (m, n), (m + 1, n)
and (m − 1, n + 1) (Fig. 2). We introduce the vectors r0, rm+1,
rn+1, as follows:

r0 = i(l + Xm+1,n − xm,n),

rm+1 = i(l + Xm+1,n − xm,n) + j(Ym+1,n − ym,n), (5)

rn+1 = −i[l cos(π/3) − Xm−1,n+1 + xm,n]

+ j[l sin(π/3) + Ym−1,n+1 − ym,n], (6)

where i, j are the unit vectors in the horizontal and vertical
directions, respectively. Then the angular variation of the mass
(m + 1, n) relative to the equilibrium horizontal position, ϕ1,
can be characterized by the difference between the cosines
corresponding to the current and equilibrium positions. For
this purpose, the Law of Cosines

cos(ϕ1) − cos(0) = rm+1 · r0

|rm+1||r0| − 1

is used. Similarly the angular variation, ϕ2, of the mass
(m − 1, n + 1) relative to the equilibrium position 2π/3 can
be characterized by the difference between the cosines

cos(ϕ2) − cos(2π/3) = rn+1 · r0

|rn+1||r0| + 1/2.

The contribution to the angular strain energy is

�an,1 =C2l2{[cos(ϕ2) − cos(2π/3)] − [cos(ϕ1) − cos(0)]},
where C2 is the angular stiffness. For the section between
the masses with the indices (m, n), (m + 1, n − 1), and (m −
1, n + 1) (Fig. 2), we also introduce the vector

rn−1 = −i[l cos(π/3) − Xm−1,n−1 + xm,n]

− j[l sin(π/3) − Ym−1,n−1 + ym,n].

Then the angular variation, ψ , of the mass (m − 1, n + 1) rel-
ative to the equilibrium position −2π/3 can be characterized
by the difference between cosines

cos(ψ ) − cos(2π/3) = rn−1 · r0

|rn−1||r0| + 1/2.

The contribution to the angular strain energy is

�an,2 =C2l2{[cos(ψ ) − cos(2π/3)] − [cos(ϕ1) − cos(0)]}.
Similarly we obtain for the second sublattice shown in Fig. 3
by introducing angular variations �1, �2, � for the masses
(m − 1, n), (m + 1, n + 1), and (m + 1, n − 1) relative to the
equilibrium position, respectively,

�an,3 =C2l2{[cos(�2) + cos(2π/3)]−[cos(�1) − cos(0)]},

�an,4 =C2l2{[cos(�) + cos(2π/3)]−[cos(�1) − cos(0)]},
where

cos(�1) − cos(0) = Rm−1 · R0

|Rm−1||R0| − 1,

cos(�2) + cos(2π/3) = Rn+1 · R0

|Rn+1||R0| − 1/2, (7)

cos(�) + cos(2π/3) = Rn−1 · R0

|Rn−1||R0| − 1/2, (8)

where the corresponding expressions for angular variations in
the second sublattice are

R0 = i(l + Xm,n − xm−1,n),

Rm−1 = i(l + Xm,n − xm−1,n) + j(ym−1,n − Ym,n),

Rn+1 = i[l cos(π/3) + xm+1,n+1 − Xm,n]

+ j[l sin(π/3) + ym+1,n+1 − Ym,n],

Rn−1 = i[l cos(π/3) + xm+1,n−1 − Xm,n]

− j[l sin(π/3) − ym+1,n−1 + Ym,n].

The potential strain energy of the first sublattice is

�1 = �t,1 + �an,1 + �an,2, (9)

the potential strain energy of the second sublattice is

�2 = �t,2 + �an,3 + �an,4, (10)

the kinetic energy of the first sublattice is

K1 = M

2

(
ẋ2

m,n + ẏ2
m,n

) + M l2(ϕ̇2
1 + ϕ̇2

2 + ψ̇2), (11)

and the kinetic energy of the second sublattice is

K2 = M

2

(
Ẋ 2

m,n + Ẏ 2
m,n

) + M l2(�̇2
1 + �̇2

2 + �̇2), (12)

where M is the mass of each particle in the lattice.
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III. GOVERNING EQUATIONS

A. Discrete coupled equations of motion

Making use of the Hamilton-Ostrogradsky variational principle [11] results in the coupled discrete equations for horizontal
and vertical displacements. The Lagrangians are written for each sublattice as a difference between K1 and �1 and K2 and �2.
Variation of each Lagrangian results in four equations of motion for the horizontal and vertical displacements for each sublattice.

However, the full set of equations is complicated due to nonlinear terms. The aim of this study is to obtain the continuum
equations for a weakly nonlinear problem for long waves. It results in truncated power series approximations for nonlinear term
expansions in the expressions for the potential and the kinetic energy. In particular, only linearized expressions for φ1, φ2, ψ ,
�1, �2, � are used in the expressions for the kinetic energy. Omitted terms give rise to the negligibly small nonlinear terms in
the continuum equations of motion. The reason for this rise will be shown in the next subsection.

