Difference between revisions of "Analysis of a simple harmonic oscillator"

From Department of Theoretical and Applied Mechanics
Jump to: navigation, search
m
m
Line 5: Line 5:
 
</math>
 
</math>
  
Here is the program showing the dependence of the speed of movement of the sinker on a linear spring. For starters to get this dependency.  
+
Here is the program plotting the velocity of a mass on a linear spring. For starters to get this dependency.  
 
+
The Hooke's law has the form:
We write the Hooke's law:
 
 
::<math>
 
::<math>
 
F = - Cu,
 
F = - Cu,
Line 16: Line 15:
 
</math>
 
</math>
  
Divide by <math>m</math> and multiply by <math>\dot u</math>:
+
Dividing by <math>m</math> and multiplying by <math>\dot u</math> we arrive at:
 
::<math>
 
::<math>
 
\ddot u \dot u + \omega^2 \dot u u = 0, \quad \omega_0 \MYdef \sqrt{\frac{C}{m}},
 
\ddot u \dot u + \omega^2 \dot u u = 0, \quad \omega_0 \MYdef \sqrt{\frac{C}{m}},
Line 29: Line 28:
 
</math>
 
</math>
  
We introduce the notation:
+
By introducing notation
 
::<math>\frac{\dot u}{\omega} = y, \quad u = x</math>.
 
::<math>\frac{\dot u}{\omega} = y, \quad u = x</math>.
  
We get the formula of the circle:
+
We obtain:
 
<math> y^2 + x^2 = 0 </math>.
 
<math> y^2 + x^2 = 0 </math>.
 
We get the formula of the circle:
 
  
 
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Tcvetkov/Spring/New_spring_v1.3_no_constructor/draw_spring.html |width=830 |height=550 |border=0 }}
 
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Tcvetkov/Spring/New_spring_v1.3_no_constructor/draw_spring.html |width=830 |height=550 |border=0 }}
  
Разработчики: [[D.V. Tsvetkov]], [[A.M. Krivtsov]].
+
Developers: [[D.V. Tsvetkov]], [[A.M. Krivtsov]].
  
[[Category: Virtual laboratory]]
+
<!--[[Category: Virtual laboratory]]
 
[[Category: Programming]]
 
[[Category: Programming]]
[[Category: JavaScript]]
+
[[Category: JavaScript]]-->

Revision as of 01:21, 9 June 2016

[math] \def\MYdef{\mathrel{\stackrel{\rm def}=}} \def\({\left(} \def\){\right)} [/math]

Here is the program plotting the velocity of a mass on a linear spring. For starters to get this dependency. The Hooke's law has the form:

[math] F = - Cu, [/math]
[math] m \ddot u + Cu = 0. [/math]

Dividing by [math]m[/math] and multiplying by [math]\dot u[/math] we arrive at:

[math] \ddot u \dot u + \omega^2 \dot u u = 0, \quad \omega_0 \MYdef \sqrt{\frac{C}{m}}, [/math]
[math] \dot u^2 + \omega^2 u^2 = 0, \quad \(x^2(t)\)'_t = 2x(t)\dot u(t), [/math]
[math] \(\frac{\dot u}{\omega}\)^2 + u^2 = 0. [/math]

By introducing notation

[math]\frac{\dot u}{\omega} = y, \quad u = x[/math].

We obtain: [math] y^2 + x^2 = 0 [/math].

Developers: D.V. Tsvetkov, A.M. Krivtsov.