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1.  Introduction

At macrolevel, heat propagation is usually diffusive and 
well-described by the Fourier law. The law assumes linear 
dependence between the heat flux and temperature gradient 
with proportionality coefficient referred to as heat conduc-
tivity. Phonon theory relates the heat conductivity coefficient 
with the phonon mean free path [1, 2]. It is assumed that the 
Fourier law is valid if the mean free path is much smaller than 
characteristic size of the system. At micro- and nanolevel, this 
condition may be violated. In particular, it is shown exper
imentally that the mean free path can be as large as several 

microns [3]. In this case, the heat transport is ballistic [3–9] 
and can not be described by the Fourier law. In particular, 
the effective heat conductivity is size-dependent [4–6] and it 
can not be regarded as a material constant. This phenomenon 
leads to a variety of practical applications of heat transport in 
micro- and nanosystems (see e.g. review paper [10]). On the 
other hand, the derivation of macroscopic heat transport equa-
tions  from lattice dynamics equations  is a serious challenge 
for theoreticians [11].

One of the convenient models for investigation of heat 
transport in solids is a harmonic crystal. Heat transport in har-
monic crystals is usually investigated in a steady-state regime. 
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Stationary temperature distribution between two reservoirs 
with different temperatures3 is considered. For example, in a 
pioneering work by Reider, Lebowitz and Lieb [12], anomalies 
of the heat transport in one-dimensional harmonic chain with 
nearest neighbor interactions are demonstrated and an analyt-
ical solution of the steady heat transport problem is derived. 
The solution shows that thermal resistance of the chain4 is inde-
pendent of its length. Therefore the effective heat conductivity 
diverges with length and the Fourier law is not applicable.

Anomalous heat transport is also observed in more com-
plicated harmonic systems. The generalization of results 
obtained in paper [12] for the multidimensional case is car-
ried out in papers [13, 14]. Harmonic chains with alternating 
masses are considered in paper [15]. The effect of disorder 
on heat transport in harmonic crystals is studied in papers 
[16–19]. The influence of conservative bulk noises on non-
equilibrium steady state is investigated in papers [20–23]. The 
solution of the steady-state problem for an arbitrary harmonic 
network is obtained in paper [24]. A specific feature of the 
stationary heat transfer problem considered in the above men-
tioned papers is that the results strongly depend on the type 
of thermostat [25–27]. For example, in paper [27] it is shown 
that a specific choice of the thermostat leads to Fourier heat 
conduction in harmonic crystals. Note that the influence of 
thermostat is also observed in nonlinear systems [28].

The present paper focuses on unsteady thermal processes. 
Evolution of initial temperature field in an infinite lattice is 
considered. It allows us to investigate properties of the lat-
tice, rather than properties of the thermostat. We consider the 
initial conditions typical for molecular dynamics simulations 
of the heat transfer [29–37]. Initially, particles have random 
velocities corresponding to the initial temperature field. Initial 
displacements are equal to zero. In this case, initial kinetic and 
potential energies are not equal. Motion of particles leads to 
redistribution of energy between kinetic and potential forms5. 
After some time the energies become equal as predicted by the 
virial theorem [38]. However the theorem does not describe 
the transient process. This process is important in particular 
because it determines the short time behavior of the kinetic 
temperature. Analytical description of the transient process is 
reported only for several particular systems [39–41]. At large 
time scale, kinetic and potential energies are practically equal 
and changes of kinetic temperature are caused by the energy 
transport. Rigorous mathematical description of large time 
behavior of energy density for harmonic lattices in continuum 
limit is presented in papers [42–46]. Short time behavior of 
kinetic temperature is not considered in these works.

The main goal of the present paper is to develop an approach 
for analytical description of short and large time behavior of 
the kinetic temperature. A wide class of one- and two-dimen-
sional lattices with interactions of an arbitrary number of 
neighbors and harmonic on-site potential is considered. The 
approach is based on analysis of velocity covariances for all 
pairs of particles. A deterministic equation exactly describing 

the evolution of temperature field is derived (section 3). 
Continualization of this equation with respect to spatial coor-
dinates is carried out (section 4). The resulting continuum 
equation  is solved analytically (section 5). The expression 
for the temperature field, valid at both short and large time 
scales, is obtained. At short times, it describes oscillations 
of temperature caused by equilibration of kinetic and poten-
tial energies (fast process). From a practical viewpoint, the 
description of the fast process is important for modeling of 
fempto- and attosecond laser excitation [47–50]. At large 
time scale, the expression describes the ballistic heat transfer 
(slow process)6. Large time behavior of the solution is con-
sistent with results obtained in papers [42–46]. Additionally, 
the present work contains detailed analysis of several physi-
cally important cases, such as, oscillations of temperature in 
uniformly heated lattice (section 9.2), contact of hot and cold 
half-spaces (sections 7 and 9.3.2) and irreversible decay of 
sinusoidal temperature distribution (section 9.3.4). Analytical 
results are supported by numerical simulations.

2.  Equations of motion and initial conditions

Consider an infinite harmonic lattice with simple structure7 in 
d-dimensional space, where d = 1, 2. Each particle has one 
degree of freedom, i.e. particles move along parallel lines. 
Displacement of a particle is described by the scalar func-
tion u(x), where x is the radius vector of the particle in the 
undeformed state. Therefore the notion ‘scalar lattice’ [42, 
45, 51–53] is used.

Each particle interacts with neighbors numbered by index 
α. Vectors aα, connecting the particle with its neighbors, sat-
isfy relation8

aα = −a−α.� (1)

Since the lattice is harmonic, then the total force acting on 
the particle is a linear combination of displacements of the 
neighboring particles. Therefore the equations of motion have 
the form

ü(x) = Lu(x), Lu(x) = ω2
∗
∑
α

bαu(x + aα), bα = b−α,

� (2)
where ω∗ is a characteristic frequency (see e.g. formulas (3) 
and (5)); L is a linear difference operator9.