The approximate discrete equations are

Mẍtt = L1(x, X, y,Y ) + D1(x, X, y,Y ) + N1(x, X, y,Y ), (13)

Mÿtt = L2(x, X, y,Y ) + D2(x, X, y,Y ) + N2(x, X, y,Y ), (14)

MẌtt = L3(x, X, y,Y ) + D3(x, X, y,Y ) + N3(x, X, y,Y ), (15)

MŸtt = L4(x, X, y,Y ) + D4(x, X, y,Y ) + N4(x, X, y,Y ), (16)

where the linear discrete parts, Lj (x, X, y,Y ), the linear differential-discrete parts, Dj (x, X, y,Y ), and the nonlinear discrete parts,
Nj (x, X, y,Y ), j = 1–4, are given in the Appendix. The nonlinear discrete equations are still complicated even in this weakly
nonlinear case. Then the long wavelength continuum limit of them will be applied to get coupled nonlinear partial differential
equations of motion.

B. Continuum limit equations

For small wave numbers (long wave approximation) one assumes that the continuum displacements of the central particle
xm,n, ym,n are u(x, y, t ), v(x, y, t ),

xm±1,n±1 = u ± l ux ± l uy + 1

2
l2uxx + l2uxy + 1

2
l2uyy + · · · , (17)

etc. Similar relationships hold for the remaining variables yi,k , Xi,k , and Yi,k .
The 2D equations are too complicated for an analysis. The plane-wave assumption has been chosen as a first step to get model

equations whose solutions might be a basis to study more complicated cases. The aim is to get model equations whose solutions
might be a basis for a future study of the other kind of motions in more complicated cases.

The plan-wave assumption means that all displacements do not depend on the vertical index n,

xm±i,n± j = xm±i, ym±i,n± j = ym±i, Xm±i,n± j = Xm±i,

Ym±i,n± j = Ym±i.

All terms with derivatives of y are absent in all approximations (17). Only the leading-order dispersion and nonlinear terms are
left. Then one obtains from Eqs. (13)–(16):

Mutt + 3

4
(2C1 + 3C2)(u − U ) − l

4
(2C1 − 9C2)Ux − 3l2

8
(2C1 + 3C2)Uxx + 3M

2
(utt − Utt )

− l3

24
(2C1 − 9C2)Uxxx + 3Ml

2
Uxtt − l4

32
(2C1 + 3C2)Uxxxx − 3Ml2

4
Uxxtt

− 81

16l
C2[(u − U )2 + 2l (u − U )Ux] − 3

16l
(6C1 − 7C2)(v − V )2 − 1

8
(2C1 − 21C2)(v − V )Vx = 0, (18)

Mvtt + 3

4
(2C1 + C2)(v − V ) + 3l

4
(2C1 + C2)Vx − 3l2

8
(2C1 + C2)Vxx + 3M

2
(vtt − Vtt )

+ l3

8
(2C1 + C2)Vxxx − Ml

2
Vxtt − l4

32
(2C1 + C2)Vxxxx − 3Ml2

4
Vxxtt − 3

√
3

2l
C2[(v − V )2 + 2l (v − V )Vx]

− 3

8l
(6C1 − 7C2)(u − U )(v − V ) − 1

8
(6C1 − 21C2)[(u − U )Vx + (v − V )Ux] = 0, (19)
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MUtt − 3

4
(2C1 + 3C2)(u − U ) + l

4
(2C1 − 9C2)ux − 3l2

8
(2C1 + 3C2)uxx + 3M

2
(Utt − utt )

+ l3

24
(2C1 − 9C2)uxxx − 3Ml

2
uxtt − l4

32
(2C1 + 3C2)uxxxx − 3Ml2

4
uxxtt

+ 81

16l
C2

[
(u − U )2 + 2l (u − U )ux

] + 3

16l
(6C1 − 7C2)(v − V )2 − 1

8
(2C1 − 21C2)(v − V )vx = 0, (20)

MVtt − 3

4
(2C1 + C2)(v − V ) − 3l

4
(2C1 + C2)vx − 3l2

8
(2C1 + C2)vxx − 3M

2
(vtt − Vtt )

− l3

8
(2C1 + C2)vxxx + Ml

2
vxtt − l4

32
(2C1 + C2)vxxxx − 3Ml2

4
vxxtt + 3

√
3

2l
C2[(v − V )2 − 2l (v − V )vx]

+ 3

8l
(6C1 − 7C2)(u − U )(v − V ) + 1

8
(6C1 − 21C2)[(u − U )vx + (v − V )ux] = 0. (21)

In the continuum limit sublattices are indistinguishable for an observer, and it no longer makes sense to use them for the
description. An experimentalist can measure macrostrains in a continuum. The relative motion of the sublattices in the continuum
is treated now as a microstructure. Therefore, new variables with such physical meaning are introduced.

