http://mech.spbstu.ru/?title=Dynamics_of_Discrete_Media&feed=atom&action=history Dynamics of Discrete Media - Revision history 2024-03-28T15:40:19Z Revision history for this page on the wiki MediaWiki 1.27.3 http://mech.spbstu.ru/?title=Dynamics_of_Discrete_Media&diff=6350&oldid=prev Vakulinaa at 17:43, 15 November 2015 2015-11-15T17:43:10Z <p></p> <table class="diff diff-contentalign-left" data-mw="interface"> <col class='diff-marker' /> <col class='diff-content' /> <col class='diff-marker' /> <col class='diff-content' /> <tr style='vertical-align: top;' lang='en'> <td colspan='2' style="background-color: white; color:black; text-align: center;">← Older revision</td> <td colspan='2' style="background-color: white; color:black; text-align: center;">Revision as of 17:43, 15 November 2015</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l24" >Line 24:</td> <td colspan="2" class="diff-lineno">Line 24:</td></tr> <tr><td class='diff-marker'>&#160;</td><td style="background-color: #f9f9f9; color: #333333; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #e6e6e6; vertical-align: top; white-space: pre-wrap;"></td><td class='diff-marker'>&#160;</td><td style="background-color: #f9f9f9; color: #333333; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #e6e6e6; vertical-align: top; white-space: pre-wrap;"></td></tr> <tr><td class='diff-marker'>&#160;</td><td style="background-color: #f9f9f9; color: #333333; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #e6e6e6; vertical-align: top; white-space: pre-wrap;"></td><td class='diff-marker'>&#160;</td><td style="background-color: #f9f9f9; color: #333333; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #e6e6e6; vertical-align: top; white-space: pre-wrap;"></td></tr> <tr><td class='diff-marker'>−</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>back to [[IMDP| International MSc program &quot;<del class="diffchange diffchange-inline">Advanced Dynamics of Discrete </del>and <del class="diffchange diffchange-inline">Continuum Systems</del>&quot;]]</div></td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>back to [[IMDP| International MSc program &quot;<ins class="diffchange diffchange-inline">Mechanics </ins>and <ins class="diffchange diffchange-inline">Mathematical Modeling</ins>&quot;]]</div></td></tr> </table> Vakulinaa http://mech.spbstu.ru/?title=Dynamics_of_Discrete_Media&diff=6307&oldid=prev Wikiadmin: Wikiadmin moved page Dynamics of discrete media to Dynamics of Discrete Media 2015-11-14T11:24:20Z <p>Wikiadmin moved page <a href="/Dynamics_of_discrete_media" class="mw-redirect" title="Dynamics of discrete media">Dynamics of discrete media</a> to <a href="/Dynamics_of_Discrete_Media" title="Dynamics of Discrete Media">Dynamics of Discrete Media</a></p> <table class="diff diff-contentalign-left" data-mw="interface"> <tr style='vertical-align: top;' lang='en'> <td colspan='1' style="background-color: white; color:black; text-align: center;">← Older revision</td> <td colspan='1' style="background-color: white; color:black; text-align: center;">Revision as of 11:24, 14 November 2015</td> </tr><tr><td colspan='2' style='text-align: center;' lang='en'><div class="mw-diff-empty">(No difference)</div> </td></tr></table> Wikiadmin http://mech.spbstu.ru/?title=Dynamics_of_Discrete_Media&diff=5194&oldid=prev Tkostareva at 18:47, 7 May 2015 2015-05-07T18:47:28Z <p></p> <table class="diff diff-contentalign-left" data-mw="interface"> <col class='diff-marker' /> <col class='diff-content' /> <col class='diff-marker' /> <col class='diff-content' /> <tr style='vertical-align: top;' lang='en'> <td colspan='2' style="background-color: white; color:black; text-align: center;">← Older revision</td> <td colspan='2' style="background-color: white; color:black; text-align: center;">Revision as of 18:47, 7 May 2015</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l1" >Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td></tr> <tr><td class='diff-marker'>−</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The course <del class="diffchange diffchange-inline">will describe </del>the processes in materials for which the discreteness of their internal structure is important. The examples include behavior of nano-sized objects, chemical reactions, fracture, phase transitions, dynamics of granular materials, crowd dynamics, evolution of astrophysical systems, etc. The course includes theoretical and practical parts. Students will study the fundamental aspects of mechanics of discrete media. At practice students will learn to solve the applied problems using modern simulation techniques, such as molecular dynamics, particle dynamics, discrete element method, smoothed particles hydrodynamics, etc.