Difference between revisions of "Driven oscillations of a mass on a nonlinear spring"

From Department of Theoretical and Applied Mechanics
Jump to: navigation, search
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[Файл:Nolinekoleban2.png|thumb|Нелинейный колебания груза с вынуждающей силой|500px]]
+
[[ru:Нелинейные колебания груза с вынуждающей силой]]
 +
[[File:Nolinekoleban2.png|thumb|Driven oscillations of a mass on a nonlinear spring|500px]]
  
 
== Annotation to the project ==
 
== Annotation to the project ==
This project gives an idea about nonlinear oscillation of load with the periodic force acting on it.
+
This project gives an idea about nonlinear oscillation of a mass with the periodic force acting on it.
  
 
== Formulation of the problem ==
 
== Formulation of the problem ==
Let’s put that the load on nonlinear spring has mass m and experiencing the action of an external force F, which has a law F = sin (t).
+
Let’s put that a mass on nonlinear spring has mass m and experiencing the action of an external force F, which has a law F = sin (t).
  
* Task: formulate the problem on JavaScript which modulate motion of the load with different parameters of the system.<br>
+
* Task: formulate the problem on JavaScript which modulate motion of a mass with different parameters of the system.<br>
  
 
== Overview ==
 
== Overview ==
If the periodically changing external force is acting on the system, the system performs oscillations which repeat in different ways the nature of change of this force. Such oscillations are '''called forced'''.
+
If the periodically changing of the external force is acting on the system, the system performs oscillations which repeat the pattern of changes of this force. Such oscillations are '''called forced'''.
  
 
F0 is the force amplitude and the greatest value of the force.
 
F0 is the force amplitude and the greatest value of the force.
Line 16: Line 17:
 
{|
 
{|
 
|-
 
|-
|  Because of the work of an external force, the maximum value of the potential energy of the spring and the kinetic energy of the load increase. This will increase the loss on overcome the resistance forces. In the end the work of the external force will exactly offset the energy losses in the system. Further growth of the oscillations in the system will stop and oscillations will be established with a constant amplitude. || [[File:123.png|thumbnail|Характер амплитуды]]
+
|  Because of the work of an external force, the maximum value of the potential energy of the spring and the kinetic energy of a mass increase. This will increase the loss on overcome the resistance forces. In the end the work of the external force will exactly offset the energy losses in the system. Further growth of the oscillations in the system will stop and oscillations will be established with a constant amplitude. || [[File:123.png|thumb|A typical plot of the amplitude function]]
 
|}
 
|}
  
Line 26: Line 27:
 
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Kiselev/Spring/Springs.html |width=800 |height=800 |border=0 }}
 
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Kiselev/Spring/Springs.html |width=800 |height=800 |border=0 }}
  
Download program: [[Медиа:SpringNoLine.rar|SpringNoLine.rar]]
+
Download program: [[Media:SpringNoLine.rar|SpringNoLine.rar]]
  
'''Text of the program on JavaScript (creator [[Киселев Павел]]):''' <div class="mw-collapsible-content">  
+
<!--'''Text of the program on JavaScript (creator Pavel Kiselev):''' <div class="mw-collapsible-content">  
 
File '''"Spring.js"'''
 
File '''"Spring.js"'''
<syntaxhighlight lang="javascript" enclose="div">
+
<syntaxhighlight lang="javascript" enclose="div">-->
  
    window.addEventListener("load", Main_Spring, true);
+
<div class="mw-collapsible mw-collapsed" style="width:100%" >
 +
'''The Text of the program is written in JavaScript (developed by Pavel Kiselev):''' <div class="mw-collapsible-content">
 +
 
 +
  window.addEventListener("load", Main_Spring, true);
 
     function Main_Spring() {
 
     function Main_Spring() {
 
     var canvas = spring_canvas;
 
     var canvas = spring_canvas;
     canvas.onselectstart = function () {return false;};    // prohibition selection canvas
+
     canvas.onselectstart = function () {return false;};    // prohibition of selection canvas
     var ctx = canvas.getContext("2d");                      // at the ctx is drawing
+
     var ctx = canvas.getContext("2d");                      // drawing at the ctx
 
     var w = canvas.width;                                  // the width of the window in the calculated coordinates
 
     var w = canvas.width;                                  // the width of the window in the calculated coordinates
 