The transformation of variables

W = u + U

2
, w = u − U

2
, Q = v + V

2
, q = v − V

2
,

leads to the problem of describing the dynamics of the horizontal and vertical displacements W and Q and variables w, q,
responsible for internal variations of a microstructure. Typical manipulations with Eqs. (18)–(21) result in equations with new
variables:

2MWtt − 3l2

4
(2C1 + 3C2)Wxx + l

2
(2C1 − 9C2)wx − 3Mlwxtt

+ l3

12
(2C1 − 9C2)wxxx − 3Ml2

2
Wxxtt − l4

16
(2C1 + 3C2)Wxxxx + 81

2
C2 wwx + 1

2
(2C1 − 21C2) q qx = 0, (22)

5Mwtt + 3l2

4
(2C1 + 3C2)wxx + 3(2C1 + 3C2)w − l

2
(2C1 − 9C2)Wx

+ 3MlWxtt − l3

12
(2C1 − 9C2)Wxxx + 3Ml2

2
wxxtt + l4

16
(2C1 + 3C2)wxxxx

− 2

2l
(6C1 − 7C2)q2 − 81

2l
C2 w(w + l Wx ) + 1

2
(2C1 − 21C2) q Qx = 0, (23)

2MQtt − 3l2

4
(2C1 + C2)Qxx + 3l

2
(2C1 + C2)qx + Mlqxtt

+ l3

4
(2C1 + C2)qxxx − 3Ml2

2
Qxxtt − l4

16
(2C1 + C2)Qxxxx − 4

√
3C2 qqx + 1

2
(2C1 − 21C2) (w q)x = 0, (24)

5Mqtt − 3(2C1 + C2)q − 3l2

4
(2C1 + C2)qxx + 3l

2
(2C1 + C2)Qx − MlQxtt

+ l3

4
(2C1 + C2)Qxxx + 3Ml2

2
qxxtt − l4

16
(2C1 + C2)qxxxx

− 12
√

3

l
C2q2 − 3

l
(7C2 − 6C1)q w − 1

2
(2C1 − 21C2) (wQx − qWx ) − 4

√
3C2q Qx = 0. (25)

For the weakly nonlinear case it is assumed that the strains are small, e.g., W 2
x � Wx, and the long wavelength limit means that

each derivative makes the term smaller, e.g., Wxxx � Wxx � Wx. The same estimations hold for w, Q, and q. One can check that
the omitted terms in the discrete equations would result in the appearance of terms in the continuum equations that are smaller in
comparison with the terms remaining there. When the order of smallness of higher order linear derivatives and order of smallness
of nonlinear terms are dependent on each other, the nonlinearity can balance the dispersion. This phenomenon leads to a possible
strain wave localization.
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IV. INTERACTION OF LONGITUDINAL AND SHEAR
WAVES

The standard perturbation methods involve obtaining an
asymptotic solution for each variable order by order. An
alternative way is to decrease the number of coupled equations
by using the fact that the terms in Eqs. (22)–(25) can be of dif-
ferent order according to the aforementioned estimates. The
procedure can be called the slaving principle. It was developed
by Haken for the decoupling of nonlinear ordinary differential
equations [28]. It was used earlier by the authors for the
nonlinear coupled partial differential equations accounting for
materials with a microstructure [29].

The separation by orders can be described by introducing
the scales, e.g., the ratio of l and the scale for x. However, the
combinations of the stiffnesses C1 and C2 in the expressions
for the coefficients of the resulting equations could turn out
small themselves, and this cannot be predicted in advance.
That is why a dimensional analysis is preferable.

A. Slaving principle for obtaining governing equations

Assume that the solution w to Eq. (23) has the form

w = w1 + w2 + w3 + · · · , (26)

where wi are of different order. The order of w1 relates to the
highest order terms in Eq. (23),

3(2C1 + 3C2)w1 − 1

2
(2C1 − 9C2)lWx = 0,

which leads to the solution for w1,

w1 = l (2C1 − 9C2)Wx

6(2C1 + 3C2)
. (27)

Similarly, the solution q to Eq. (25) has the form

q = q1 + q2 + q3 + · · · , (28)

and the leading-order solution q1 is

q1 = l

2
Qx. (29)

The next-order solution w2 to Eq (23) is expressed through the
next-order terms taking into account Eqs. (27) and (29),

w2 = α1W
2

x + α2Q2
x + α3Wxtt + α4Wxxxx, (30)

where

α1 = 3C2l (2C1 − 9C2)(14C1 + 9C2)

8(2C1 + 3C2)3
, α2 = 7l

24
,

α3 = −Ml (46C1 + 9C2)

18(2C1 + 3C2)2
, α4 = − l3(2C1 − 9C2)

72(2C1 + 3C2)
.

