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Abstract. An asymptotic representation is obtained at large times for the thermal wavefront 
propagating in a one-dimensional harmonic crystal. The propagation of thermal waves from a 
localized thermal perturbation and the transition zone between regions with different 
temperatures is considered. An explicit solution is given for a number of the simplest forms of 
the initial temperature distribution. It is shown that during the wave evolution, the wavefront 
smoothes, e.g., for a power-law dependence its degree increases by 1/2. 
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1. Introduction 
An understanding of the heat transfer process at the micro-level is necessary to obtain the 
relationship between the microscopic and macroscopic descriptions of solids [1-5]. 
Experimental studies indicate that ballistic heat transfer dominates at the micro-level [6,7], in 
contrast to the macro level where diffusion heat conductivity prevails. This fact motivates 
interest in the simplest lattice models, in particular, in one-dimensional harmonic crystals 
(chains), where the anomalies associated with the ballistic nature of heat transfer are most 
pronounced [1,4,8-11]. 

In paper [12] an analytical approach for the description of the heat transfer in a one-
dimensional harmonic crystal was proposed. In particular, it was shown that heat in such 
systems propagates in a wave manner; however, the nature of the waves is different from the 
waves described by the usual wave equation. Similar behavior was demonstrated for two-
dimensional and polyatomic lattices using the same approach (see [13] and references 
therein). In [14], solutions were constructed for an equation describing the anomalous heat 
transfer: exact analytical solutions were obtained for a rectangular, triangular, and sawtooth 
initial localized perturbations, and, unlike those for the classical heat equation, they turned out 
to have a distinct wavefront. The examination of analytical and numerical solutions shows 
that the waves quickly reach a quasistationary regime, in which near the front the wave 
changes as follows: it decays proportionally to the square root of time, but the shape remains 
unchanged. 

This paper focuses on the behavior of thermal waves at large times. It is shown that the 
waveform is described by a simple relation, which allows visual linking of the initial 
perturbation shape with the wave profile in the steady-state regime. This work continues the 
study of the evolution of localized thermal perturbations presented in [14]. The analytical 
relationship between the steady-state waveform and the initial perturbation profile is derived, 
and several illustrative examples are considered. 
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2. Asymptotic formulae in the case of a localized thermal perturbation 
Heat transfer in a one-dimensional harmonic crystal is described by the integral formula [15]: 

𝑇𝑇(𝑥𝑥, 𝑡𝑡) =
1
𝜋𝜋
�𝑇𝑇0(𝑥𝑥 − 𝑐𝑐𝑡𝑡 sin𝜙𝜙)d𝜙𝜙,

𝜋𝜋
2

−𝜋𝜋2

 (1) 

where 𝑇𝑇 and 𝑇𝑇0 are current and initial kinetic temperatures [4,12-15], further referred to as 
temperatures, 𝑐𝑐 is the speed of sound in crystal, 𝑥𝑥 and 𝑡𝑡 are spatial coordinate and time. The 
kinetic temperature at a particular point 𝑥𝑥 is introduced proportionally to the mean kinetic 
energy of the respective particle located at the same point.  

Suppose that the initial perturbation is localized in space, i.e. 
𝑇𝑇0(𝑥𝑥) = 𝑇𝑇�0(𝑥𝑥) for |𝑥𝑥| ≤ 𝑙𝑙,     𝑇𝑇0(𝑥𝑥) = 0 for |𝑥𝑥| ≥ 𝑙𝑙, (2) 
where 𝑙𝑙 is a half-width of localized perturbation, 𝑇𝑇�0(𝑥𝑥) represents the temperature profile in 
the localization zone. The solution of the equation (1) gives two thermal waves traveling in 
opposite directions at speed equal to 𝑐𝑐.  

