Difference between revisions of "Analysis of a simple harmonic oscillator"
From Department of Theoretical and Applied Mechanics
m |
|||
(4 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[ru:Исследование простейшей линейной колебательной системы]] | ||
+ | We developed a program that calculates the actual velocity of a mass on a linear spring. | ||
<math> | <math> | ||
\def\MYdef{\mathrel{\stackrel{\rm def}=}} | \def\MYdef{\mathrel{\stackrel{\rm def}=}} | ||
Line 4: | Line 6: | ||
\def\){\right)} | \def\){\right)} | ||
</math> | </math> | ||
− | + | The Hooke's law has the form: | |
− | |||
− | |||
− | |||
::<math> | ::<math> | ||
F = - Cu, | F = - Cu, | ||
Line 16: | Line 15: | ||
</math> | </math> | ||
− | + | Dividing by <math>m</math> and multiplying by <math>\dot u</math> we arrive at: | |
::<math> | ::<math> | ||
\ddot u \dot u + \omega^2 \dot u u = 0, \quad \omega_0 \MYdef \sqrt{\frac{C}{m}}, | \ddot u \dot u + \omega^2 \dot u u = 0, \quad \omega_0 \MYdef \sqrt{\frac{C}{m}}, | ||
Line 29: | Line 28: | ||
</math> | </math> | ||
− | + | By introducing notation | |
::<math>\frac{\dot u}{\omega} = y, \quad u = x</math>. | ::<math>\frac{\dot u}{\omega} = y, \quad u = x</math>. | ||
− | We | + | We obtain: |
<math> y^2 + x^2 = 0 </math>. | <math> y^2 + x^2 = 0 </math>. | ||
− | |||
− | |||
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Tcvetkov/Spring/New_spring_v1.3_no_constructor/draw_spring.html |width=830 |height=550 |border=0 }} | {{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Tcvetkov/Spring/New_spring_v1.3_no_constructor/draw_spring.html |width=830 |height=550 |border=0 }} | ||
− | + | Developers: [[D.V. Tsvetkov]], [[A.M. Krivtsov]]. | |
− | [[Category: Virtual laboratory]] | + | <!--[[Category: Virtual laboratory]] |
[[Category: Programming]] | [[Category: Programming]] | ||
− | [[Category: JavaScript]] | + | [[Category: JavaScript]]--> |
Latest revision as of 18:31, 18 January 2017
We developed a program that calculates the actual velocity of a mass on a linear spring.
The Hooke's law has the form:Dividing by
and multiplying by we arrive at:By introducing notation
- .
We obtain:
.
Developers: D.V. Tsvetkov, A.M. Krivtsov.