Similarly, the next-order solution q2 to Eq. (25) is

q2 = β1WxQx + β2Q2
x + β3Qxxx + β4Qxtt , (31)

where

β1 = l (44C2
1 − 252C1C2 − 189C2

2 )

36(2C1 + C2)(2C1 + 3C2)
, β2 =,− 5C2l√

3(2C1 + C2)
,

β3 = − l3

24
, β4 = M

2(2C1 + C2)
.

By substituting Eqs.(27), (30), (29), and (31) into Eqs. (22)
and (24) one obtains coupled equations for longitudinal and
shear waves,

2MWtt − γ1Wxx − γ2
(
W 2

x

)
x − γ3

(
Q2

x

)
x

− γ4Wxxxx − γ5Wxxtt = 0, (32)

2MQtt − δ2(Wx Qx )x − δ3
(
Q2

x

)
x − δ4Qxxxx − δ5Qxxtt = 0,

(33)

where γi = γi(C1,C2), δi = δi(C1,C2),

γ1 = 4l2C1(2C1 + 9C2)

3(2C1 + 3C2)
,

γ2 = 3l2C2(2C1 − 9C2)2(10C1 + 9C2)

8(2C1 + 3C2)3
,

γ3 = l2

24
(10C1 − 63C2),

γ4 = l4

144(2C1 + 3C2)

(
20C2

1 + 60C1C2 + 153C2
2

)
,

γ5 = Ml2

4(2C1 + 3C2)2

(
28C2

1 + 68C1C2 − 9C2
2

)
,

δ2 = l2C1

2C1 + 3C2
(13C2 − 2C1), δ3 = −3

√
3l2C2,

δ4 = − l4

8
(2C1 + C2), δ5 = 11Ml2

4
.

The stiffnesses C1, C2 are positive. Then one can see that γ1 >

0, γ2 > 0, γ4 > 0, while γ3 and γ5 can be of either sign as well
as δ2. The remaining coefficients δ3 < 0, δ4 < 0, δ5 > 0.

B. Exact localized longitudinal strain wave solution

In the absence of shear displacements, Q = 0, Eqs. (32)
and (33) are reduced to a single equation for the longitudinal
strains F = Wx,

2MFtt − γ1Fxx − γ2(F 2)xx − γ4Fxxxx − γ5Fxxtt = 0. (34)

Note that the nonlinearity arises for nonzero γ2 or in the
presence of the angular stiffness C2. Its traveling wave solu-
tion depending on the phase variable x − V t can be obtained
by direct integration. In particular, the localized strain wave
solution is

F = A sech2[k(x − V t − x0)], (35)

where

A = 3(2MV 2 − γ1)

2γ2
, k2 = 2MV 2 − γ1

4(γ4 + γ5V 2)
, (36)

022209-6



GEOMETRICALLY NONLINEAR DYNAMIC MODEL FOR A … PHYSICAL REVIEW E 102, 022209 (2020)

20 40 60 80 100 120 140
x

−0.3

−0.2

−0.1

0.05
F

50 100 150 200 250 300
x

0.1

0.2

0.3
F

(b)(a)

FIG. 4. Evolution of a longitudinal strain wave at different sign of the amplitude of the initial condition. (a) Delocalization of a negative
amplitude input due to dispersion. (b) Splitting of a positive amplitude input into two localized waves of permanent shape and velocity due to
a balance between nonlinearity and dispersion.

where x0 = const is the initial phase and V is a free parameter.
The wave number, k, should be real, and the expression un-

der the square root should be positive. Hence, according to the
definition of γ ′s, γ5 > 0 for C1 > (4

√
22 − 17)C2/14. Then

a real value of k is achieved at the velocity V >
√

γ1/(2M ),
and the amplitude, A, is always positive corresponding to a
tensile strain wave. For 0 < C1 < (4

√
22 − 17)C2/14, γ5 <

0. One can check that γ /(2M ) < −γ4/γ5, and k is real if the
velocities are from the interval

√
γ1/(2M ) < V <

√−γ4/γ5.
Again the amplitude A is always positive in this case, and no
localized longitudinal compression strain wave exists due to
the geometrical nonlinearity.

The solution (35) requires specific initial conditions for its
existence in the form of the solution at t = 0 and its first
temporal derivative at t = 0. However, the aforementioned
analysis about the possible sign of the amplitude of longitu-
dinal strain wave remains valid in a more general case solved
numerically. Shown in Fig. 4 are two numerical solutions to
Eq. (34) describing the evolution of an initially motionless
localized pulse having negative or positive amplitude. One can
see in Fig. 4(a) two profiles, the initial pulse and the waves
at some later time. The negative amplitude pulse splits into
two oscillating waves propagating in the opposite directions.
Dispersion destroys the localization of the initial pulse. On the
other hand, the positive amplitude pulse shown in Fig. 4(b)
splits into two localized waves of the shape that is kept in
time. One can check that each of these waves is described by
the exact solution (35).