Consider a wave traveling in the direction of the increase of the spatial coordinate 𝑥𝑥. 
We introduce a new variable 𝑧𝑧 = 𝑥𝑥 − 𝑐𝑐𝑡𝑡, which is equal to zero at the wavefront. Then, 
formula (1) yields to 

𝑇𝑇(𝑥𝑥, 𝑡𝑡) =
1
𝜋𝜋
�𝑇𝑇0�𝑧𝑧 + 𝑐𝑐𝑡𝑡(1 − sin𝜙𝜙)�d𝜙𝜙

𝜋𝜋
2

−𝜋𝜋2

. (3) 

Assuming 
𝑧𝑧 ∼ 𝑙𝑙,    𝑐𝑐𝑡𝑡 ≫ 𝑙𝑙, (4) 
we further restrict ourselves to consideration of the vicinity of the wavefront at large times. 
Then the integrand in (3) will be nonzero only for 𝜙𝜙 close to 𝜋𝜋 2� . 

Let us introduce another variable 𝑝𝑝2 = 𝑐𝑐𝑡𝑡
2𝑙𝑙� �𝜋𝜋 2� − 𝜙𝜙�

2
 and assume that �𝜋𝜋 2� − 𝜙𝜙� is 

infinitesimal. Then, as a first approximation, we have 

𝑇𝑇(�̂�𝑧, 𝑡𝑡) =
1
𝜋𝜋
�2𝑙𝑙
𝑐𝑐𝑡𝑡
� 𝑇𝑇0(�̂�𝑧 + 𝑝𝑝2)d𝑝𝑝,

𝑝𝑝max

0

 (5) 

where 𝑝𝑝max is the value of 𝑝𝑝, after which the integrand becomes zero, and also a 
dimensionless variable �̂�𝑧 = 𝑧𝑧

𝑙𝑙�  is introduced. 
Thus, the solution in the vicinity of the wavefront has the form 

𝑇𝑇(�̂�𝑧, 𝑡𝑡) = �2𝑙𝑙
𝑐𝑐𝑡𝑡
𝛷𝛷(�̂�𝑧), (6) 

where 𝛷𝛷(�̂�𝑧) is a function that characterizes the shape of the thermal wave, from now on 
referred to as shape function. From (6) it follows that the wave profile shrinks vertically with 
time as 1

√𝑡𝑡� , but it does not change horizontally, i.e., its "width" remains the same. 

We specify the integration limits from the condition that the integrand function 
vanishes, so the final formula for the shape function becomes: 
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−1 ≤ �̂�𝑧 ≤ 1: 𝛷𝛷(�̂�𝑧) =
1
𝜋𝜋
� 𝑇𝑇�0(�̂�𝑧 + 𝑝𝑝2)d𝑝𝑝
√1−�̂�𝑧

0

,

�̂�𝑧 ≤ −1: 𝛷𝛷(�̂�𝑧) =
1
𝜋𝜋

� 𝑇𝑇�0(�̂�𝑧 + 𝑝𝑝2)d𝑝𝑝.
√1−�̂�𝑧

√−1−�̂�𝑧

 (7) 

Here, the general representation for the initial temperature distribution 𝑇𝑇0 (2) is replaced 
by its value 𝑇𝑇�0 in the localization zone. 

The derivative of (7) near the wavefront, i.e., for −1 ≤ �̂�𝑧 ≤ 1, is also of interest: 

d𝛷𝛷
d�̂�𝑧

=
1
𝜋𝜋
� �

𝜕𝜕𝑇𝑇�0(�̂�𝑧 + 𝑝𝑝2)
𝜕𝜕�̂�𝑧

d𝑝𝑝
√1−�̂�𝑧

0

−
𝑇𝑇�0��̂�𝑧=1

2√1 − �̂�𝑧
�. (8) 

We see that if the initial temperature at the right boundary of the localization zone is not 
equal to zero, i.e. 𝑇𝑇�0��̂�𝑧=1 ≠ 0, then the derivative (8) tends to infinity at the wavefront, 
regardless of the particular shape of the profile. If 𝑇𝑇�0��̂�𝑧=1 = 0 the second term vanishes, and 
the shape of the initial perturbation determines the slope of the tangent to the front. Similarly, 
differentiating the second part of the formula (7), we obtain that if 𝑇𝑇�0��̂�𝑧=−1 ≠ 0, then the 
derivative of (7) on the left boundary is also infinite, which leads to a break in the profile at 
the critical point �̂�𝑧 = −1. 