Equations of motion (2) cover a variety of one- and 
two-dimensional lattices. For example, the simplest one-
dimensional lattice described by equation (2) is a chain with 
nearest-neighbor interactions. In this case

Lu(x) = ω2
∗

(
u(x + a1)− 2u(x) + u(x + a−1)

)

⇒ ω∗ =
√

C
M , a±1 = ±ai, b±1 = 1, b0 = −2,

� (3)
where i is a unit vector directed along the chain; a is an equi-
librium distance between neighboring particles; C is bond 

3 Here and below kinetic temperature is considered.
4 Thermal resistance is the inverse of the heat conductivity.
5 Since the total energy is conserved, then the kinetic energy is converted to 
potential energy.

6 The term ‘ballistic heat transfer’ is also used in papers [3–8].
7 Unit cell of the lattice contains only one particle.
8 Then a0 = 0.
9 From mathematical point of view, formula (2) is a differential-difference 
equation or an infinite set of coupled ODE’s of the second order.
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stiffness; M is particle mass. Note that equation  (3) with 
appropriate choice of ω∗ also describes linearized transverse 
vibrations of a stretched chain with pair interactions [54, 55]. 
Transverse vibrations of a chain with angular interactions [56, 
57] are also described by equation (2). In this case

Lu(x) = −ω2
∗

(
u(x + a2)− 4u(x + a1) + 6u(x)− 4u(x + a−1) + u(x + a−2)

)

⇒ ω∗ =
√

Ca
Ma2 , a±1 = ±ai, a±2 = ±2ai, b0 = −6, b±1 = 4, b±2 = −1,

�
(4)

where Ca is stiffness of the angular spring. This model can be 
used, for example, for description of ballistic heat transfer in 
carbine. It can also be considered as a coarse-grained model 
for nanowires [3] or diamond nanothreads [58].

The simplest two-dimensional system described by equa-
tions of motion (2) is a stretched square lattice with nearest-
neighbor interactions performing out-of-plane vibrations. In 
this case

Lu(x) = ω2
∗

(
u(x + a1) + u(x + a2)− 4u(x) + u(x + a−1) + u(x + a−2)

)

⇒ ω∗ =
√

F
Ma , a±1 = ±ai, a±2 = ±aj, b±1 = b±2 = 1, b0 = −4,

� (5)
where i, j are orthogonal unit vectors; F is the magnitude of 
stretching force in equilibrium. This lattice is considered in 
detail in section  9. Two-dimensional scalar lattices can be 
considered as simplest models for out-of-plane (transverse) 
vibrations of 2D materials such as graphene [59–62], molyb-
denum disulphide [63, 64], boron nitride [62], etc.

Remark.  In general, an appropriate choice of parameters 
aα and bα in (2) allows to consider linearized vibrations of 
one- and two-dimensional scalar lattices. Pair and multibody 
interactions with an arbitrary number of neighbors and har-
monic on-site potential can be considered10.

We consider the following stochastic initial conditions 
typical for molecular dynamics simulations:

u(x) = 0, v(x) = v0(x),� (6)

where v = u̇; initial velocities v0(x) are uncorrelated, centered 
random numbers with zero mean. Initial conditions (6) cor-
respond to some instantaneous distribution of kinetic temper
ature in a lattice.

Note that no assumptions about distribution function for 
velocities are made. The evolution of the distribution function 
and its convergence to the Gaussian distribution are discussed 
e.g. in papers [68–70].

Equations of motion (2) with initial conditions (6) can 
be solved analytically. The solution yields random particle 
displacements and velocities. In contrast, description of 
macroscopic thermal processes usually focuses on statis-
tical characteristics such as a kinetic temperature. An equa-
tion  exactly describing the evolution of temperature field is 
derived in the following section.

3.  Covariances of velocities. Kinetic temperature

In the present section, we derive an equation for covariances 
of particle velocities. The solution of this equation  exactly 
describes evolution of kinetic temperature.

A covariance of velocities for particles with radius-vectors 
x and y is defined as

κ(x, y) =
〈

v(x)v(y)
〉

.� (7)

Here and below angle brackets 
〈

...
〉

 stands for mathematical 

expectation11. The number of covariances (7) is equal to the 
number of different particle pairs in the lattice.

The velocity covariance is related to kinetic temperature T 
by the following formula:

kBT(x) = M
〈

v(x)2
〉
= Mκ|x=y,� (8)

where kB is the Boltzmann constant.
Differentiation of covariances (7) with respect to time 

taking into account equations  of motion (2), yields the fol-
lowing equation (see appendix A for more details):

····
κ −2(Lx + Ly)κ̈+ (Lx − Ly)

2κ = 0,� (9)

where

Lxκ = ω2
∗

∑
α

bακ(x + aα, y), Lyκ = ω2
∗

∑
α

bακ(x, y + aα).

� (10)
Equation (9) exactly describes the evolution of temperature 
field in any harmonic scalar lattice.

The initial conditions for equation  (9), corresponding to 
initial conditions for particles (6), have the form:

κ = kB
M T0(x)δD(x − y), κ̇ = 0,

κ̈ = kB
M (Lx + Ly)(T0(x)δD(x − y)),

···
κ = 0,

kBT0(x) = M
〈

v0(x)2
〉

,
�

(11)

where T0(x) is the spatial distribution of initial temperature; 
function δD(x − y) is equal to unity for x = y and it is equal 
to zero for x �= y.

