Difference between revisions of "Нелинейные колебания груза с вынуждающей силой"
(Created page with "500px == Annotation to the project == In this project we study the nonlinear osci...") |
|||
(8 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
== Statement of the problem == | == Statement of the problem == | ||
− | + | Let suspended on a non-linear spring load mass m experiences the external force F, the change in law F = sin (t) | |
− | * | + | * write a program in JavaScript, simulating the behavior of the load when setting various parameters of the system..<br> |
− | == | + | == General information about the subject== |
− | + | If the oscillatory system is affected by periodically changing external force, then the system makes fluctuations which nature | |
− | + | to some extent repeats nature of change of this force. Such fluctuations are called '''compelled'''. | |
− | F0 | + | F0 is called the amplitude of the force which is also the highest value of force. |
{| | {| | ||
|- | |- | ||
− | | | + | | |
+ | Thanks to the work carried out by an external force, increasing the maximum values, which reach the potential energy of the spring and the kinetic energy of the load. Loss to overcome the resistance forces will increase. Finally, the moment will come when the work of the external force will exactly offset the energy losses in the system. Further increase of fluctuations in system will stop, and fluctuations with some constant amplitude will be established. || [[File:123.png|thumbnail|Характер амплитуды]] | ||
|} | |} | ||
− | + | ||
+ | equation of motion: | ||
<math>m\ddot x = -kx -{k_1}x^3 + {F_0}sin(t) - B \dot x</math> | <math>m\ddot x = -kx -{k_1}x^3 + {F_0}sin(t) - B \dot x</math> | ||
− | == | + | == Visualization in JavaScript == |
{{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Kiselev/Spring/Springs.html |width=800 |height=800 |border=0 }} | {{#widget:Iframe |url=http://tm.spbstu.ru/htmlets/Kiselev/Spring/Springs.html |width=800 |height=800 |border=0 }} | ||
− | + | Download program: [[Медиа:SpringNoLine.rar|SpringNoLine.rar]] | |
− | ''' | + | '''''' <div class="mw-collapsible-content"> |
Файл '''"Spring.js"''' | Файл '''"Spring.js"''' | ||
<syntaxhighlight lang="javascript" enclose="div"> | <syntaxhighlight lang="javascript" enclose="div"> | ||
Line 34: | Line 36: | ||
function Main_Spring() { | function Main_Spring() { | ||
var canvas = spring_canvas; | var canvas = spring_canvas; | ||
− | canvas.onselectstart = function () {return false;}; // | + | canvas.onselectstart = function () {return false;}; // ban selection canvas |
− | var ctx = canvas.getContext("2d"); // | + | var ctx = canvas.getContext("2d"); // drawing on ctx |
− | var w = canvas.width; // | + | var w = canvas.width; // width of the window in the calculated coordinates |
− | var h = canvas.height; // | + | var h = canvas.height; // the height of the window in the calculated coordinates |
− | var Pi = 3.1415926; // | + | var Pi = 3.1415926; // "Pi" |
− | var m0 = 1; // | + | var m0 = 1; // weight scale |
− | var T0 = 1; // | + | var T0 = 1; // time scale(period of fluctuations of initial system) |
var t = 0; | var t = 0; | ||
− | var k0 = 2 * Pi / T0; // | + | var k0 = 2 * Pi / T0; // frequency scale |
− | var C0 = m0 * k0 * k0; // | + | var C0 = m0 * k0 * k0; // hardness scale |
− | var B0 = 2 * m0 * k0; // | + | var B0 = 2 * m0 * k0; // viscosity scale |
var omega = 10; | var omega = 10; | ||
− | // *** | + | // *** physical parameters *** |
var F = 80; | var F = 80; | ||
− | var m = 1 * m0; // | + | var m = 1 * m0; // mass |
− | var C = 1 * C0; // | + | var C = 1 * C0; // rigidity |
− | var C1 = 1 * C0; // | + | var C1 = 1 * C0; // rigidity1 |
− | var B = .1 * B0; // | + | var B = .1 * B0; // viscosity |