 
3. Examples of wave propagation from a localized perturbation 

Fig. 1. Evolution of rectangular (9), sawtooth (11) and (14), and parabolic (19) profiles 
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Figure 1 demonstrates the temperature profiles for several examples discussed below: 
(a) rectangular profile, (b) and (c) sawtooth profiles, and (d) parabolic profile. The dotted line 
shows the initial profile 𝑇𝑇�0(𝑥𝑥) in the localization zone, the solid line is the shape function 
𝛷𝛷(�̂�𝑧). Normalization along the horizontal axis is carried out with respect to the localization 
radius 𝑙𝑙, along the vertical axes – to the maximum initial temperature 𝑇𝑇�0max. Note that the 
initial "dotted" profile transforms into two peaks traveling in the opposite direction, and only 
the right one, which moves in the direction of the increase of spatial coordinate, is displayed 
"solid" in Fig. 1. 

Rectangular profile. Let 𝑇𝑇�0 = 𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡. Then from formulae (7) and (8) we 
immediately obtain: 

−1 ≤ �̂�𝑧 ≤ 1: 𝛷𝛷 =
𝐴𝐴
𝜋𝜋
√1 − �̂�𝑧,

�̂�𝑧 ≤ −1: 𝛷𝛷 =
𝐴𝐴
𝜋𝜋
�√1 − �̂�𝑧 − √−1 − �̂�𝑧�,

�̂�𝑧 → ±1:
d𝛷𝛷
d�̂�𝑧

= ∓∞.

 (9) 

Thus, the main part of the wave is described by the root function, and the wave tail is 
the difference of two root functions (see Fig. 1a). A break in the temperature profile is 
observed, and the maximum temperature value is reached at �̂�𝑧 = −1: 

𝑇𝑇max = �2𝑙𝑙
𝑐𝑐𝑡𝑡
𝛷𝛷max =

2𝐴𝐴
𝜋𝜋
� 𝑙𝑙
𝑐𝑐𝑡𝑡

. (10) 

Sawtooth profile 1. Consider 

𝑇𝑇�0 = 𝐴𝐴
𝑙𝑙 − 𝑥𝑥

2𝑙𝑙
. (11) 

The solution is as follows (see Fig. 1b) 

−1 ≤ �̂�𝑧 ≤ 1: 𝛷𝛷 =
𝐴𝐴

3𝜋𝜋
(1 − �̂�𝑧)3 2� ,

�̂�𝑧 ≤ −1: 𝛷𝛷 =
𝐴𝐴

3𝜋𝜋
�(1− �̂�𝑧)3 2� − (2 − �̂�𝑧)√−1− �̂�𝑧� ,

�̂�𝑧 → −1:
d𝛷𝛷
d�̂�𝑧

= ∞,

�̂�𝑧 → 1:
d𝛷𝛷
d�̂�𝑧

= 0.

 (12) 

The maximum temperature value  

𝑇𝑇max =
4𝐴𝐴
3𝜋𝜋

� 𝑙𝑙
𝑐𝑐𝑡𝑡

 (13) 

is also reached at the �̂�𝑧 = −1, where the derivative of the solution has a jump. 
Sawtooth profile 2. Let 

𝑇𝑇�0 = 𝐴𝐴
𝑙𝑙 + 𝑥𝑥

2𝑙𝑙
 (14) 

Formula (14) is similar to (11), but the profile of the corresponding solution is 
significantly different (see Fig. 1c): 
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−1 ≤ �̂�𝑧 ≤ 1: 𝛷𝛷 =
𝐴𝐴

3𝜋𝜋
(2 + �̂�𝑧)√1 − �̂�𝑧,

�̂�𝑧 ≤ −1: 𝛷𝛷 =
𝐴𝐴

3𝜋𝜋
�(−1 − �̂�𝑧)3 2� + (2 + �̂�𝑧)√−1 − �̂�𝑧� ,

�̂�𝑧 → −1:
d𝛷𝛷
d�̂�𝑧

≠ ∞,

�̂�𝑧 → 1:
d𝛷𝛷
d�̂�𝑧

= −∞.