Thus an exact deterministic equation (9) is obtained for the 
stochastic thermal problem. In the following sections, we con-
struct solutions of equation (9) in continuum limit.

Remark.  Analysis of covariances can also be used for de-
scription of thermal processes in harmonic chains with a 
conservative noise [20, 21]. In this case, it is not sufficient to 
consider covariances of velocities. Equations  for covariances 
of displacements and cross-covariances of velocities and dis-
placements should be added in order to obtain closed system 
of equations.

10 Equation (2) also covers some systems with torque interactions [65, 66]. 
For example, a chain consisting of connected rigid bodies with fixed trans-
lational degrees of freedom [67] is described by equation (2). Out-of-plane 
vibrations of 2D lattices can also be considered provided that rotational 
degrees of freedom are fixed.

11 In numerical simulations, the mathematical expectation can be approxi-
mated by an average over realizations with different initial conditions (see 
e.g. section 9.3.2).
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4.  Continualization

In the present section, we simplify equation (9) using continu-
alization with respect to spatial variable [71, 72]. We intro-
duce new variables:

(x, y) → (r, x − y), r =
x + y

2
.� (12)

From now on, covariance of velocities is represented in the 
form κ(r, x − y). Continualization of equation (9) is carried 
out with respect to spatial variable r.

We assume that function κ is slowly changing with r at dis-
tances of order of |aα|. Then operators Lx,Ly can be approxi-
mated by the power series expansion with respect to aα (see 
appendix B):

Lx ≈ L+R · ∇, Ly ≈ L−R · ∇,

L = ω2
∗
∑
α

bαSα, R =
ω2

∗
2

∑
α

aαbαSα, Sακ = κ(r, x − y + aα),

� (13)

where ∇ = ∂
∂r is nabla-operator. Substitution of formula (13) 

into (9) and (11) yields equation

····
κ −4Lκ̈+ 4(R · ∇)2κ = 0� (14)

with initial conditions

κ =
kB

M
T0(r)δD(x − y), κ̇ = 0, κ̈ = 2

kB

M
T0(r)LδD(x − y),

···
κ = 0.

� (15)
Equation (14) describes, in particular, the evolution of 

temperature field in continuum limit. The equation is differ
ential with respect to continuum variables r, t and difference 
with respect to discrete-valued variable x − y.

Remark.  In the case of uniform distribution of initial 
temperature (T0 = const), covariances of velocities exactly 
satisfy the following equation:

····
κ −4Lκ̈ = 0.� (16)

Solutions of equations (14) and (16) are derived below.

5.  Analytical solution: fast and slow thermal 
processes

In the present section, we solve equation  (14) and obtain 
the expression describing the evolution of the temperature 
field.

The solution is constructed using the discrete Fourier 
transform (see appendix C for definition). Since lattices with 
simple structure are considered, then vectors x − y are repre-
sented in the form

x − y = a
d∑

j=1

zjej,� (17)

where ej, j = 1, .., d are unit vectors directed along basis vec-
tors of the lattice; d is space dimensionality; a is an equilib-
rium distance; zj are integer numbers.

Applying the discrete Fourier transform to equation  (14) 
with respect to zj, yields

····
κ̂ +4ω2 ¨̂κ− 4ω2(c · ∇)2κ̂ = 0.� (18)

Here ω(k) is the dispersion relation for the lattice, k is the 
wave vector:

ω2(k) = −ω2
∗

(
b0 + 2

∑
α>0

bα cos(k · aα)
)

, k =
1
a

d∑
j=1

pjẽj,

� (19)
where ẽj are vectors of the reciprocal basis12. Vector c coin-
cides with vector of group velocity for the lattice:

c =
dω
dk

=
ω∗

∑
α>0 bαaα sin(k · aα)√

−b0 − 2
∑

α>0 bα cos(k · aα)
.

�
(20)

Formulas (19) and (20) are derived in appendix C.
To the accuracy of term (c · ∇) 2 ¨̂κ, neglected during the 

continualization, equation (18) is factorized
(

∂2

∂t2 + 4ω2
)(

∂2

∂t2 − (c · ∇)2
)
κ̂ = 0.� (21)

The solution of equation (21) is equal to sum of solutions of 
the following equations

¨̂κ+ 4ω2κ̂ = 0,� (22)

¨̂κ− (c · ∇)2κ̂ = 0.� (23)

Solving equations  (22) and (23) with initial conditions (15) 
and applying the inverse discrete Fourier transform yields

T = TF + TS,� (24)

TF =
T0(r)

2(2π)d

∫ π

−π

cos
(
2ωt

)
dp1...dpd,� (25)

TS =
1

4(2π)d

∫ π

−π

(
T0(r + ct) + T0(r − ct)

)
dp1...dpd.� (26)

Formulas (24)–(26) describe the behavior of the kinetic 
temperature. It is seen that the temperature is represented as 
a sum of two terms. The first term, TF, describes short time 
behavior of the kinetic temperature, while the second term, TS, 
describes large time behavior.

At short times, the kinetic temperature performs high-fre-
quency oscillations caused by redistribution of energy among 
kinetic and potential forms (fast process)13. According to 
formula (25), these oscillations in different spatial points are 
independent. Integrand in formula (25) changes sign and oscil-
lates with frequency proportional to time. Therefore TF tends 
to zero14, while temperature tends to TS. To our knowledge, 

12 Vectors of the reciprocal basis ẽj are defined as ej · ẽk = 1 for j = k and 
ej · ẽk = 0 for j �= k.
13 Note that in lattices with several degrees of freedom per unit cell there is 
an additional fast process. It is caused by redistribution of energy among the 
degrees of freedom. See e.g. paper [41].
14 Rigorous proof of this fact is beyond the scope of the present paper. 
Investigation of integrals of this type can be carried out using asymptotic 
methods [73].
15 Several particular systems, namely one-dimensional chain with nearest-
neighbor interactions and two-dimensional triangular lattice, are considered 
in papers [39, 40] and [41] respectively.
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general analytical description of this fast transient process for 
scalar lattices is not presented in literature15. Detailed analysis 
of the process for the stretched square lattice performing out-
of-plane vibrations is presented in sections 9.2 and 9.3.4.