slider_m.value = (m / m0).toFixed(1); number_m.value = (m / m0).toFixed(1); | slider_m.value = (m / m0).toFixed(1); number_m.value = (m / m0).toFixed(1); | ||
Line 60: | Line 62: | ||
slider_F.value = (F / 40).toFixed(1); number_F.value = (F / 40).toFixed(1); | slider_F.value = (F / 40).toFixed(1); number_F.value = (F / 40).toFixed(1); | ||
− | // *** | + | // *** computing parameters*** |
− | var fps = 300; // frames per second | + | var fps = 300; // frames per second |
− | var spf = 100; // steps per frame | + | var spf = 100; // steps per frame |
− | var dt = 0.05 * T0 / fps; // | + | var dt = 0.05 * T0 / fps; // integration step |
− | var steps = 0; // | + | var steps = 0; // number of integration steps |
function setM(new_m) {m = new_m * m0;} | function setM(new_m) {m = new_m * m0;} | ||
Line 84: | Line 86: | ||
number_F.oninput = function() {slider_F.value = number_F.value; setF(number_F.value);}; | number_F.oninput = function() {slider_F.value = number_F.value; setF(number_F.value);}; | ||
− | var count = true; // | + | var count = true; // whether to carry out calculation of system |
− | var v = 0; // | + | var v = 0; // body speed |
var rw = canvas.width / 30; | var rw = canvas.width / 30; | ||
Line 92: | Line 94: | ||
var y0 = rh / 1.33 - rh / 2; | var y0 = rh / 1.33 - rh / 2; | ||
− | // | + | // spring parameters |
− | var coil = 10; // | + | var coil = 10; // number of turns |
− | var startX = 0; // | + | var startX = 0; // fixing of a spring |
− | // | + | // create a rectangle= |
var rect = { | var rect = { | ||
x: x0, width: rw, | x: x0, width: rw, | ||
y: y0, height: rh, | y: y0, height: rh, | ||
− | fill: "rgba(0, 0, 255, 1)" // | + | fill: "rgba(0, 0, 255, 1)" // color |
}; | }; | ||
− | // | + | // capture a rectangle with the mouse |
− | var mx_; // | + | var mx_; // position buffer of a mouse |
− | document.onmousedown = function(e) { // | + | document.onmousedown = function(e) { // function when pressing a key of a mouse |
− | var m = mouseCoords(e); // | + | var m = mouseCoords(e); // receive settlement coordinates of the cursor of a mouse |
var x = rect.x; | var x = rect.x; | ||
Line 113: | Line 115: | ||
var yh = rect.y + rect.height; | var yh = rect.y + rect.height; | ||
if (x <= m.x && xw >= m.x && y <= m.y && yh >= m.y) { | if (x <= m.x && xw >= m.x && y <= m.y && yh >= m.y) { | ||
− | if (e.which == 1) { // | + | if (e.which == 1) { // Left mouse button is pressed |
− | rect.xPlus = rect.x - m.x; // | + | rect.xPlus = rect.x - m.x; // shift of the cursor on an axis x |
− | rect.yPlus = rect.y - m.y; // | + | rect.yPlus = rect.y - m.y; // shift of the cursor on an axis y |
mx_ = m.x; | mx_ = m.x; | ||
count = false; | count = false; | ||
− | document.onmousemove = mouseMove; // | + | document.onmousemove = mouseMove; // until a key is pressed - movement function works |
} | } | ||
} | } | ||
}; | }; | ||
− | document.onmouseup = function(e) { // | + | document.onmouseup = function(e) { // function when you release the mouse button |
− | document.onmousemove = null; // | + | document.onmousemove = null; // when the key is released - there is no function of movement |
count = true; | count = true; | ||
}; | }; | ||
− | function mouseMove(e) { // | + | function mouseMove(e) { // function when you move the mouse (It works only while holding LMB) |
− | var m = mouseCoords(e); // | + | var m = mouseCoords(e); // We get estimated coordinates of the mouse cursor |
rect.x = m.x + rect.xPlus; | rect.x = m.x + rect.xPlus; | ||
− | // v = 6.0 * (m.x - mx_) / dt / fps; // | + | // v = 6.0 * (m.x - mx_) / dt / fps; // inertia preservation |
v = 0; | v = 0; | ||
mx_ = m.x; | mx_ = m.x; | ||
} | } | ||
− | function mouseCoords(e) { // | + | function mouseCoords(e) { // function returns the calculated coordinates of the mouse cursor |
var m = []; | var m = []; | ||
var rect = canvas.getBoundingClientRect(); | var rect = canvas.getBoundingClientRect(); | ||