     var h = canvas.height;                                  // the height of the window in the calculated coordinates
 
     var h = canvas.height;                                  // the height of the window in the calculated coordinates
     var Pi = 3.1415926;                             // Pi
+
     var Pi = 3.1415926;                                     // Pi
     var m0 = 1;                             // weight scale
+
     var m0 = 1;                                             // weight scale
     var T0 = 1;                             // time scale (the period of oscillation of the original system)
+
     var T0 = 1;                                             // time scale (the period of oscillation of the original system)
 
     var t = 0;
 
     var t = 0;
     var k0 = 2 * Pi / T0;                               // frequency scale
+
     var k0 = 2 * Pi / T0;                                   // frequency scale
     var C0 = m0 * k0 * k0;                             // hardness scale
+
     var C0 = m0 * k0 * k0;                                 // hardness scale
     var B0 = 2 * m0 * k0;                           // viscosity scale
+
     var B0 = 2 * m0 * k0;                                   // viscosity scale
 
     var omega = 10;
 
     var omega = 10;
 
      
 
      
     // *** Creating the physical parameters***
+
     // *** Creating the physical parameters ***
 
     var F = 80;
 
     var F = 80;
     var m = 1 * m0;                                     // weight
+
     var m = 1 * m0;                                         // weight
     var C = 1 * C0;                                     // rigidity
+
     var C = 1 * C0;                                         // rigidity
     var C1 = 1 * C0;                                     // rigidity1
+
     var C1 = 1 * C0;                                       // rigidity1
     var B = .1 * B0;                                     // viscosity
+
     var B = .1 * B0;                                       // viscosity
 
      
 
      
 
     slider_m.value = (m / m0).toFixed(1); number_m.value = (m / m0).toFixed(1);
 
     slider_m.value = (m / m0).toFixed(1); number_m.value = (m / m0).toFixed(1);
Line 61: Line 65:
 
     slider_F.value = (F / 40).toFixed(1); number_F.value = (F / 40).toFixed(1);
 
     slider_F.value = (F / 40).toFixed(1); number_F.value = (F / 40).toFixed(1);
  
     // *** Creating the parameters of computing ***
+
     // *** Creating the computing parameters ***
  
     var fps = 300;                   // frames per second
+
     var fps = 300;                                 // frames per second  
     var spf = 100;                   // steps per frame  
+
     var spf = 100;                                 // steps per frame  
     var dt  = 0.05 * T0 / fps;               // integration step (calculation quality)  
+
     var dt  = 0.05 * T0 / fps;                     // integration step (calculation quality)
 
     var steps = 0;                                  // the number of integration steps
 
     var steps = 0;                                  // the number of integration steps
  
Line 86: Line 90:
  
 
     var count = true;                  // system analysis
 
     var count = true;                  // system analysis
     var v = 0; // load speed
+
     var v = 0;                         // speed of a mass
  
     var rw = canvas.width / 30;  
+
     var rw = canvas.width / 30;        
 
     var rh = canvas.height / 1.5;
 
     var rh = canvas.height / 1.5;
     var x0 = 15 * rw - rw / 2;    
+
     var x0 = 15 * rw - rw / 2;        
 
     var y0 = rh / 1.33 - rh / 2;
 
     var y0 = rh / 1.33 - rh / 2;
  
Line 97: Line 101:
 
     var startX = 0;      // spring fastening
 
     var startX = 0;      // spring fastening
  
     // create a rectangle-cargo
+
     // create a rectangle (mass)
 
     var rect = {
 
     var rect = {
 
         x: x0,  width: rw,
 
         x: x0,  width: rw,
         y: y0, height: rh,
+
         y: y0, height: rh,
         fill: "rgba(0, 0, 255, 1)"   // colour
+
         fill: "rgba(0, 0, 255, 1)"     // colour
 
     };
 
     };
  
Line 108: Line 112:
 
     document.onmousedown = function(e) {        // function by pressing the mouse button
 
     document.onmousedown = function(e) {        // function by pressing the mouse button
 
         var m = mouseCoords(e);                // we get estimated coordinates of the mouse cursor
 
         var m = mouseCoords(e);                // we get estimated coordinates of the mouse cursor
 +
 
         var x = rect.x;
 
         var x = rect.x;
 
         var xw = rect.x + rect.width;
 
         var xw = rect.x + rect.width;
Line 123: Line 128:
 