</div></td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The course <ins class="diffchange diffchange-inline">describes </ins>the processes in materials for which the discreteness of their internal structure is important. The examples include behavior of nano-sized objects, chemical reactions, fracture, phase transitions, dynamics of granular materials, crowd dynamics, evolution of astrophysical systems, etc. The course includes theoretical and practical parts. Students will study the fundamental aspects of mechanics of discrete media. At practice students will learn to solve the applied problems using modern simulation techniques, such as molecular dynamics, particle dynamics, discrete element method, smoothed particles hydrodynamics, etc.</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins class="diffchange diffchange-inline">The course includes the following items:</ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins class="diffchange diffchange-inline">*Discrete models.&#160; </ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins class="diffchange diffchange-inline">**Discrete models. Ab initio Molecular Dynamics (D. Marx An Introduction to Ab Initio Molecular Dynamics Simulations). Classical molecular dynamics. Molecular dynamics (Ehrenfest). Molecular dynamics (Born-Oppenheimer). Molecular dynamics (Carr-Parinello). Methods of determining the electronic structure. Hart-Fock method (a method of self-consistent field). Density functional method (Hohenberg-Kohn-Sham)</ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins class="diffchange diffchange-inline">*Classical molecular dynamics. </ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins class="diffchange diffchange-inline">**The system of material points. The basic laws. The interactions in the system of material points. Paired interaction potentials (Lennard-Jones, Morse, MI). Many-particle potentials (EAM, Stillinger-Weber Terzoffa, Brenner). Calculation of forces (two approaches). System Phone-points. The basic laws. The interactions in the body-points. Linear theory. Stiffness tensors. Nonlinear theory (tensors rotation, rotation vector, the vectors are rigidly connected to the body). Mixed system (material points + freewheeling body-point)</ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins class="diffchange diffchange-inline">*Communication with the continuum model. The main hypotheses.</ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins class="diffchange diffchange-inline">**The main hypotheses. Long-wave approximation. Traffic Separation (averaging over time, in space, the frequency spectrum). Chain models.</ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins class="diffchange diffchange-inline">*The transition to a three-dimensional membrane continuous medium. </ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins class="diffchange diffchange-inline">**Virial theorem (Virial theorem, Heat theorem, article Zhou). The method based on the use of long-wave approximation (kinematics, dynamics, energy balance equation). Paired interaction. Generalization to many-particle interactions. Generalization to complex lattice method. Problems of Hardy method (smoothed particle method). Key ideas and hypotheses. Mass balance equation. The momentum balance equation, th equation of energy balance. Problems of method for calculating the temperature (Gibbs distribution)</ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins class="diffchange diffchange-inline">*The transition to the theory of plates.</ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins class="diffchange diffchange-inline">**The system of material points with many particle interactions. The system of body-points with moment interactions.</ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>&#160;</div></td></tr> <tr><td class='diff-marker'>&#160;</td><td style="background-color: #f9f9f9; color: #333333; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #e6e6e6; vertical-align: top; white-space: pre-wrap;"></td><td class='diff-marker'>&#160;</td><td style="background-color: #f9f9f9; color: #333333; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #e6e6e6; vertical-align: top; white-space: pre-wrap;"></td></tr> <tr><td class='diff-marker'>&#160;</td><td style="background-color: #f9f9f9; color: #333333; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #e6e6e6; vertical-align: top; white-space: pre-wrap;"><div>back to [[IMDP| International MSc program &quot;Advanced Dynamics of Discrete and Continuum Systems&quot;]]</div></td><td class='diff-marker'>&#160;</td><td style="background-color: #f9f9f9; color: #333333; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #e6e6e6; vertical-align: top; white-space: pre-wrap;"><div>back to [[IMDP| International MSc program &quot;Advanced Dynamics of Discrete and Continuum Systems&quot;]]</div></td></tr> <!