 (15) 

In contrast to the previous example, there is no break in profile at �̂�𝑧 = −1, and the 
maximum temperature value is reached at �̂�𝑧 = 0: 

𝑇𝑇max =
2𝐴𝐴
3𝜋𝜋

� 𝑙𝑙
𝑐𝑐𝑡𝑡

. (16) 

Parabolic profile. Consider one of the simplest forms of a curvilinear profile: 

𝑇𝑇�0 = 𝐴𝐴
𝑙𝑙2 − 𝑥𝑥2

𝑙𝑙2
. (17) 

The solution looks like (see Fig. 1d): 

−1 ≤ �̂�𝑧 ≤ 1: 𝛷𝛷 =
4𝐴𝐴

15𝜋𝜋
(3 + 2�̂�𝑧)(1 − �̂�𝑧)3 2� ,

�̂�𝑧 ≤ −1: 𝛷𝛷 =
4𝐴𝐴

15𝜋𝜋
�(3 + 2�̂�𝑧)(1 − �̂�𝑧)3 2� + (3 − 2�̂�𝑧)(−1 − �̂�𝑧)3 2� � ,

�̂�𝑧 → −1:
d𝛷𝛷
d�̂�𝑧

≠ ∞,

�̂�𝑧 → 1:
d𝛷𝛷
d�̂�𝑧

= 0.

 (18) 

The maximum temperature value  

𝑇𝑇max =
4𝐴𝐴
5𝜋𝜋

�3𝑙𝑙
𝑐𝑐𝑡𝑡

 (19) 

is reached at �̂�𝑧 ≤ − 1
2�  and there is no break at the point, where the main wave and the wave 

tail merge. 
 

4. Cold and hot half-space contact 
Suppose that the initial temperature distribution consists of two semi-infinite regions with 
different temperatures, which do not depend on spatial coordinate, as well as a localized 
transition zone, characterized by a given temperature distribution. For definiteness let  
𝑇𝑇0(𝑥𝑥) = 𝐴𝐴 for 𝑥𝑥 ≤ −𝑙𝑙,     𝑇𝑇0(𝑥𝑥) = 𝑇𝑇�0(𝑥𝑥) for |𝑥𝑥| ≤ 𝑙𝑙,     𝑇𝑇0(𝑥𝑥) = 0 for 𝑥𝑥 ≥ 𝑙𝑙, (20) 
where 𝐴𝐴 > 0 is a certain constant temperature value, 𝑙𝑙 is a half-width of perturbation zone, 
and 𝑇𝑇�0(𝑥𝑥) represents the temperature profile in the localization zone.  

As in the case of localized perturbation (2), two thermal waves arise, traveling in 
opposite directions with speed equal to 𝑐𝑐. However, in contrast to the previous case, there will 
be both the heating wave running in the direction of the increase of spatial coordinate 𝑥𝑥, and 
the cooling wave traveling in the opposite direction.  

Let us consider the neighborhood of the heating wavefront at large times. Using the 
same methodology as above, and following formulae (3)-(5), which remain unchanged, we 
introduce the shape function (6) and obtain the following analog of formulae (7): 
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−1 ≤ �̂�𝑧 ≤ 1: 𝛷𝛷(�̂�𝑧) =
1
𝜋𝜋
� 𝑇𝑇�0(�̂�𝑧 + 𝑝𝑝2)d𝑝𝑝
√1−�̂�𝑧

0

,

�̂�𝑧 ≤ −1: 𝛷𝛷(�̂�𝑧) =
1
𝜋𝜋
� � 𝑇𝑇�0(�̂�𝑧 + 𝑝𝑝2)d𝑝𝑝

√1−�̂�𝑧

√−1−�̂�𝑧

+ 𝐴𝐴√−1 − �̂�𝑧� .