     };
 
     };
  
     document.onmouseup = function(e) {         // function when you release the mouse button
+
     document.onmouseup = function(e) {           // function when you release the mouse button
        document.onmousemove = null;             // when the key is released, no movement function
+
    document.onmousemove = null;                 // when the key is released, no movement function
 
         count = true;
 
         count = true;
 
     };
 
     };
Line 144: Line 149:
 
     }
 
     }
  
     // plot
+
     // plot
 
     var vGraph = new TM_graph(                  // determine the plot
 
     var vGraph = new TM_graph(                  // determine the plot
 
         "#vGraph",                              // on html-element #vGraph
 
         "#vGraph",                              // on html-element #vGraph
 
         250,                                    // the number of steps by "x" axis
 
         250,                                    // the number of steps by "x" axis
         -1, 1, 0.2);                            // min value of Y-axis, max value of Y-axis, Y-axis step
+
         -1, 1, 0.2);                            // min value of Y-axis, max value of Y-axis, Y-axis step
  
 
     function control() {
 
     function control() {
Line 155: Line 160:
 
         requestAnimationFrame(control);
 
         requestAnimationFrame(control);
 
     }
 
     }
     control();
+
     control()
 
//    setInterval(control, 1000 / fps);                      // start of the system
 
//    setInterval(control, 1000 / fps);                      // start of the system
  
Line 162: Line 167:
 
         for (var s=1; s<=spf; s++) {
 
         for (var s=1; s<=spf; s++) {
 
             var f = -B*v - C * (rect.x - x0) - C1*Math.pow(rect.x - x0,3)+2*F*Math.sin(t);
 
             var f = -B*v - C * (rect.x - x0) - C1*Math.pow(rect.x - x0,3)+2*F*Math.sin(t);
v += f / m * dt;
+
                        v += f / m * dt;
//console.log(f);
+
                        //console.log(f);
 
             rect.x += v * dt;
 
             rect.x += v * dt;
t+= dt;
+
                        t+= dt;
 
             steps++;
 
             steps++;
 
             if (steps % 80 == 0) vGraph.graphIter(steps, (rect.x-x0)/canvas.width*2);  // infeed graph data
 
             if (steps % 80 == 0) vGraph.graphIter(steps, (rect.x-x0)/canvas.width*2);  // infeed graph data
Line 174: Line 179:
 
     function draw() {
 
     function draw() {
 
         ctx.clearRect(0, 0, w, h);
 
         ctx.clearRect(0, 0, w, h);
draw_spring(startX, rect.x, h/2, 10, 50);
+
                draw_spring(startX, rect.x, h/2, 10, 50);
 
         ctx.fillStyle = "#0000ff";
 
         ctx.fillStyle = "#0000ff";
 
         ctx.fillRect(rect.x, rect.y, rect.width, rect.height);
 
         ctx.fillRect(rect.x, rect.y, rect.width, rect.height);
Line 180: Line 185:
  
  
function draw_spring(x_start, x_end, y, n, h) {
+
        function draw_spring(x_start, x_end, y, n, h) {
    ctx.lineWidth = 2;
+
            ctx.lineWidth = 2;
 
         ctx.strokeStyle = "#7394cb";
 
         ctx.strokeStyle = "#7394cb";
var L = x_end - x_start;
+
                var L = x_end - x_start;
for (var i = 0; i < n; i++) {
+
                for (var i = 0; i < n; i++) {
var x_st = x_start + L / n * i;
+
                        var x_st = x_start + L / n * i;
var x_end = x_start + L / n * (i + 1);
+
                        var x_end = x_start + L / n * (i + 1);
var l = x_end - x_st;
+
                        var l = x_end - x_st;
ctx.beginPath();
+
                        ctx.beginPath();
ctx.bezierCurveTo(x_st, y, x_st + l / 4, y + h, x_st + l / 2, y);
+
                        ctx.bezierCurveTo(x_st, y, x_st + l / 4, y + h, x_st + l / 2, y);
ctx.bezierCurveTo(x_st + l / 2, y, x_st + 3 * l / 4, y - h, x_st + l, y);
+
                        ctx.bezierCurveTo(x_st + l / 2, y, x_st + 3 * l / 4, y - h, x_st + l, y);
ctx.stroke();
+
                        ctx.stroke();
}
+
                }
}
+
        }
 
}
 
}

Latest revision as of 18:35, 18 January 2017

Driven oscillations of a mass on a nonlinear spring

Annotation to the project[edit]

This project gives an idea about nonlinear oscillation of a mass with the periodic force acting on it.