C. Exact localized strain wave solution to the coupled equation
for longitudinal and shear waves

Equations (32) and (33) can be rewritten for longitudinal
and shear strains, P = Wx, S = Qx:

2MPtt − γ1Pxx − γ2(P2)x − γ3(S2)x − γ4Pxxxx − γ5Pxxtt = 0,

(37)

2MStt − −δ2(P S)x − δ3(S2)x − δ4Sxxxx − δ5Sxxtt = 0. (38)

The ansatz for localized strain wave solution is

P = A sech2[k(x − V t − x0)],

S = A B sech2[k(x − V t − x0)] + S0, (39)

where x0 is the initial phase and S0 is a constant accounting
for a shear pre-stress. This constant provides a free parameter
in the solution (39), like the velocity V in the solution for
longitudinal waves (35) and (36). The amplitude in the form
of the product A × B for the wave S is chosen instead of B in
order to obtain more compact relationships for the parameters
of the ansatz (39).

We substitute Eq. (39) into Eqs. (37), (38). The derivatives
of the hyperbolic secant function can be expressed through
powers of itself. To solve the obtained equation, the terms at
the same powers of hyperbolic secant function are assumed
to be zero. This leads to the system of coupled algebraic
equations for the constants of solution (39). Thus the system
obtained for the factor sech2[k(x − V t − x0)]4 is

Aγ2 + AB2γ3 − 6k2(γ4 + γ5V
2) = 0, (40)

Aδ2 + ABδ3 − 6k2(δ4 + δ5V
2) = 0. (41)

For the factor sech2[k(x − V t − x0)]2 the system reads

γ1 + 4γ4k2 − 2(M − 2γ5k2)V 2 = 0, (42)

S0δ2 + B[δ1 + 4δ4k2 − 2(M − 2δ5k2)V 2] = 0. (43)

The last equation leads to the solution for the shear prestress,
S0,

S0 = − B

δ2
[δ1 + 4δ4k2 − 2(M − 2δ5k2)V 2].

The wave number k is defined from Eq. (42),

k2 = 2MV 2 − γ1

4(γ4 + γ5V 2)
,

which is the same as for the solution Eq. (35) for longitudinal
waves. Therefore the analysis of the reality of k (36) remains
valid. The amplitude of longitudinal wave, A, is obtained from
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Eq. (40),

A = 3(2MV 2 − γ1)

2(γ2 + B2γ3)
.

Comparing it with Eq. (36) one can find a possible change
of the sign of the amplitude A at γ3 < 0. One can note that
the negative γ3 is achieved only in the presence of angular
stiffness C2 when C1 < 63C2/10. Then A may be negative for
V >

√
γ1/(2M ) and B > −γ2/γ3. The parameter B is found

from the quadratic algebraic equation, which follows from
Eq. (41),

B2γ3(δ4 + δ5V
2) − Bδ3(γ4 + γ5V

2)

+ γ2(δ4 + δ5V
2) − δ2(γ4 + γ5V

2) = 0.

Then each localized longitudinal strain wave with the am-
plitude A can be accompanied by two shear waves with the
amplitude A × B.

Due to the rich dynamics revealed on the basis of the
traveling wave solution a more complicated numerical study
is needed for the coupled equations. However, it is not suitable
to add it to this paper.

V. CONCLUSIONS

A geometrically nonlinear model of a hexagonal 2D lattice
was developed in order to obtain coupled nonlinear equations
for longitudinal and shear strain dynamics. The asymptotic
procedure developed allowed us to keep the most important
nonlinear and dispersion terms in the equations. It provided
a balance between nonlinearity and dispersion giving rise to
localized strain existence. The localized strain waves may
propagate keeping their shape and velocity. This is important
for problems of nondestructive testing and durability of ma-
terials. It also might be useful for a development of the new

heat conduction models based on the analysis of the nonlinear
crystalline lattice.

Of special interest is the role of angular stiffness in the
lattice model. It entirely provides a nonzero quadratic non-
linear term in continuum limit Eq. (34) for pure longitudinal
waves as happens in pure continuum modeling. In the absence
of shear waves, only a tensile localized longitudinal strain
wave (35) may propagate. A compression wave may appear
if the physical nonlinearity is taken into account [30]. The
solution (39) for the waves’ interaction keeps the interval
for permitted velocities but, however, adds the possibility of
a compression longitudinal strain wave, even in the absence
of the physical nonlinearity. Also the solution predicts the
coexistence of interacting longitudinal and shear waves when
two shear waves may correspond to the longitudinal one.

One should note the important role of the constant prestress
S0 in the existence of the interacting localized waves. In its
absence the velocity is fixed as follows from Eq. (43). The
prestress affects the shear strain and could act as a control of
it giving rise, in turn, variation in the sign of the amplitude of
longitudinal wave A.