Line 144: | Line 146: | ||
} | } | ||
− | // | + | // graph |
− | var vGraph = new TM_graph( // | + | var vGraph = new TM_graph( // define the graph |
− | "#vGraph", // | + | "#vGraph", // html #vGraph |
− | 250, // | + | 250, // how many steps on the "x" axis shows |
− | -1, 1, 0.2); // | + | -1, 1, 0.2); // min. value of axis Y, max. value of axis Y, step on axis Y |
function control() { | function control() { | ||
Line 156: | Line 158: | ||
} | } | ||
control(); | control(); | ||
− | // setInterval(control, 1000 / fps); // | + | // setInterval(control, 1000 / fps); // Starting system |
function calculate() { | function calculate() { |
Latest revision as of 23:27, 31 May 2016
thumb|Nonlinear Oscillations of cargo with the driving force|500px
Contents
Annotation to the project[edit]
In this project we study the nonlinear oscillations of the load acting on it with a periodic force
Statement of the problem[edit]
Let suspended on a non-linear spring load mass m experiences the external force F, the change in law F = sin (t)
- write a program in JavaScript, simulating the behavior of the load when setting various parameters of the system..
General information about the subject[edit]
If the oscillatory system is affected by periodically changing external force, then the system makes fluctuations which nature to some extent repeats nature of change of this force. Such fluctuations are called compelled.
F0 is called the amplitude of the force which is also the highest value of force.
Thanks to the work carried out by an external force, increasing the maximum values, which reach the potential energy of the spring and the kinetic energy of the load. Loss to overcome the resistance forces will increase. Finally, the moment will come when the work of the external force will exactly offset the energy losses in the system. Further increase of fluctuations in system will stop, and fluctuations with some constant amplitude will be established. || |
equation of motion:
Visualization in JavaScript[edit]
Download program: SpringNoLine.rar
'Файл "Spring.js" <syntaxhighlight lang="javascript" enclose="div">
window.addEventListener("load", Main_Spring, true); function Main_Spring() { var canvas = spring_canvas; canvas.onselectstart = function () {return false;}; // ban selection canvas var ctx = canvas.getContext("2d"); // drawing on ctx var w = canvas.width; // width of the window in the calculated coordinates var h = canvas.height; // the height of the window in the calculated coordinates var Pi = 3.1415926; // "Pi" var m0 = 1; // weight scale var T0 = 1; // time scale(period of fluctuations of initial system) var t = 0; var k0 = 2 * Pi / T0; // frequency scale var C0 = m0 * k0 * k0; // hardness scale var B0 = 2 * m0 * k0; // viscosity scale var omega = 10; // *** physical parameters *** var F = 80; var m = 1 * m0; // mass var C = 1 * C0; // rigidity var C1 = 1 * C0; // rigidity1 var B = .1 * B0; // viscosity slider_m.value = (m / m0).toFixed(1); number_m.value = (m / m0).toFixed(1); slider_C.value = (C / C0).toFixed(1); number_C.value = (C / C0).toFixed(1); slider_C1.value = (C / C0).toFixed(1); number_C1.value = (C / C0).toFixed(1); slider_B.value = (B / B0).toFixed(1); number_B.value = (B / B0).toFixed(1); slider_F.value = (F / 40).toFixed(1); number_F.value = (F / 40).toFixed(1);
// *** computing parameters***
var fps = 300; // frames per second var spf = 100; // steps per frame var dt = 0.05 * T0 / fps; // integration step var steps = 0; // number of integration steps
function setM(new_m) {m = new_m * m0;} function setC(new_C) {C = new_C * C0;} function setC1(new_C1) {C1 = new_C1 * C0 * 0.067;} function setB(new_B) {B = new_B * B0;} function setF(new_F) {F = new_F * 40;}