Remark.  In a uniformly heated crystal (T0 = const) form
ula (25) is an exact solution. In this case, temperature tends 
to the stationary value T0/2. This fact also follows from the 
virial theorem [38]. However in contrast to formula (25), the 
virial theorem does not describe the transition to the station-
ary state.

At large time scale, the fast process decays (TF ≈ 0) and 
changes of the temperature field are caused by ballistic heat 
transfer. Then the first term in formula (24) vanishes, i.e. 
T ≈ TS, where TS is defined by formula (26). Formula (26) 
shows that at large times, the temperature field is repre-
sented as the superposition of waves traveling with group 
velocities c(k) and having a shape of initial temperature dis-
tribution T0.

Remark.  The latter fact is consistent with results obtained 
in papers [42–46] using different formalism. In these works, 
it is shown that large time behavior of the Wigner function 
(‘wavenumber resolved’ energy density [45]) is governed by 
the energy transport equation, similar to equation (23). In pa-
per [74], it is shown that the energy transport equation is a lim-
iting case of the Boltzmann transport equation corresponding 
to zero phonon scattering. In the present paper, equation (23) 
is derived and solved for velocity covariances rather than en-
ergies. However at large times, the behavior of energy and 
kinetic temperature is similar, and therefore the results are 
consistent. Note that short time behavior of temperature is not 
considered in papers [42–46, 74].

Remark.  Formulas (25) and (26) describing thermal pro-
cesses in scalar lattices are symmetric with respect to time 
(invariant with respect to the substitution t → −t). However, 
thermal processes are irreversible (see sections 9.2 and 9.3.4). 
This finding is consistent with results obtained in paper [75], 
where it is shown that locally disturbed infinite harmonic 
systems return to equilibrium state. The irreversibility is ex-
plained by an infinite system size.

6.  Fundamental solution of ballistic heat transfer 
problem

6.1.  One-dimensional chains. Speed of the heat front

In the present section, we derive the fundamental solution 
of the heat transfer problem for one-dimensional chains 
described by equations (2). Large time behavior of the kinetic 
temperature is considered (T ≈ TS).

Initial distribution of temperature reads

T0(x) = Aδ(x),� (27)

where δ is the Dirac delta function. The multiplier A is intro-
duced in order to obtain solution in proper units. In this case 
the solution (26) has the form:

TS =
A
4π

∫ π

0

(
δ(x − ct) + δ(x + ct)

)
dp, c =

ω∗a
∑

α>0 bαα sin(αp)√
−b0 − 2

∑
α>0 bα cos(αp)

.

�
(28)

The integral is calculated using the identity [76]:
∫

δ
(
φ(x)

)
ψ(x)dx =

∑
j

ψ(xj)

|φ′(xj)|
, φ(xj) = 0.� (29)

Here summation is carried out over real roots, xj, of the equa-
tion φ(x) = 0. Calculation of the integral (28) using identity 
(29), yields the fundamental solution:

TS =
A

4πt

∑
j

1
|c′( pj)|

, |c( pj)| =
|x|
t

, c′ =
dc
dp

.

� (30)
Here summation is carried out over all real roots, pj ∈ [−π;π], 
of the second equation. Function c( p) is defined by formula 
(28). Formula (30) shows that the temperature tends to infinity 
at extremes of function c( p).

Thus formula (30) gives the fundamental solution of the 
heat transfer problem for one-dimensional chains with inter-
actions of an arbitrary number of neighbors. The general solu-
tion corresponding to the initial temperature distribution T0(x) 
has the form:

TS =
c∗
4π

∑
j

∫ 1

−1

T0(x + zc∗t)
|c′( pj)|

dz, |c( pj)| = c∗|z|.� (31)

We calculate the speed of heat front in one-dimensional 
chains. Assume that function c( p) is limited. Therefore there 
exist a maximum value of |x| such that the second equa-
tion from formula (30) has a solution. This value corresponds 
to position of the heat front. From formulas (30) it follows that 
the heat front of fundamental solution propagates with finite 
speed c∗, equal to the maximum group velocity:

c∗ = max
p

|c( p)|.� (32)

The general solution corresponding to the initial temperature 
distribution T0(x) is given by formula (31). Assume that T0(x) 
is nonzero on the interval [xmin; xmax]. Then from formula 
(31) it follows that at time t the temperature is nonzero on 
the interval [xmin − c∗t; xmax + c∗t]. Therefore the heat front in 
one-dimensional chains propagates with constant speed equal 
to the maximum group velocity16.

6.2. Two-dimensional scalar lattices

In the present section, we derive the fundamental solution of 
the heat transfer problem for two-dimensional scalar lattices. 
The following distribution of initial temperature is considered:

T0 = Aδ(r) = Aδ(x)δ(y),� (33)

where x,y are Cartesian coordinates. Substitution of the initial 
conditions (33) into formula (26) yields

TS =
A

16π2

∫ π

−π

∫ π

−π

(
δ(r + ct) + δ(r − ct)

)
dp1dp2.� (34)

16 This result was also obtained in paper [79] using asymptotic analysis.
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Radius-vector r and vector of group velocity c are represented 
as

r = xi + yj, c = cxi + cyj,� (35)

where i, j are unit vectors corresponding to x and y axes. 
Then changing the integration variables ( p1, p2) → (cx, cy) 
in formula (34) and calculating the integral using the identity 
(29), we obtain

TS =
A

16π2t2

∑
j

1

|G( p j
1, p j

2)|
, G =

∂cx

∂p1

∂cy

∂p2
− ∂cx

∂p2

∂cy

∂p1
,

[
cx =

x
t , cy =

y
t ,

cx = − x
t , cy = − y

t ,
�

(36)

where G is the Jacobian of the transformation; square bracket 
stands for logical ‘or’; summation is carried out over the real 
roots p j

1, p j
2 ∈ [−π;π] of the last two equations.