It would be interesting to provide estimations based on the
values of the parameters of the model. However, there is a
lack in numerical data for the parameters, especially, about l
and C2. Possible future work concerns numerical simulations
of coupled equations and consideration of 2D instability of
plane strain waves.
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APPENDIX: PARTS OF EQS. (13)–(16)

The Appendix contains detailed expressions for the linear discrete parts, Lj (x, X, y,Y ), the linear differential-discrete parts,
Dj (x, X, y,Y ), and the nonlinear discrete parts, Nj (x, X, y,Y ), j = 1−4, in the equations of motion (13)–(16).

L1(x, X, y,Y ) = C1

4
[4(Xm+1,n − xm,n) + Xm−1,n+1 − 2xm.n + Xm−1,n−1

+
√

3(Ym−1,n−1 − Ym−1,n+1)] + 3
√

3C2

8
[(Ym−1,n−1 − Ym−1,n+1) +

√
3(Xm−1,n+1 − 2xm.n + Xm−1,n−1)],

D1(x, X, y,Y ) =
√

3M

4
[
√

3(Ẍm−1,n+1 − 2ẍm.n + Ẍm−1,n−1) + Ÿm−1,n+1 − Ÿm−1,n−1],

N1(x, X, y,Y ) = C1

16l
{8(Ym+1,n − ym,n)2 + 5[(Ym+1,n−1 − ym,n)2 + (Ym+1,n+1 − ym,n)2]

+ 2
√

3[(Xm+1,n+1 − xm.n)(Ym−1,n+1 − ym.n) − (Xm−1,n−1 − xm.n)(Ym−1,n−1 − ym.n)]}

+ C2

32l
{81[(Xm−1,n−1 − xm,n)2 + (Xm−1,n+1 − xm,n)2] − 21[(Ym−1,n−1 − ym,n)2 + (Ym−1,n+1 − ym,n)2]

×6
√

3[(Xm−1,n+1 − xm,n)(Ym−1,n+1 − ym,n) − (Xm−1,n−1 − xm,n)(Ym−1,n−1 − ym,n)]},
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L2(x, X, y,Y ) =
√

3C1

4
[Xm−1,n−1 − Xm−1,n+1 +

√
3(Ym−1,n−1 − 2ym,n + Ym−1,n+1)]

+ 3C2

8
[
√

3(Xm−1,n+1 − Xm−1,n−1) + (Ym−1,n−1 − 2ym,n + Ym−1,n+1)],

D2(x, X, y,Y ) = M

4
[(Ÿm−1,n+1 − 2ÿm.n + Ÿm−1,n−1) + 4(Ÿm+1.n − ÿm.n) +

√
3(Ẍm−1,n−1 − Ẍm−1,n+1)],

N2(x, X, y,Y ) = C1

12l
{
√

3[(Xm−1,n+1 − xm,n)2 − (Xm−1,n−1 − xm,n)2]

+ 10[(Xm−1,n−1 − xm,n)(Ym−1,n−1 − ym,n) + (Xm−1,n+1 − xm,n)(Ym−1,n+1 − ym,n)]

+ 16(Xm+1,n − xm,n)(Ym+1,n − ym,n)}

+
√

3C2

32
{3[(Xm−1,n+1 − xm,n)2 − (Xm−1,n−1 − xm,n)2] + 15[(Ym−1,n−1 − ym,n)2 − (Ym−1,n+1 − ym,n)2]

+ 16(Ym+1,n − ym,n)2 − 14
√

3[(Xm−1,n−1 − xm,n)(Ym−1,n−1 − ym,n)

+ (Xm−1,n+1 − xm,n)(Ym−1,n+1 − ym,n)] + 16
√

3[(Xm−1,n+1 − xm,n)(Ym+1,n − ym,n)

− (Xm−1,n−1 − xm,n)(Ym+1,n − ym,n)] + 16(Ym+1,n − ym,n)(Ym−1,n−1 − 2ym,n + Ym−1,n+1)},

L3(x, X, y,Y ) = C1

4
[4(xm−1,n − Xm,n) + xm+1,n+1 − 2Xm.n + xm+1,n−1

+
√

3(ym+1,n+1 − ym+1,n−1)] + 3
√

3C2

8
[(ym+1,n−1 − ym+1,n+1) +

√
3(xm+1,n+1 − 2Xm.n + xm+1,n−1)],

D3(x, X, y,Y ) =
√

3M

4
[
√

3(ẍm+1,n+1 − 2Ẍm.n + ẍm+1,n−1) + ÿm−1,n+1 − ÿm+1,n+1],

N3(x, X, y,Y ) = − C1

16l
{8(ym−1,n − Ym,n)2 + 5[(ym+1,n−1 − Ym,n)2 + (ym+1,n+1 − Ym,n)2]

