Difference between revisions of "Kelvin's medium"

From Department of Theoretical and Applied Mechanics
Jump to: navigation, search
(Created page with "Виртуальная лаборатория>Одномерная среда Кельвина <HR> Kelvin dimensional medium - chain consisting of a solids interacti...")
 
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Виртуальная лаборатория]]>[[Одномерная среда Кельвина]] <HR>
+
[[ru:Одномерная среда Кельвина]]
 
+
<!--[[Виртуальная лаборатория]]>[[One-dimensional Kelvin medium]] <HR>-->
Kelvin dimensional medium - chain consisting of a solids interacting via the torque capacities . In this example, solids visualized rods rigidly connected with the bodies themselves.  
+
Kelvin's one-dimensional medium is a chain consisting of masses interacting via a pair torque potential. In this example the masses are visualized by rods.  
The bodies interact by means of the torque capacities:
+
The masses interact via the torque potential:
 
::<math>
 
::<math>
 
U = C({\bf n}_{1}\cdot{\bf n}_{2})
 
U = C({\bf n}_{1}\cdot{\bf n}_{2})
 
</math>,
 
</math>,
where C - constant characterizing the interaction, n1, n2 - the unit vector associated with the bodies. The moment of interaction:
+
where <math>C</math> is the interaction constant, <math>\bf{n}_1</math>, <math>\bf{n}_2</math> are the unit vectors bound to the masses. The interaction torque has the form:
 
::<math>
 
::<math>
{\bf M}_{1} = {\bf n}_{1}\times\frac{\partial U}{\partial {\bf n}_{1}} = С({\bf n}_{1}\times{\bf n}_{2})
+
{\bf M}_{1} = {\bf n}_{1}\times\frac{\partial U}{\partial {\bf n}_{1}} = C({\bf n}_{1}\times{\bf n}_{2})
 
</math>
 
</math>
Then the motion equation of the k-th particle takes the form:
+
Then the motion equation for the k-th particle is as follows:
 
::<math>
 
::<math>
 
J\ddot{\bf \phi}_{k} = C(({\bf n}_{k}\times{\bf n}_{k+1}) + ({\bf n}_{k}\times{\bf n}_{k-1}))
 
J\ddot{\bf \phi}_{k} = C(({\bf n}_{k}\times{\bf n}_{k+1}) + ({\bf n}_{k}\times{\bf n}_{k-1}))

Latest revision as of 18:51, 18 January 2017

Kelvin's one-dimensional medium is a chain consisting of masses interacting via a pair torque potential. In this example the masses are visualized by rods. The masses interact via the torque potential:

[math] U = C({\bf n}_{1}\cdot{\bf n}_{2}) [/math],

where [math]C[/math] is the interaction constant, [math]\bf{n}_1[/math], [math]\bf{n}_2[/math] are the unit vectors bound to the masses. The interaction torque has the form:

[math] {\bf M}_{1} = {\bf n}_{1}\times\frac{\partial U}{\partial {\bf n}_{1}} = C({\bf n}_{1}\times{\bf n}_{2}) [/math]

Then the motion equation for the k-th particle is as follows:

[math] J\ddot{\bf \phi}_{k} = C(({\bf n}_{k}\times{\bf n}_{k+1}) + ({\bf n}_{k}\times{\bf n}_{k-1})) [/math]