Two facts follow from formulas (36). Firstly, the temper
ature is nonzero inside the circle:
(

x
c∗t

)2

+

(
y

c∗t

)2

� 1, c2
∗ = max

p1,p2
(c2

x + c2
y).� (37)

Secondly, the temperature at the central point x = 0, y = 0 
decays as 1/t2.

Thus the fundamental solution of the heat transport problem 
for two-dimensional scalar lattices is given by formulas (36). 
The solution has circular front propagating with maximum 
group velocity c∗. For example, the fundamental solution for 
stretched square lattice performing out-of-plane vibrations is 
obtained in section 9.3.5.

7.  Example: length-dependence of the effective heat 
conductivity (unsteady problem)

From formula (26) it follows that the heat transfer in scalar 
lattices is ballistic and it can not be described by the Fourier 
law. In this case, the notion of heat conductivity is ambiguous. 
Therefore the heat conductivity can be defined differently in 
different problems. In papers [12, 14, 16, 24] it is shown that 
in the steady-state the heat conductivity in harmonic crystals 
is proportional to length of the system (distance between heat 
reservoirs). The main goal of the present section  is to show 
that similar behavior of the heat conductivity is observed in 
unsteady problems.

Thermal contact of two half-spaces having different initial 
temperatures is considered. Initial distribution of temperature 
has the form

T0(x) = T1 + (T2 − T1)H(x),� (38)

where H is the Heaviside function; T1, T2 are initial temper
atures of the half-spaces x < 0 and x > 0 respectively. We 
define the heat conductivity as follows

λ = −
∫ L
−L h(x, t)dx

TS(L)− TS(−L)
,� (39)

where h is a projection of the heat flux on the x-axis17; L is a 
half-length of averaging interval. If the Fourier law is valid, 
then equation  (39) is satisfied identically and the heat con-
ductivity is independent on length L. We show that for scalar 
lattices it is not the case.

We calculate the heat flux h using continuum equation of 
energy balance18:

ρU̇ = −h′, ρ =
M
V

,� (40)

where V is a volume per particle. The internal energy per unit 
mass U is calculated using formula19:

U =
kBTS

M
.� (41)

Substituting formula (41) into equation of energy balance (40) 
yields

kB

V
ṪS = −h′.� (42)

Formula (42) is used for calculation of the heat flux for given 
temperature distribution.

In the case of one-dimensional initial temperature distribu-
tion T0(x) in the d-dimensional lattice, the general solution 
(26) takes the form

TS =
1

4(2π)d

∫ π

−π

(
T0(x + cxt) + T0(x − cxt)

)
dp1...dpd, cx = c · i,

� (43)
where i is a unit vector directed along x-axis. Using formula 
(43) we show that the solution of the problem with initial dis-
tribution of temperature (38) is self-similar:

TS = T1
2 + T2−T1

4(2π)d

∫ π

−π

[
H
( x

t − cx
)
+ H

( x
t + cx

)]
dp1...dpd = TS

( x
t

)
.

� (44)
Integrating both parts of formula (40) from −∞ to x and 
assuming that h(−∞) = 0, we obtain:

h = −kB

V

∫ x

−∞

d
dt

TS

( z
t

)
dz =

kB

V

∫ x
t

−∞
yTS(y)dy ⇒ h = h

(x
t

)
.

� (45)
Here prime denotes the derivative with respect to x/t . Formula 
(45) shows that the heat flux is also self-similar.

The heat conductivity is calculated using formula (39). We 
choose L equal to the distance traveled by the heat front, i.e. 
L = c∗t, where c∗ is the maximum group velocity20. Then 
TS(L)− TS(−L) = 1

2 (T2 − T1). Substituting this expression 
into the definition of the heat conductivity (39) and taking into 
account formula (45), yields:

λ = − 2L
T2 − T1

∫ 1

−1
h(z)dz ⇒ λ ∼ L.� (46)

Formula (46) shows that the effective heat conductivity lin-
early diverges with length L. Note that in anharmonic systems 

17 The relation between the heat flux, forces and particle velocities is not 
used in the present derivations.

18 Macroscopic mechanical deformation of the lattice and volumetric heat 
sources in the present model are absent.
19 From the virial theorem it follows that kinetic and potential energies per 
particle are equal to kBT/2. Then the total energy per particle is equal to 
kBT .
20 The fact that velocity of the heat front is equal to maximum group  
velocity, c∗, follows from fundamental solutions obtained above.
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the dependence of effective heat conductivity on system size 
is nonlinear (see e.g. papers [26, 77]).

Thus we show that in the unsteady problem considered 
above the heat conductivity exhibits the same behavior as in 
steady problems considered in earlier works [12, 14, 24]. Note 
that formula (46) is derived for any scalar lattice described by 
equations of motion (2).

8.  Example: one-dimensional chain

Consider a one-dimensional chain with nearest-neighbor 
interactions. The equation of motion reads

ü(x) = ω2
∗

(
u(x + a)− 2u(x) + u(x − a)

)
.

� (47)
In this case operator L is given by formula (3).

