"Crystal"

From Department of Theoretical and Applied Mechanics
Jump to: navigation, search
Department of Theoretical and Applied Mechanics > "Crystal"
Diamond.jpg

The project is dedicated:

  • definition of the link between the mechanical characteristics describing linear elastic properties crystalline solids at the micro and macro levels;
  • definition of numerical values elastic characteristics at the micro level on the known experimental values elastic characteristics at the macro level.

It covers the following characteristics:

  • at the micro level: the rigidity of the interatomic bonds;
  • at the macro level: elastic material characteristics such as stiffness tensor components, the Young's modulus, Poisson's ratio, etc.

Considered model

The following table considered models classified by type and lattices of type interaction. For each model listed responsible for research (as of 2010). Work carried out under the supervision of Anton Krivtsov

Structure Interaction
Lattice Groups Atoms
stacked
Modules
elasticity
Power Moment 3-partial 4-partial
ОЦК 1 3 N.Dvas М.Kalmikova
ГЦК ABCABC 1 3 I.Neugebauer I.Neugebauer I.Neugebauer
ГПУ ABABAB 2 5 E.Podolskaya E.Podolskaya
Diamond ABCABC 2 3 I.Neugebauer O.Loboda S.Hakalo I.Berinskii
Lonsdale ABABAB 4 5 S.Hakalo
Graphene 2D 2 2 I.Neugebauer I.Berinskii I.Berinskii I.Berinskii
Graphene 3D 2 8 А.Kudarova, V.Kuzkin
α - graphite ABABAB 4 5 S.Hakalo
β - graphite ABCABC 2  ? S.Hakalo

See also

link

Project publications

  • E.A. Podolskaya, A.M. Krivtsov, A.Yu. Panchenko. Stability and Structural Transitions in Crystal Lattices // Altenbach/Morozov (Eds), Surface Effects in Solid Mechanics (Series: Advanced Structured Materials Vol. 30), 2012, P. 131-141 (Скачать корректуру pdf: 215 Kb)
  • A.M. Krivtsov, V.A. Kuzkin, Derivation of Equations of State for Ideal Crystals of Simple Structure // Mech. Solids. 46 (3), 387-399 (2011)
  • Eremeyev V.A., Ivanova E.A., Indeitsev D.A. Wave processes in nanostructures formed by nanotube arrays or nanosize crystals. // Journal of Applied Mechanics and Technical Physics. 2010. Vol. 51. N 4. P. 569-578.
  • V.A. Kuzkin, A.M. Krivtsov. Thermo-mechanical effects in perfect crystals. // ArXiv:1004.3008v1 [cond-mat.mtrl-sci]. 2010. Also published in Proc. of IUTAM Symposium on The Vibration Analysis of Structures with Uncertainties (St. Petersburg, Russia, 2009), Springer, 2011, pp. 403-416. (Download pdf: 525 kb)
  • Kuzkin V.A., Krivtsov A.M. Thermo-mechanical effects in perfect crystals // Proc. of IUTAM Symposium on The Vibration Analysis of Structures with Uncertainties, 2009, pp. 403-416. (ArXive)
  • V.A. Kuzkin. Equivalent thermo-mechanical parameters for perfect crystals with arbitrary multibody potential // Proc. of XXXVII Summer School – Conference “Advanced Problems in Mechanics”. St. Petersburg. 2009. P. 421-431
  • V.A. Kuzkin, A.M. Krivtsov. Thermo-mechanical effects in perfect crystals // Proc. of IUTAM Symposium on The Vibration Analysis of Structures with Uncertainties, 2009 [paper in press].
  • V.A. Kuzkin, A. M. Krivtsov. Thermomechanical effects in perfect crystals with arbitrary multibody potential. // Proc. of Int. Conf. on Advances in Materials Science. Prague. 2009. III, 30-34.
  • O. S. Loboda, A.M. Krivtsov. Determination mechanical properties of nanostructures with complex crystal lattice using moment interaction at microscale. Scale effect in elastic properties. Reviews on advanced materials science. 2009, Vol. 20, № 2.
  • Alexander A. Le-Zakharov, Anton M. Krivtsov. Molecular dynamics modeling of heat wave propagation in crystals // Proc. of XXXVI Summer School – Conference “Advanced Problems in Mechanics”. St. Petersburg. 2008. P. 420-425

Asiya Kudarova. Modeling of graphene crystal lattice. // Proc. of XXXVI Summer School – Conference “Advanced Problems in Mechanics”. St. Petersburg. 2008. P. 388-393.

  • V.A. Kuzkin, A.M. Krivtsov. Microscopic Derivation of the Equation of State for Perfect Crystals // Proceedings of the Sixth International Conference on Engineering Computational Technology, M. Papadrakakis and B.H.V. Topping, (Editors), Civil-Comp Press, Stirlingshire, Scotland, paper 145, 2008
  • E.A. Podolskaya. Modeling of hexagonal close-packed crystal lattices // Proc. of XXXVI Summer School – Conference “Advanced Problems in Mechanics”. St. Petersburg. 2008. P. 533-537
  • I. E. Berinskiy, A. M. Krivtsov. Stability analysis of graphite crystal lattice with moment interactions. // Proc. of XXXIV Summer School "Advanced Problems in Mechanics", St.-Petersburg, Russia. 2007, 63-71.
  • Olga S. Loboda. Scale effect in elastic properties of nanostructures with complex crystal lattices. // Proc. of XXXIV Summer School "Advanced Problems in Mechanics", St. Petersburg, Russia. 2007, 341-349.
  • Krivtsov A. M. MD modeling of low-cycle high-amplitude loading of monocrystal material with defects. // Proc. of XXXIII Summer School “Advanced Problems in Me¬chanics”, St. Petersburg, Russia, 2006, 341-346.
  • Krivtsov A. MD modeling of low-cycle high-amplitude loading of monocrystal material with defects. // Book of abstracts. XXXIV Summer School “Advanced Problems in Mechanics 2006”, St. Petersburg, Russia, 53.
  • Loboda O. S. Comparison of discrete and continuum modeling for 2D nanocrystal stripe vibrations. // Proc. of XXXIII Summer School “Advanced Problems in Mechanics”, St. Petersburg, Russia, 2006, 243-250.
  • Лобода О. С., Кривцов А. М. Влияние масштабного фактора на модули упругости трехмерного нанокристалла // Известия РАН. Механика твердого тела. № 4, 2005, с. 27-41. To be translated to English in: Scale effect in elastic modules for 3D-nanocrystals. Mechanics of Solids. Vol. 4, pp. 20-32.
  • Krivtsov A. M. Molecular dynamics simulation of impact fracture in polycrystalline materials. // Meccanica, 2003, 38(1), 61–70.