+ 2
√

3[(xm+1,n−1 − Xm.n)(ym+1,n+1 − Ym.n) − (xm−1,n+1 − Xm.n)(ym+1,n−1 − Ym.n)]}

+ C2

32l
{−81[(xm+1,n−1 − Xm,n)2 + (xm+1,n+1 − Xm,n)2] + 21[(ym+1,n−1 − Ym,n)2 + (ym+1,n+1 − Ym,n)2]

×6
√

3[(xm+1,n+1 − Xm,n)(ym+1,n+1 − Ym,n) − (xm+1,n−1 − Xm,n)(ym+1,n−1 − Ym,n)]},

L4(x, X, y,Y ) =
√

3C1

4
[xm+1,n+1 − xm+1,n−1 +

√
3(ym+1,n−1 − 2Ym,n + ym+1,n+1)]

+ 3C2

8
[
√

3(xm+1,n−1 − xm+1,n+1) + ym+1,n−1 − 2Ym,n + ym+1,n+1],

D4(x, X, y,Y ) = M

4
[(ÿm+1,n+1 − 2Ÿm.n) + ÿm+1,n−1 + 4(ÿm−1.n − Ÿm.n) +

√
3(ẍm+1,n−1 − ẍm+1,n+1)]

N4(x, X, y,Y ) = C1

16l
{
√

3[(xm+1,n+1 − Xm,n)2 − (xm+1,n−1 − Xm,n)2] − 10[(xm+1,n−1 − Xm,n)(ym+1,n−1 − Ym,n)

+ (xm+1,n+1 − Xm,n)(ym+1,n+1 − Ym,n)] − 16(xm−1,n − Xm,n)(ym−1,n − Ym,n)}

+
√

3C2

32
{3[(xm+1,n+1 − Xm,n)2 − (xm+1,n−1 − Xm,n)2] + 15[(ym+1,n−1 − Ym,n)2 − (ym+1,n+1 − Ym,n)2]

− 16(ym−1,n − Ym,n)2 + 14
√

3[(xm+1,n−1 − Xm,n)(ym+1,n−1 − Ym,n)

+ (xm+1,n+1 − Xm,n)(ym−1,n+1 − Ym,n)] + 16
√

3[(xm+1,n+1 − Xm,n)(ym−1,n − Ym,n)

− (xm+1,n−1 − Xm,n)(ym−1,n − ym,n)] − 16(ym−1,n − Ym,n)(ym+1,n−1 − 2Ym,n + ym+1,n+1)}.

022209-9



A. V. PORUBOV et al. PHYSICAL REVIEW E 102, 022209 (2020)

[1] M. Born and K. Huang, Dynamic Theory of Crystal Lattices
(Clarendon Press, Oxford, 1954).

[2] A. I. Manevich and L. I. Manevitch, The Mechanics of Nonlin-
ear Systems with Internal Resonances (Imperial College Press,
London, 2005).

[3] M. Ostoja-Starzewski, Lattice models in micromechanics,
Appl. Mech. Rev. 55, 35 (2002).

[4] A. Askar, Lattice Dynamical Foundations of Continuum Theo-
ries (World Scientific, Singapore, 1985).

[5] G. A. Maugin, Nonlinear Waves in Elastic Crystals (Oxford
University Press, Oxford, 1999).

[6] I. V. Andrianov, J. Awrejcewicz, and D. Weichert, Improved
continuous models for discrete media, Math. Prob. Eng. 2010,
986242 (2009).

[7] S. Lepri, editor, Thermal Transport in Low Dimensions: From
Statistical Physics to Nanoscale Heat Transfer, Lecture Notes
in Physics Vol. 921 (Springer International Publishing, Cham,
2016).

[8] A. M. Krivtsov, The ballistic heat equation for a one-
dimensional harmonic crystal, in Dynamical Processes in Gen-
eralized Continua and Structures, edited by H. Altenbach, A.
Belyaev, V. A. Eremeyev, A. Krivtsov, and A. V. Porubov, Ad-
vanced Structured Materials Vol. 103 (Springer Nature, Cham,
2019), p. 345.

[9] A. A. Sokolov, A. M. Krivtsov, W. H. Müller, and E. N.
Vilchevskaya, Change of entropy for the one-dimensional bal-
listic heat equation: Sinusoidal initial perturbation, Phys. Rev.
E 99, 042107 (2019).

[10] E. Barani, I. P. Lobzenko, E. A. Korznikova, E. G. Soboleva,
S. V. Dmitriev, K. Zhou, and A. M. Marjaneh, Transverse
discrete breathers in unstrained graphene, Eur. Phys. J. B 90,
38 (2017).

[11] A. I. Lurie, Nonlinear Theory of Elasticity (Elsevier, Amster-
dam, 1990).

[12] H. M. Shodja and M. R. Delfani, A novel nonlinear constitu-
tive relation for graphene and its consequence for developing
closed-form expressions for Young’s modulus and critical buck-
ling strain of single-walled carbon nanotubes, Acta Mech. 222,
91 (2011).