Formulation of the problem[edit]

Let’s put that a mass on nonlinear spring has mass m and experiencing the action of an external force F, which has a law F = sin (t).

  • Task: formulate the problem on JavaScript which modulate motion of a mass with different parameters of the system.

Overview[edit]

If the periodically changing of the external force is acting on the system, the system performs oscillations which repeat the pattern of changes of this force. Such oscillations are called forced.

F0 is the force amplitude and the greatest value of the force.

Because of the work of an external force, the maximum value of the potential energy of the spring and the kinetic energy of a mass increase. This will increase the loss on overcome the resistance forces. In the end the work of the external force will exactly offset the energy losses in the system. Further growth of the oscillations in the system will stop and oscillations will be established with a constant amplitude.
A typical plot of the amplitude function

Equation of motion: [math]m\ddot x = -kx -{k_1}x^3 + {F_0}sin(t) - B \dot x[/math]

Visualization on JavaScript[edit]

Download program: SpringNoLine.rar


The Text of the program is written in JavaScript (developed by Pavel Kiselev):
  window.addEventListener("load", Main_Spring, true);
   function Main_Spring() {
   var canvas = spring_canvas;
   canvas.onselectstart = function () {return false;};     // prohibition of selection canvas
   var ctx = canvas.getContext("2d");                      // drawing at the ctx
   var w = canvas.width;                                   // the width of the window in the calculated coordinates
   var h = canvas.height;                                  // the height of the window in the calculated coordinates
   var Pi = 3.1415926;                                     // Pi
   var m0 = 1;                                             // weight scale
   var T0 = 1;                                             // time scale (the period of oscillation of the original system)
   var t = 0;
   var k0 = 2 * Pi / T0;                                   // frequency scale
   var C0 = m0 * k0 * k0;                                  // hardness scale
   var B0 = 2 * m0 * k0;                                   // viscosity scale
   var omega = 10;
   
   // *** Creating the physical parameters ***
   var F = 80;
   var m = 1 * m0;                                         // weight
   var C = 1 * C0;                                         // rigidity
   var C1 = 1 * C0;                                        // rigidity1
   var B = .1 * B0;                                        // viscosity
   