slider_m.oninput = function() {number_m.value = slider_m.value; setM(slider_m.value);}; number_m.oninput = function() {slider_m.value = number_m.value; setM(number_m.value);}; slider_C.oninput = function() {number_C.value = slider_C.value; setC(slider_C.value);}; number_C.oninput = function() {slider_C.value = number_C.value; setC(number_C.value);}; slider_C1.oninput = function() {number_C1.value = slider_C1.value; setC1(slider_C1.value);}; number_C1.oninput = function() {slider_C1.value = number_C1.value; setC1(number_C1.value);}; slider_B.oninput = function() {number_B.value = slider_B.value; setB(slider_B.value);}; number_B.oninput = function() {slider_B.value = number_B.value; setB(number_B.value);}; slider_F.oninput = function() {number_F.value = slider_F.value; setF(slider_F.value);}; number_F.oninput = function() {slider_F.value = number_F.value; setF(number_F.value);};
var count = true; // whether to carry out calculation of system var v = 0; // body speed
var rw = canvas.width / 30; var rh = canvas.height / 1.5; var x0 = 15 * rw - rw / 2; var y0 = rh / 1.33 - rh / 2;
// spring parameters var coil = 10; // number of turns var startX = 0; // fixing of a spring
// create a rectangle= var rect = { x: x0, width: rw, y: y0, height: rh, fill: "rgba(0, 0, 255, 1)" // color };
// capture a rectangle with the mouse var mx_; // position buffer of a mouse document.onmousedown = function(e) { // function when pressing a key of a mouse var m = mouseCoords(e); // receive settlement coordinates of the cursor of a mouse
var x = rect.x; var xw = rect.x + rect.width; var y = rect.y; var yh = rect.y + rect.height; if (x <= m.x && xw >= m.x && y <= m.y && yh >= m.y) { if (e.which == 1) { // Left mouse button is pressed rect.xPlus = rect.x - m.x; // shift of the cursor on an axis x rect.yPlus = rect.y - m.y; // shift of the cursor on an axis y mx_ = m.x; count = false; document.onmousemove = mouseMove; // until a key is pressed - movement function works } } };
document.onmouseup = function(e) { // function when you release the mouse button document.onmousemove = null; // when the key is released - there is no function of movement count = true; };
function mouseMove(e) { // function when you move the mouse (It works only while holding LMB) var m = mouseCoords(e); // We get estimated coordinates of the mouse cursor rect.x = m.x + rect.xPlus;
// v = 6.0 * (m.x - mx_) / dt / fps; // inertia preservation
v = 0; mx_ = m.x; }
function mouseCoords(e) { // function returns the calculated coordinates of the mouse cursor var m = []; var rect = canvas.getBoundingClientRect(); m.x = (e.clientX - rect.left); m.y = (e.clientY - rect.top); return m; }
// graph var vGraph = new TM_graph( // define the graph "#vGraph", // html #vGraph 250, // how many steps on the "x" axis shows -1, 1, 0.2); // min. value of axis Y, max. value of axis Y, step on axis Y
function control() { calculate(); draw(); requestAnimationFrame(control); } control();
// setInterval(control, 1000 / fps); // Starting system
function calculate() { if (!count) return; for (var s=1; s<=spf; s++) { var f = -B*v - C * (rect.x - x0) - C1*Math.pow(rect.x - x0,3)+2*F*Math.sin(t);
v += f / m * dt; //console.log(f);
rect.x += v * dt;
t+= dt;
steps++; if (steps % 80 == 0) vGraph.graphIter(steps, (rect.x-x0)/canvas.width*2); // подать данные на график }
}
function draw() { ctx.clearRect(0, 0, w, h);
draw_spring(startX, rect.x, h/2, 10, 50);
ctx.fillStyle = "#0000ff"; ctx.fillRect(rect.x, rect.y, rect.width, rect.height); }
function draw_spring(x_start, x_end, y, n, h) {
ctx.lineWidth = 2;
ctx.strokeStyle = "#7394cb";
var L = x_end - x_start; for (var i = 0; i < n; i++) { var x_st = x_start + L / n * i; var x_end = x_start + L / n * (i + 1); var l = x_end - x_st; ctx.beginPath(); ctx.bezierCurveTo(x_st, y, x_st + l / 4, y + h, x_st + l / 2, y); ctx.bezierCurveTo(x_st + l / 2, y, x_st + 3 * l / 4, y - h, x_st + l, y); ctx.stroke(); } }
}