Difference between revisions of "Comparison of solitons and waves"
From Department of Theoretical and Applied Mechanics
m |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[ru:Сравнение солитона с волной]] | ||
<!--[[ТМ|Кафедра ТМ]] > [[Проект "Термокристалл"]] > [[Compare soliton with wave]] <HR> | <!--[[ТМ|Кафедра ТМ]] > [[Проект "Термокристалл"]] > [[Compare soliton with wave]] <HR> | ||
[[Виртуальная лаборатория]] > [[Compare soliton with wave]] <HR>--> | [[Виртуальная лаборатория]] > [[Compare soliton with wave]] <HR>--> | ||
Line 4: | Line 5: | ||
To demonstrate a soliton propagation, we numerically solve the Korteweg–de Vries equation. It has the form: | To demonstrate a soliton propagation, we numerically solve the Korteweg–de Vries equation. It has the form: | ||
::<math>\dot U + UU' + CU''' = 0</math>. | ::<math>\dot U + UU' + CU''' = 0</math>. | ||
− | To obtain | + | To obtain a numerical solution we successively calculate derivatives <math>U'</math>, <math>U''</math> and <math>U'''</math>, using the central difference method: |
::<math>U' = \frac{U_{n+1} - U_{n-1}}{2\Delta x}</math>, | ::<math>U' = \frac{U_{n+1} - U_{n-1}}{2\Delta x}</math>, | ||
::<math>U'' = \frac{U_{n+2} - 2U_{n} + U_{n-2}}{4\Delta x} \approx \frac{U_{n+1} - 2U_{n} + U_{n-1}}{2\Delta x}</math>, | ::<math>U'' = \frac{U_{n+2} - 2U_{n} + U_{n-2}}{4\Delta x} \approx \frac{U_{n+1} - 2U_{n} + U_{n-1}}{2\Delta x}</math>, |
Latest revision as of 18:53, 18 January 2017
To demonstrate a soliton propagation, we numerically solve the Korteweg–de Vries equation. It has the form:
- .
To obtain a numerical solution we successively calculate derivatives
, and , using the central difference method:- ,
- ,
- .
The soliton is indicated by the purple outline, the moving wave is shown by a turquoise gradient.
Coded by Tsvetkov Denis, the code written by Alexander Yavorsky (link) was used to accomplish the work.