[13] X. Wei, B. Fragneaud, C. A. Marianetti, and J. W. Kysar,
Nonlinear elastic behavior of graphene: Ab initio calculations
to continuum description, Phys. Rev. B 80, 205407 (2009).

[14] T. Yu. Astakhova, O. D. Gurin, M. Menon, and G. A.
Vinogradov, Longitudinal solitons in carbon nanotubes, Phys.
Rev. B, 64, 035418 (2001).

[15] P. Zhang, Y. Huang, P. H. Guebelle, P. A. Klein, and K.
Hwang, The elastic modulus of single-wall carbon nanotubes: A

continuum analysis incorporating interactomic potentials, Intl.
J. Solids Struct. 39, 3893 (2002).

[16] Y. Huang, J. Wu, and K. C. Hwang, Thickness of graphene
and single-wall carbon nanotubes, Phys. Rev. B 74, 245413
(2006).

[17] A. Porubov and I. Berinskii, Non-linear plane waves in ma-
terials having hexagonal internal structure, Intl. J. Non-Linear
Mech. 67, 27 (2014).

[18] A. V. Porubov, A. M. Krivtsov, and A. E. Osokina, Two-
dimensional waves in extended square lattice, Intl. J. Non-
Linear Mech. 99, 281 (2018).

[19] K. Khusnutdinova, A. M. Samsonov, and A. S. Zakharov,
Nonlinear layered lattice model and generalized solitary waves
in imperfectly bonded structures, Phys. Rev. E 79, 056606
(2009).

[20] M. K. Sayadi and J. Pouget, Soliton dynamics in a microstruc-
tured lattice model, J. Phys. A: Math. Gen. 24, 2151 (1991).

[21] S. P. Wallen and M. R. Haberman, Nonreciprocal wave phenom-
ena in spring-mass chains with effective stiffness modulations
induced by geometrical nonlinearity, Phys. Rev. E 99, 013001
(2019).

[22] H. Askes and A. Metrikine. Higher-order continua derived
from discrete media: Continualisation aspects and boundary
conditions, Intl. J. Solids Struct. 42, 187 (2005).

[23] A. V. Metrikine and H. Askes. An isotropic dynamically con-
sistent gradient elasticity model derived from a 2D lattice, Phil.
Mag. 86, 3259 (2006).

[24] A. A. Vasiliev, S. V. Dmitriev, and A. E. Miroshnichenko,
Mutlti-field continuum theory for medium with microscopic
rotations, Intl. J. Solids Struct. 42, 6245 (2005).

[25] A. Genoese, A. Genoese, N. L. Rizzi, and G. Salerno, On the
derivation of the elastic properties of lattice nanostructures: The
case of graphene sheets, Composites Part B: Eng. 115, 316
(2017).

[26] J. L. Ericksen, On the Cauchy–Born Rule, Math. Mech. Solids
13, 199 (2008).

[27] Zh. Peng, H. Youggang, P. H. Geubelle, and H. Kelichikh,
On the continuum modelling of carbon nanotubes, Acta Mech.
Sinica 18, 528 (2002).

[28] H. Haken, Advanced Synergetics (Springer-Verlag, Berlin,
1983).

[29] A. V. Porubov and F. Pastrone, Nonlinear bell-shaped and kink-
shaped strain waves in microstructured solids Intern, J. Non-
Linear Mech. 39, 1289 (2004).

[30] A. V. Porubov and A. E. Osokina, Double dispersion equation
for nonlinear waves in a graphene-type hexagonal lattice, Wave
Motion 89, 185 (2019).

022209-10

https://doi.org/10.1115/1.1432990
https://doi.org/10.1155/2010/986242
https://doi.org/10.1103/PhysRevE.99.042107
https://doi.org/10.1140/epjb/e2017-70751-2
https://doi.org/10.1007/s00707-011-0528-5
https://doi.org/10.1103/PhysRevB.80.205407
https://doi.org/10.1103/PhysRevB.64.035418
https://doi.org/10.1016/S0020-7683(02)00186-5
https://doi.org/10.1103/PhysRevB.74.245413
https://doi.org/10.1016/j.ijnonlinmec.2014.07.003
https://doi.org/10.1016/j.ijnonlinmec.2017.12.008
https://doi.org/10.1103/PhysRevE.79.056606
https://doi.org/10.1088/0305-4470/24/9/023
https://doi.org/10.1103/PhysRevE.99.013001
https://doi.org/10.1016/j.ijsolstr.2004.04.005
https://doi.org/10.1080/14786430500197827
https://doi.org/10.1016/j.ijsolstr.2005.03.041
https://doi.org/10.1016/j.compositesb.2016.09.064
https://doi.org/10.1177/1081286507086898
https://doi.org/10.1007/BF02486577
https://doi.org/10.1016/j.ijnonlinmec.2003.09.002
https://doi.org/10.1016/j.wavemoti.2019.03.013