Short time behavior of kinetic temperature is described by 
integral (25). Substituting parameters (3) into formula (25) 
after integration, yields

TF =
1
2

T0(x)J0(4ω∗t),� (48)

where J0 is the Bessel function of the first kind. Formula (48) 
shows that TF asymptotically tends to zero inversely propor-
tional to the square root of time21. This result has originally 
been obtained in paper [39].

Ballistic heat transfer is described by formula (26). 
Substitution of formulas (3) into expression for group velocity 
(20), yields

c = ω∗a cos
p
2

signp.� (49)

Then the general solution has form

TS =
1

2π

∫ π
2

0

(
T0(x + c∗t cos p) + T0(x − c∗t cos p)

)
dp, c∗ = ω∗a.

� (50)
Corresponding fundamental solution is obtained using 
formula (30):

TS =
A

2πc∗t
√

1 − ( x
c∗t )

2
.� (51)

Formulas (50) and (51) coincide with results obtained in paper 
[71].

Thus in the case of the one-dimensional chain with nearest-
neighbor interactions, we reproduce the results obtained in 
papers [39, 71].

Remark.  The difference between time scales corresponding 
to fast and slow processes is clearly demonstrated using the 
following example. Consider initial conditions (11) corre
sponding to sinusoidal distribution of temperature:

T0(x) = B0 sin
2πx
L

+ B1,� (52)

where L is wave-length of initial temperature distribution; 
B1 � B0. Substitution of the initial conditions (52) into form
ulas (48) and (50) after algebraic transformations yields:

T =
B1

2
(
1 + J0(4ω∗t)

)
+

B0

2

(
J0(4ω∗t) + J0

(
2πc∗t

L

))
sin

2πx
L

.

� (53)

Formula (53) contains two dimensionless times (time 
scales)—ω∗t and c∗t/L. The first time scale is determined 
by frequencies of vibrations of individual atoms. The second 
time scale is determined by a time required for a wave to travel 
distance L. The ratio of these time scales, being proportional 
to L/a, is a large parameter. Therefore time scales of fast and 
slow thermal processes are well separated.

9.  Example: out-of-plane vibrations of a square 
lattice

9.1.  General formulas

In the present section, we consider out-of-plane vibrations of 
a stretched square lattice. Initial radius-vectors of the particles 
have the form:

xn,m = a(ni + mj),� (54)

where i, j are orthogonal unit vectors; a is an initial distance 
between the nearest neighbors. Particles are connected to their 
nearest neighbors by linear springs. Equilibrium length of the 
springs is less than a, i.e. the lattice is stretched22. Then linear-
ized equations for out-of-plane vibrations of the lattice have 
the form23:

ün,m = Lun,m, Lun,m = ω2
∗(un+1,m + un,m+1 − 4un,m + un−1,m + un,m−1),

� (55)
where un,m = u(xn,m) is a component of displacement normal 
to the lattice plane. It is seen that equation (55) is a particular 
case of equation (2), where parameters ω∗, aα, bα are deter-
mined by formula (5).

The dispersion relation and group velocity are calculated 
using formulas (5), (19) and (20):

ω = 2ω∗

√
sin2 p1

2
+ sin2 p2

2
, c =

c∗(sin p1i + sin p2j)

2
√

sin2 p1
2 + sin2 p2

2

, k =
1
a
( p1i + p2j),

� (56)
where c∗ = ω∗a is the maximum group velocity.

9.2.  Short time behavior of kinetic temperature (fast process)

In the present section, we consider short time behavior of 
kinetic temperature in the uniformly heated lattice.

The initial conditions for particles corresponding to uni-
form distribution of instantaneous temperature T0 read

un,m = 0, vn,m = v0,� (57)

where v0 is a random quantity with dispersion 
〈

v2
0

〉
= kBT0/M. 

In this case initial kinetic and potential energies of the system 
are not equal. Equilibration of energies leads to oscilla-
tions of the kinetic temperature described by formula (25). 

21 This fact follows from the asymptotic representation of Bessel function J0.

22 Otherwise the out-of-plane vibrations of the lattice are nonlinear.
23 In harmonic approximation, in-plane and out-of-plane vibrations of the 
lattice are independent. The in-plane vibrations of the lattice are beyond the 
scope of the present paper.
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Substitution of dispersion relation (56) into formulas (25) and 
(26) yields:

T = TS + TF, TS =
T0

2
,

TF =
T0

2π2

∫ π

0

∫ π

0
cos

(
4ω∗t

√
sin2 p1

2
+ sin2 p2

2

)
dp1dp2.

� (58)
Note that formula (58) exactly describe the behavior of kinetic 
temperature in the uniformly heated lattice.

In order to check formula (58), we compare the results 
with numerical solution of equations of motion (55). Leap-
frog integration scheme with time-step equal to 0.005τ∗, 
τ∗ = 2π/ω∗ is used. Periodic boundary conditions in both 
directions are applied. Square periodic cell contains 106 par-
ticles. During the simulation the kinetic temperature of the 
entire system is calculated. The dependence of temperature 
on time is shown in figure 1. Every circle in the figure cor-
responds to average over ten realizations with different ini-
tial conditions. The standard error of the mean is of order 
of circle diameter. Figure  1 shows that analytical solution 
(58) coincides with results of numerical integration of lattice 
dynamics equations (55).

Temperature oscillations caused by equilibration of kinetic 
and potential energies decays in time. Characteristic time of 
the decay is of order of several periods τ∗. Multiplying the 
temperature by time it can be shown that deviation from the 
stationary value decays as 1/t. The same process in one-
dimensional chain decays as 1/

√
t  [39]. Heat propagation is 

a much slower process. For example, during τ∗ the heat front 
passes the distance equal to 2πa, which is small from macro-
scopic point of view.

