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Currently, in connection with the development of
nanotechnologies, it is necessary to evaluate the
strength properties of bodies containing a finite num�
ber of atomic layers. Such objects are often defect�
free, and, as a consequence, their strength is close to
theoretical or ideal strength. McMillan [1] considered
the question on the experimental measurement of the
ideal strength, as the critical stress is called. When
determining this quantity, it is necessary to verify the
stability of the deformed body relative to any addi�
tional small deviation for each stress or strain incre�
ment.

Born established that the crystal lattice is stable
with respect to small uniform deformations if the elas�
tic energy density calculated for equilibrium is the
positive�definite quadratic form [2]. It was shown that
close�packed FCC and HCP structures are stable in
small for any pair central force interparticle interac�
tions [3]. However, it was shown that problems appear
when trying to apply the Born criterion in the case of
finite deformations [4].

Recently, a series of independent investigations
into the stability [5, 6] of a new nanomaterial graphene
(one graphite layer) under large deformations was per�
formed with the use of interaction potentials and with
thermal atomic vibrations and the influence of bound�
ary conditions neglected [7, 8]. Frequencies of elastic
waves were required to be real as the stability criterion.
The investigation into graphene stability is a rather
complex problem, which is associated both with the
lattice geometry and with the applied interaction
potentials. We consider a simpler object, which allows
us to acquire an analytical solution.

The aim of this work is to investigate the stability of
the ideal two�dimensional triangular crystal lattice,
which is a single atomic layer in the FCC and HCP
structures. The interparticle interaction in this lattice
is described using the pair central force interaction.
This is a convenient and simple model for construc�
tion of the theory, analytical calculations, and compu�
tational experiments.

This work continues investigation [9], where a part
of the stability region of the two�dimensional triangu�
lar lattice is presented without shear. The initial prob�
lem was to establish the physical sense of the stability
region found analytically in [10] and to verify the
acquired results using the numerical experiment.
However, detailed investigation into the problem
showed the existence of additional stability regions
associated with the structural transition in the mate�
rial.

We apply direct tensor calculus [11]. As the interac�
tion law, we use Morse Π(r) and Lennard�Jones ΠLJ(r)
potentials:

(1)

Parameter D is responsible for the potential well depth,
and parameter θ is responsible for its width. Near the
equilibrium position at θ = 6, Morse potential is
equivalent to Lennard�Jones potential with the same
values of the potential well depth and equilibrium dis�
tance a [12]. An important distinction of Morse
potential from Lennard�Jones potential is that during
the compression of the material to the point (r = 0),
the interaction force remains finite, e.g. at θ = 6, the
repulsion force is of the order of 106D/a. This allows us
to perform the molecular�dynamic simulation under
strong compression. In addition, rapid attenuation of
exponents allows us to take into account the smaller
number of coordination spheres.
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To describe the material, the equation of motion of
a continuous medium in the Piola form is used [11]:

ρü =  · P, (2)

where u is the displacement vector, P is the Piola stress

tensor, and  is the Hamiltonian operator in the refer�
ence configuration.

We further use the first variation of Eq. (2) near the
deformed state of the crystal lattice. As a result of
transformations, we derive the equation

(3)

where v = δu is the first variation of the displacement
vector,  is the Hamiltonian operator in the actual
configuration, and 4Q is the fourth�rank acoustic ten�
sor depending on the first and second derivatives of the
interaction potential (forces in bonds and bond rigid�
ity) as well as on the geometry of the particle surround�
ings [11, 12]. The solution of Eq. (3) in wave form is

(4)

where K is the wave vector and ω is the frequency.
Solution (4) describes the wave if frequency ω is also
real for any real wave vector K, i.e., ω2 > 0 (the
dynamic stability criterion). The static stability crite�
rion is the positivity of the Young modulae and shear
modulae [11], which are determined in the actual
(deformed) configuration.

Substituting (4) in (3), we acquire the set of linear
uniform equations (D – ω2E) · v0 = 0, which has a
nontrivial solution at its zero determinant. Tensor D is
determined by formula D = 4Q ·· KK, where E is the
identity tensor.

For the two�dimensional lattice, the stability con�
ditions are written in the form

(5)

where I1 and I2 are the main invariants of tensor D.
Inequalities (5) should hold at any K. The last inequal�
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ity is fulfilled identically for the two�dimensional case.
This means that the quadrate of frequency passes
through zero upon changing the sign; consequently,
the dynamic stability criterion coincides with the
static one in this case.

Figure 1 depicts a characteristic part of the triangu�
lar lattice before and after deformation. We marked the
axes along which deformation is implemented. Before
the deformation, angle α = 60°. Let us introduce an
orthonormal basis so that vector e1 is codirectional
with axis 1, and vector e2 is codirectional with axis 2.

When considering large deformations, we should
take into account more than one coordination sphere,
for example, for the correct description of the transi�
tion from the vertical lattice orientation to the hori�
zontal one (Fig. 1), which results into the same lattice
turned by 90°. In Fig. 1, the unit cell is gray, the refer�
ence atom is marked by a circle, the atoms of the first
coordination sphere are marked by circles of a smaller
radius, and the atoms of the second coordination
sphere are marked by empty circles. We can see that
the atoms from the second coordination sphere are
involved as nearest neighbors of the reference atom in
the reoriented lattice. If we exclude the atoms of the
second sphere, we will obtain an evidently unstable
configuration instead of the second equilibrium posi�
tion. Additional investigation showed that consider�
ation of the next coordination spheres does not
noticeably affect the stability region.