 (21) 

Formulae (7) and (21) coincide in the region |�̂�𝑧| ≤ 1. For �̂�𝑧 ≤ −1, the difference lies in 
the term 𝐴𝐴√−1 − �̂�𝑧. This term describes the increase in temperature due to the influx of heat 
from the hot region of the crystal that has a constant temperature 𝐴𝐴 > 0.  

The Figures demonstrate the temperature profiles for the two examples discussed 
below: (a) temperature jump and (b) linear temperature transition. The dotted line shows the 
intial profile 𝑇𝑇�0(𝑥𝑥) in the localization zone, the solid line is the shape function 𝛷𝛷(�̂�𝑧). 
Normalization along the horizontal axis is carried out with respect to the localization radius 𝑙𝑙, 
along the vertical axes – to the maximum initial temperature 𝑇𝑇�0max. 
 

 
a 

 
b 

Fig. 2. Evolution of the boundaries of the temperature jump and linear temperature transition 
 

Temperature jump. Let, 𝑇𝑇�0 = 𝐴𝐴. Then from formulae (21) we obtain that on both 
intervals the solution is the same and has the form: 

�̂�𝑧 ≤ 1: 𝛷𝛷 =
𝐴𝐴
𝜋𝜋
√1 − �̂�𝑧. (22) 

Thus, both the main part of the wave and the tail are described by the same root 
function; there is no break in the temperature profile; the profile decreases monotonically with 
the increase of the dimensionless coordinate �̂�𝑧. 

Linear temperature transition. Consider 𝑇𝑇�0 = 𝐴𝐴 𝑙𝑙 − 𝑥𝑥
2𝑙𝑙� , i.e., sawtooth profile (11). 

Then, 

� 𝑇𝑇�0(�̂�𝑧 + 𝑝𝑝2)d𝑝𝑝
√1−�̂�𝑧

0

=
𝐴𝐴
2
� (1 − �̂�𝑧 − 𝑝𝑝2)d𝑝𝑝
√1−�̂�𝑧

0

=
𝐴𝐴
3

(1 − �̂�𝑧)3 2� . (23) 

Let us now consider 𝑇𝑇�0 − 𝐴𝐴 = −𝐴𝐴 𝑙𝑙 + 𝑥𝑥
2𝑙𝑙� , i.e., sawtooth profile (14) with the opposite 

sign, so that 

� �𝑇𝑇�0(�̂�𝑧 + 𝑝𝑝2) − 𝐴𝐴�d𝑝𝑝
√−1−�̂�𝑧

0

= −
𝐴𝐴
2

� (1 + �̂�𝑧 + 𝑝𝑝2)d𝑝𝑝
√−1−�̂�𝑧

0

=
𝐴𝐴
3

(−1 − �̂�𝑧)3 2� . (24) 
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Finally, we obtain 

−1 ≤ �̂�𝑧 ≤ 1: 𝛷𝛷(�̂�𝑧) =
𝐴𝐴

3𝜋𝜋
(1 − �̂�𝑧)3 2� ,

�̂�𝑧 ≤ −1: 𝛷𝛷(�̂�𝑧) =
𝐴𝐴

3𝜋𝜋
�(1− �̂�𝑧)3 2� − (−1 − �̂�𝑧)3 2� � .

 (25) 

Unlike the previous example, where the front has a vertical tangent (which is associated 
with the presence of the step in the initial temperature profile), in this case the front has a 
horizontal tangent. In other words, the wave does not begin abruptly, and there is no jump in 
the derivative at the front. There is also no discontinuity of the derivative at the point �̂�𝑧 = −1, 
at which a smooth change in the wave profile occurs. Note that a motionless observer 
detecting a thermal wave passing by, will notice that profile growth slows down after this 
point, which is associated with the appearance of the second term in formula (25). 

 
5. On the nature of the profile at the beginning of the thermal wavefront 
In this section we look into the nature of the profile at the beginning of the front of a steady 
thermal wave, and how it depends on the initial temperature profile. The results below are 
suitable for both of the above problems: when waves originate from a localized thermal 
perturbation and a transition zone between regions with different temperatures.  