Thus the example considered in the present section shows 
that oscillations of temperature and ballistic heat transfer have 
different time scales. Therefore the notions ‘fast process’ and 
‘slow process’ are used. Comparison with results of computer 
simulations shows that equation (58) accurately describe the 
fast process.

9.3.  Ballistic heat transfer (slow process)

In the present section, we investigate the ballistic heat transfer 
described by formula (26) in the stretched square lattice.

9.3.1.  Fundamental solution of the planar problem.  We derive 
the fundamental solution of planar heat transport problem for 
the stretched square lattice. The following initial temperature 
distribution is considered:

T0(x) = Aδ(x),� (59)

where x is directed along the basis vector a1 = ai. Substituting 
the initial conditions into formula (43) and taking into account 
formula (56), yields:

TS =
A

4π2

∫ π

0

∫ π

0

(
δ(x − cxt) + δ(x + cxt)

)
dp1dp2,

cx =
c∗ sin p1

2
√
sin2 p1

2 + sin2 p2
2

.

�

(60)

We make a substitution β = sin2 p1
2 , γ = sin2 p2

2  and consider 
the case t > 0, x > 0. Solution for x < 0 is obtained using 
symmetry of the problem. Then (60) takes the form:

TS =
A

4π2

∫ 1

0

∫ 1

0

δ(x̃ −
√

β(1−β)
β+γ )

√
βγ(1 − β)(1 − γ)

dβdγ, x̃ =
x

c∗t
.

� (61)

One of the integrals is evaluated using the identity (29). The 
argument of delta-function in formula (61) has roots given by 
the following equation

γ =
β

x̃2 (1 − x̃2 − β).� (62)

By the definition 0 � γ � 1. Then formula (62) yields the 
inequalities for β:

β � 1 − x̃2, β2 − (1 − x̃2)β + x̃2 � 0.� (63)

Solving inequalities (63) and using the identity (29), we 
obtain:

TS =
A

2π2c∗t|x̃|




f (0, 1 − x̃2),
√

2 − 1 � |x̃| � 1,

f (0,β1) + f (β2, 1 − x̃2), |x̃| �
√

2 − 1,

β1,2 =
1
2
(1 − x̃2 ∓

√
(1 − x̃2)2 − 4x̃2),� (64)

f (ξ1, ξ2) =

∫ ξ2

ξ1

(
1 − β

(1 − x̃2 − β)(x̃2 − β(1 − x̃2 − β))
)

1
2 dβ,

and TS = 0 for |x̃| � 1. Formula (64) shows that function 
TSc∗t/A depends only on the self-similar variable x̃ (see 
figure 2). It is seen from figure 2 that the heat front moves 
with constant speed equal to c∗. Temperature have singulari-
ties at the points |x̃| =

√
2 − 1. Note that in one-dimensional 

Figure 1.  Short time behavior of kinetic temperature in the 
uniformly heated stretched square lattice. Solid line—analytical 
solution (58), dashed line—TS = T0/2, circles—numerical solution 
of lattice dynamics equations (55).
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chain the temperature in similar problem has singularities at 
the heat front |x̃| = 1 (see formula (51)).

9.3.2. Thermal contact of hot and cold half-planes.  Consider 
thermal contact of two half-planes with initial temperatures T1 
and T2 (see formula (38)). This problem is important, because 
it is closely related to classical definition of temperature [38]. 
By the definition, temperatures of two bodies in thermody-
namic equilibrium are equal. The problem considered below 
demonstrates the transition to thermodynamic equilibrium.

Substituting initial conditions (38) into the solution (43) 
and taking into account properties of the Heaviside function 
and function cx, yields:

TS =
1
4
(T1 + T2) +

1
2
(T2 − T1)w

(
|x|
t

)
sign(x),

w =
1

2π2

∫ π

0

∫ π

0
H(|x| − cxt)dp1dp2.

�

(65)

We make the substitution β = sin2 p1
2 , γ = sin2 p2

2 , then

w =
1

2π2

∫ 1

0

∫ 1

0

H
(
|x̃| −

√
β(1−β)
β+γ

)

√
βγ(1 − β)(1 − γ)

dβdγ.� (66)

Integrand in formula (66) is nonzero if the following inequality 
is satisfied:

γ �
β

x̃2 (1 − x̃2 − β).� (67)

The inequality (67) is satisfied identically for β > 1 − x̃2; β 
also satisfies the second inequality from (63). Then evaluation 
of the integral with respect to β, yields:

w =
1
4
+

1
2π

arcsin |x̃| −





g(0, 1 − x̃2),
√

2 − 1 � |x̃| � 1,

arcsin β2−arcsin β1
2π + g(0,β1)

+g(β2, 1 − x̃2), |x̃| �
√

2 − 1,

g(z1, z2) =
1

2π2

∫ z2

z1

arcsin( 2β
x̃2 (1 − x̃2 − β)− 1)√

β(1 − β)
dβ,

�
(68)

where β1,β2 are defined by formula (64); w = 1
2 for |x̃| � 1.

Thus solution of the problem is given by formulas (65) 
and (68). It is seen that the solution (68) is self-similar and it 
depends on x̃ = x/(c∗t).

We check the accuracy of formulas (65) and (68) using 
numerical solution of lattice dynamics equations (55). Without 
loss of generality we put T2 = 2T1. In this case, initial condi-
tions for particles has the form:

un,m = 0, vn,m =




v0, n < 0,

√
2v0 n >= 0.

� (69)

where v0 is a random quantity with dispersion 
〈

v2
0

〉
= kBT1/M. 