In the case of deformation without shear (Fig. 1),
conditions (5) take the form

(6)

(7)

where A = Q11Q21, C = Q12Q22, 2B = Q11Q22 + Q12Q21 –

4 ,  are the components of tensor 4Q. In addition,
Qij (i, j = 1, 2) are the quadrates of velocities of wave
propagation. Condition (6) is necessary since all
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Fig. 1. Transition from vertical to horizontal orientation of the triangular lattice. Digits denote the coordinate axes. The unit cell
is gray, the reference atom is marked by a circle, the atoms of the first coordination sphere are marked by circles of a smaller radius,
and the atoms of the second coordination sphere are marked by empty circles.
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velocities of wave propagation are real in the case of
stability [11].

In Fig. 2, the stability regions of the two�dimen�
sional triangular lattice are gray, ε1 and ε2 are the linear
parts of the Cauchy–Green deformation tensor, and
the interaction is performed by means of Morse
potential (1) with parameter θ = 6. Condition (7),
which supplements conditions (6), allows us to distin�
guish three stability regions, which correspond to the
horizontal and vertical lattice orientations and also to
the intermediate square configuration.

The form and number of the regions depend on the
selection of the interaction potential. As parameter θ
decreases, the intermediate region disappears. An
independent investigation showed that the use of Len�
nard�Jones potential provides stability of the material
during its hydrostatic compression, i.e., during its
deformation along line ε1 = ε2, right up to deforma�
tions arbitrarily close to point ε1 = ε2 = –1 (Fig. 3).

Let us show that the dynamic stability criterion
coincides with the static one. For this purpose, let us
calculate the Young modulae and shear modulae for
each deformed configuration using representation
[12] for Cauchy stress tensor:

where  is the unit cell volume, Ak

are the radius�vectors of the particles relative to the ref�
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erence atom (it is in the hexagon center in Fig. 1), Fk are
the vectors of interaction forces, and Fk = –Π'(Ak).

The positivity requirement for the Young modulae
E and shear modulae G leads to the result coinciding
with that presented in Fig. 2, namely, the Young mod�
ulae change the sign at boundaries 1, 2, and 5; the
shear modulae change the sign at boundaries 3 and 4;
and all the modulae are positive and the deformed
state is stable in gray zones. The stability loss during
hydrostatic compression is associated with a sign
change of the shear modulus, which agrees with the
results of calculations for the FCC lattice [13].

To verify the obtained results, we use the particle
dynamics method. The simulation technique is
described in [12]. For a series of deformed configura�
tions, we perform the following computational exper�
iment. As the initial condition, we construct a triangu�
lar lattice in the deformed state with periodic bound�
ary conditions. The interparticle interaction is
described by means of Morse potential (1). The initial
kinetic energy of the particles does not exceed
0.0002D. The system evolution is described by the
solution of the Cauchy problem for the set of ordinary
differential equations

(8)

where N is the number of particles, m is the particle
mass, and rk is the radius�vector of the kth particle. If
we further observe oscillations of the kinetic energy
around a certain value not exceeding 0.0002D limited
by amplitude, we conclude that this configuration is
stable. If we observe a sudden growth of the kinetic
energy, the deformed configuration is considered
unstable. The regions obtained as a result of the
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Fig. 2. Stability regions of the triangular lattice in deforma�
tion space ε1, ε2 without shear. The interaction is described
by Morse potential. The boundaries of the regions are deter�
mined by equations: (1) Q11 = 0, (2) Q22 = 0, (3) Q21 = 0,

(4) Q12 = 0, and (5) , where A = Q11Q21,

C = Q12Q22, 2B = Q11Q22 + Q12Q21 – 4 , and Qij are the

components of the acoustic tensor 4Q.
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Fig. 3. Stability regions of the triangular lattice in deforma�
tion space ε1, ε2 without shear. The interaction is described
by Lennard�Jones potential.
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molecular�dynamic simulation coincide with those
presented in Fig. 2 accurate to the exactness of com�
puter calculations. The elapsed time for the construc�
tion of stability regions was incommensurably larger
than in the analytical approach.

We also solved a similar problem for deforming the
triangular lattice allowing for the shear. We found two
main and two intermediate regions in the three�
dimensional space of deformations ε1, ε2, ϕ, which
corresponded to two lattice orientations and square
configurations at shear angle ϕ ≈ 0 and ϕ ≈ 26°. These
regions are symmetric relative to plane ϕ = 0 (Fig. 4).

Thus, the stability of the two�dimensional triangu�
lar lattice under finite deformation is investigated. The
structural transition from the vertical lattice orienta�
tion to the horizontal one is described (Fig. 2). The
problem is solved analytically for the case of biaxial

deformation. The boundaries of the stability regions
found are explained both in terms of coefficients of
wave equation (3) and using the Young modulus and
shear modulus, which cannot be negative in the actual
material. When using Lennard�Jones potential, the
material does not lose stability under arbitrarily large
hydrostatic compression. The application of Morse
potential in the same conditions allows us to describe
the stability loss and to show that instability is associ�
ated with variation in the sign of the shear modulus.
The results of analytical calculations are proved by the
molecular�dynamic simulation.
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Fig. 4. Stability regions of the triangular lattice in deforma�
tion space ε1, ε2, ϕ. The interaction is described by Morse
potential. Stability regions correspond to (1) horizontal
lattice orientation, (2) vertical lattice orientation,
(3) square configuration at ϕ ≈ 0, and (4) square configu�
ration at ϕ ≈ 26°.