   slider_m.value = (m / m0).toFixed(1); number_m.value = (m / m0).toFixed(1);
   slider_C.value = (C / C0).toFixed(1); number_C.value = (C / C0).toFixed(1);
   slider_C1.value = (C / C0).toFixed(1); number_C1.value = (C / C0).toFixed(1);
   slider_B.value = (B / B0).toFixed(1); number_B.value = (B / B0).toFixed(1);
   slider_F.value = (F / 40).toFixed(1); number_F.value = (F / 40).toFixed(1);
   // *** Creating the computing parameters ***
   var fps = 300;                                  // frames per second 
   var spf = 100;                                  // steps per frame   
   var dt  = 0.05 * T0 / fps;                      // integration step (calculation quality)  
   var steps = 0;                                  // the number of integration steps
   function setM(new_m) {m = new_m * m0;}
   function setC(new_C) {C = new_C * C0;}
   function setC1(new_C1) {C1 = new_C1 * C0 * 0.067;}
   function setB(new_B) {B = new_B * B0;}
   function setF(new_F) {F = new_F * 40;}
   slider_m.oninput = function() {number_m.value = slider_m.value;       setM(slider_m.value);};
   number_m.oninput = function() {slider_m.value = number_m.value;       setM(number_m.value);};
   slider_C.oninput = function() {number_C.value = slider_C.value;       setC(slider_C.value);};
   number_C.oninput = function() {slider_C.value = number_C.value;       setC(number_C.value);};
   slider_C1.oninput = function() {number_C1.value = slider_C1.value;       setC1(slider_C1.value);};
   number_C1.oninput = function() {slider_C1.value = number_C1.value;       setC1(number_C1.value);};
   slider_B.oninput = function() {number_B.value = slider_B.value;       setB(slider_B.value);};
   number_B.oninput = function() {slider_B.value = number_B.value;       setB(number_B.value);};
   slider_F.oninput = function() {number_F.value = slider_F.value;       setF(slider_F.value);};
   number_F.oninput = function() {slider_F.value = number_F.value;       setF(number_F.value);};
   var count = true;                   // system analysis
   var v = 0;                          // speed of a mass
   var rw = canvas.width / 30;         
   var rh = canvas.height / 1.5;
   var x0 = 15 * rw - rw / 2;          
   var y0 = rh / 1.33 - rh / 2;
   // spring settings
   var coil = 10;        // number of turns
   var startX = 0;       // spring fastening
   //  create a rectangle (mass)
   var rect = {
       x: x0,  width: rw,
       y: y0,  height: rh,
       fill: "rgba(0, 0, 255, 1)"      // colour
   };
   // capture a rectangle with the mouse
   var mx_;                                    // buffer position of the mouse (to calculate the speed of the ball when released)
   document.onmousedown = function(e) {        // function by pressing the mouse button
       var m = mouseCoords(e);                 // we get estimated coordinates of the mouse cursor
       var x = rect.x;
       var xw = rect.x + rect.width;
       var y = rect.y;
       var yh = rect.y + rect.height;
       if (x <= m.x && xw >= m.x   && y <= m.y && yh >= m.y) {
           if (e.which == 1) {                         // left mouse button is pressed
               rect.xPlus = rect.x - m.x;              // cursor shift relative to the cargo on the x
               rect.yPlus = rect.y - m.y;              // cursor shift relative to the cargo on the y
               mx_ = m.x;
               count = false;
               document.onmousemove = mouseMove;       // while a key is pressed, fanction of motions is correct
           }
       }
   };
   document.onmouseup = function(e) {            // function when you release the mouse button
   document.onmousemove = null;                  // when the key is released, no movement function
       count = true;
   };
   function mouseMove(e) {                     // function when you move the mouse, it works only while holding LKM
       var m = mouseCoords(e);                 // we get estimated coordinates of the mouse cursor
       rect.x = m.x + rect.xPlus;

// v = 6.0 * (m.x - mx_) / dt / fps; // inertia preservation

       v = 0;
       mx_ = m.x;
   }
   function mouseCoords(e) {                   // function returns the calculated coordinates of the mouse cursor
       var m = [];
       var rect = canvas.getBoundingClientRect();
       m.x = (e.clientX - rect.left);
       m.y = (e.clientY - rect.top);
       return m;
   }
   //  plot
   var vGraph = new TM_graph(                  // determine the plot
       "#vGraph",                              // on html-element #vGraph
       250,                                    // the number of steps by "x" axis
       -1, 1, 0.2);                            //  min value of Y-axis, max value of Y-axis, Y-axis step
   function control() {
       calculate();
       draw();
       requestAnimationFrame(control);
   }
   control()

// setInterval(control, 1000 / fps); // start of the system

   function calculate() {
       if (!count) return;
       for (var s=1; s<=spf; s++) {
           var f = -B*v - C * (rect.x - x0) - C1*Math.pow(rect.x - x0,3)+2*F*Math.sin(t);
                       v += f / m * dt;
                       //console.log(f);
           rect.x += v * dt;
                       t+= dt;
           steps++;
           if (steps % 80 == 0) vGraph.graphIter(steps, (rect.x-x0)/canvas.width*2);   // infeed graph data
       }
   }
   function draw() {
       ctx.clearRect(0, 0, w, h);
               draw_spring(startX, rect.x, h/2, 10, 50);
       ctx.fillStyle = "#0000ff";
       ctx.fillRect(rect.x, rect.y, rect.width, rect.height);
   }


       function draw_spring(x_start, x_end, y, n, h) {
           ctx.lineWidth = 2;
       ctx.strokeStyle = "#7394cb";
               var L = x_end - x_start;
               for (var i = 0; i < n; i++) {
                       var x_st = x_start + L / n * i;
                       var x_end = x_start + L / n * (i + 1);
                       var l = x_end - x_st;
                       ctx.beginPath();
                       ctx.bezierCurveTo(x_st, y, x_st + l / 4, y + h, x_st + l / 2, y);
                       ctx.bezierCurveTo(x_st + l / 2, y, x_st + 3 * l / 4, y - h, x_st + l, y);
                       ctx.stroke();
               }
       }
}