Consider formula (7) for �̂�𝑧 close to 1. Let us denote 𝑦𝑦 = 1 − �̂�𝑧, then formula (7) can be 
written as 

𝛷𝛷 =
1
𝜋𝜋
� 𝑇𝑇�0(1 − 𝑦𝑦 + 𝑝𝑝2)d𝑝𝑝.
√𝑦𝑦

0

 (26) 

We assume that the initial profile has the following character for small 𝑦𝑦: 
𝑇𝑇�0(𝑦𝑦)~𝑦𝑦𝛼𝛼. (27) 

Then the formula (26) in the first approximation takes the form 

𝛷𝛷(𝛼𝛼,𝑦𝑦) =
1
𝜋𝜋
� (𝑦𝑦 − 𝑝𝑝2)𝛼𝛼d𝑝𝑝
√𝑦𝑦

0

. (28) 

Calculation of the integral gives 

𝛷𝛷(𝛼𝛼,𝑦𝑦) =
Γ(𝛼𝛼 + 1)

2√𝜋𝜋Γ �𝛼𝛼 + 3
2�
𝑦𝑦𝛼𝛼+

1
2, 

(29) 

where Γ(𝛼𝛼) is the gamma function. The shape functions 𝛷𝛷(𝛼𝛼,𝑦𝑦) for several values of 𝛼𝛼 are: 

𝛷𝛷 �−
1
2

,𝑦𝑦� =
1
2

,    𝛷𝛷(0,𝑦𝑦) =
𝑦𝑦
𝜋𝜋

,    𝛷𝛷 �
1
2

,𝑦𝑦� =
𝑦𝑦
4

,     𝛷𝛷(1,𝑦𝑦) =
2𝑦𝑦3 2�

3𝜋𝜋
. (30) 

Thus, as a result of the stabilization of the wave, the wavefront profile smoothes: its 
degree increases by 1 2� : 
• if the initial profile has a singularity 1

�𝑦𝑦� , then the steady front is a step;  

• a step turns into a root function �𝑦𝑦;  
• the root function turns to the front with linear growth;  
• a linear front turns into a smooth dependence 𝑦𝑦3 2� , etc.  

Since the considered problem is linear and the superposition principle is applicable, the 
listed properties of the transformation must be valid not only for the boundary point of the 
profile but also for any singular point on the initial temperature profile. 

 

Asymptotics of a thermal wave in one-dimensional harmonic crystal 843



6. Conclusions 
In the present work, we obtain an asymptotic representation at large times for a neighborhood 
of the front of a thermal wave propagating in a one-dimensional harmonic crystal (1). In 
contrast to the solutions for the classical heat equation, (1) has a strongly pronounced 
wavefront. We consider the propagation of waves from a localized thermal perturbation (2) 
and a transition zone between regions with different temperatures (20); explicit solutions are 
obtained for several simplest forms of the initial temperature perturbation. 

The solution to the problem of localized thermal disturbance (7) shows that the main 
part of the wave is located in a space region of the same size as the initial localization zone. 
The thermal wave decays with time as 1

√𝑡𝑡� , and the function 𝛷𝛷, which characterizes the 

shape of the profile and is proportional to 𝑇𝑇
√𝑡𝑡�  remains unchanged. Consequently, the 

traveling wave shrinks vertically; however, in the horizontal direction its shape is preserved. 
Besides, a jump in the temperature perturbation on the left or right boundary of the 
localization zone at the initial time leads, respectively, to a discontinuity of the derivative at 
the point where the main part of the wave and the wave tail merge, or to an abrupt start of the 
front.  

The conclusions drawn basing on formulae (7) - (8) for a localized perturbation are also 
preserved for the case of a transition zone between regions with different temperatures. In 
addition, we demonstrate that during the wave evolution, the wavefront smoothes, e.g., for a 
power-law dependence, its degree increases by 1 2� . 

The revealed properties of the obtained solutions can be used to analyze the 
experimental data and to choose the correct model for the description of the heat transfer 
processes in low-dimensional systems. 
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