-- diff cache key wikidb-mech_:diff:version:1.11a:oldid:2047:newid:5194 --> </table> Tkostareva http://mech.spbstu.ru/?title=Dynamics_of_Discrete_Media&diff=2047&oldid=prev Tkostareva at 12:13, 17 November 2014 2014-11-17T12:13:57Z <p></p> <table class="diff diff-contentalign-left" data-mw="interface"> <col class='diff-marker' /> <col class='diff-content' /> <col class='diff-marker' /> <col class='diff-content' /> <tr style='vertical-align: top;' lang='en'> <td colspan='2' style="background-color: white; color:black; text-align: center;">← Older revision</td> <td colspan='2' style="background-color: white; color:black; text-align: center;">Revision as of 12:13, 17 November 2014</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l1" >Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td></tr> <tr><td class='diff-marker'>&#160;</td><td style="background-color: #f9f9f9; color: #333333; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #e6e6e6; vertical-align: top; white-space: pre-wrap;"><div>The course will describe the processes in materials for which the discreteness of their internal structure is important. The examples include behavior of nano-sized objects, chemical reactions, fracture, phase transitions, dynamics of granular materials, crowd dynamics, evolution of astrophysical systems, etc. The course includes theoretical and practical parts. Students will study the fundamental aspects of mechanics of discrete media. At practice students will learn to solve the applied problems using modern simulation techniques, such as molecular dynamics, particle dynamics, discrete element method, smoothed particles hydrodynamics, etc.</div></td><td class='diff-marker'>&#160;</td><td style="background-color: #f9f9f9; color: #333333; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #e6e6e6; vertical-align: top; white-space: pre-wrap;"><div>The course will describe the processes in materials for which the discreteness of their internal structure is important. The examples include behavior of nano-sized objects, chemical reactions, fracture, phase transitions, dynamics of granular materials, crowd dynamics, evolution of astrophysical systems, etc. The course includes theoretical and practical parts. Students will study the fundamental aspects of mechanics of discrete media. At practice students will learn to solve the applied problems using modern simulation techniques, such as molecular dynamics, particle dynamics, discrete element method, smoothed particles hydrodynamics, etc.</div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"></ins></div></td></tr> <tr><td colspan="2">&#160;</td><td class='diff-marker'>+</td><td style="color:black; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">back to [[IMDP| International MSc program &quot;Advanced Dynamics of Discrete and Continuum Systems&quot;]]</ins></div></td></tr> <!-- diff cache key wikidb-mech_:diff:version:1.11a:oldid:2046:newid:2047 --> </table> Tkostareva http://mech.spbstu.ru/?title=Dynamics_of_Discrete_Media&diff=2046&oldid=prev Tkostareva: Created page with "The course will describe the processes in materials for which the discreteness of their internal structure is important. The examples include behavior of nano-sized objects, chem..." 2014-11-17T12:13:18Z <p>Created page with &quot;The course will describe the processes in materials for which the discreteness of their internal structure is important. The examples include behavior of nano-sized objects, chem...&quot;</p> <p><b>New page</b></p><div>The course will describe the processes in materials for which the discreteness of their internal structure is important. The examples include behavior of nano-sized objects, chemical reactions, fracture, phase transitions, dynamics of granular materials, crowd dynamics, evolution of astrophysical systems, etc. The course includes theoretical and practical parts. Students will study the fundamental aspects of mechanics of discrete media. At practice students will learn to solve the applied problems using modern simulation techniques, such as molecular dynamics, particle dynamics, discrete element method, smoothed particles hydrodynamics, etc.</div> Tkostareva