Periodic boundary conditions are used. The periodic cell con-
tains 4 · 106 particles (4 · 102 in the x-direction and 104 in the 
y-direction). In order to compute temperature, we consider 
103 realizations with initial conditions (69). Then temperature 
is computed by formula (8), where mathematical expectation 
is approximated by an average over realizations. Since the 
solution is self-similar, then it is sufficient to consider only 
one moment of time. Temperature distribution at t = 15τ∗ 
is computed. At this moment oscillations of kinetic temper
ature described in section 9.2 practically vanish. The temper
ature distribution is additionally averaged in y direction. 
Comparison of numerical results with analytical solution (68) 
is shown in figure 3. Small differences between analytical and 
numerical solutions are observed in the vicinity of the central 
point x = 0. At this point the temperature has large gradient 
(initially it is infinite) and therefore the long-wave approx
imation looses the accuracy. Far from the central point, ana-
lytical solution (68) almost coincide with numerical results.

9.3.3.  Rectangular distribution of initial temperature. Thermal 
waves.  In the present section, we demonstrate once again 
that the heat transfer in stretched square lattice is ballistic. 
Rectangular distribution of initial temperature is considered:

T0(x) = 2T1

(
H(x + L)− H(x − L)

)
,� (70)

Figure 2.  Solution of the heat transfer problem with initial 
conditions (59). Solid line—formula (64); dashed lines—vertical 
asymptotes at |x̃| =

√
2 − 1.

Figure 3.  Contact of hot and cold half-planes: self-similar 
temperature profile. Line—analytical solution (68), circles—
numerical solution of lattice dynamics equations (55).
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where L is a half-length of the interval with nonzero initial 
temperature. Solution of the problem with initial conditions 
(70) is obtained using formula (68) and the superposition 
principle. The resulting distribution of temperature at several 
moments in time is shown in figure 4. Figure 4 clearly shows 
two ‘thermal waves’ traveling in opposite directions. Peaks of 
the temperature distribution move with constant speed equal 
to (

√
2 − 1)c∗. This fact can be used for validation of pre-

sented theory in future laboratory experiments.

9.3.4.  Sinusoidal distribution of initial temperature.  In the pres-
ent section, we consider the decay of initial sinusoidal temper
ature distribution. This problem is important, because it allows 
to clearly demonstrate that the diffusive and hyperbolic [80, 81] 
heat transfer equations are not applicable to harmonic crystals. 
Similar problem for harmonic one-dimensional chains is con-
sidered in papers [71, 78, 79]. We also demonstrate the differ-
ence between time scales of fast and slow thermal processes.

Consider the following distribution of initial temperature:

T0(x) = B0 sin
2πx
L

+ B1,� (71)

where L is wave-length of initial temperature distribution; 
B1 � B0. Fourier’s law as well as the hyperbolic heat transfer 
equation [80, 81] predict that amplitude of sin decays expo-
nentially. In this section, we show using analytical solution 
(43) and numerical simulations that the amplitude decays 
inversely proportional to time.

Substituting the initial temperature distribution (71) into 
the general solution (43), yields24:

T = B(t) sin
2πx
L

+ B1, B(t) = BF + BS,

BF =
B0

2π2

∫ π

0

∫ π

0
cos

(
4ω∗t

√
sin2 p1

2
+ sin2 p2

2

)
dp1dp2,

BS =
B0

2π2

∫ π

0

∫ π

0
cos


 πc∗t sin p1

L
√
sin2 p1

2 + sin2 p2
2


 dp1dp2.

� (72)

Formula (72) contains two dimensionless times ω∗t and c∗t/L 
corresponding to fast and slow thermal processes.

We check the accuracy of formula (72) using numerical 
solution of lattice dynamics equations  (55). Particles have 
random initial velocities corresponding to initial temper
ature distribution (71). Initial particle displacements are equal 
to zero. Periodic boundary conditions in both directions are 
used. The periodic cell contains 2 · 106 particles. The size of 
the periodic cell in the x-direction is equal to L = 2 · 102a. 
Results are averaged over 103 realizations with different initial 
conditions. The dependence of amplitude B on dimensionless 
time c∗t/L is shown in figure 5. Every circle on the plot cor-
responds to average over realizations. Standard error of the 
mean is of order of the diameter of the circle. Figure 5 shows 
that analytical solution (72) practically coincides with results 
of numerical solution of lattice dynamics equations  (55) at 
both short and large time scales.

The amplitude of sinusoidal distribution of initial temper
ature in scalar square lattice decays inversely proportional 
to time. In the one-dimensional chain with nearest neighbor 
interactions, the same oscillations are described by the Bessel 
function of the first kind [71, 78], which decays inversely pro-
portional to square root of time. Therefore in both cases the 
amplitude decays according to a power law, while diffusive 
and hyperbolic [80, 81] heat transfer equations predict expo-
nential decay.

This example also shows that the heat transfer process 
in scalar lattices is irreversible. At the same time, the gen-
eral solution of the heat transfer problem (26) is symmetric 
with respect to time, i.e. invariant with respect to substitution 
t by −t. This fact may serve for better understanding of the 
Loschmidt’s (reversibility) paradox [82].

9.3.5.  Fundamental solution.  The fundamental solution of 
heat transport problem for two-dimensional scalar lattices is 
given by formula (36). In order to obtain the solution for the 

Figure 4.  Evolution of rectangular initial temperature distribution 
(70) in scalar square lattice. Thermal waves.

Figure 5.  Decay of amplitude of initial sinusoidal temperature 
distribution (71). Short-time behavior of the amplitude is shown in 
the subplot. Solid line—analytical solution (72), circles—numerical 
solution of lattice dynamics equations (55), dashed lines—
envelope  ±0.145L/(c∗t).

24 The identity sin(x ± y) = sin x cos y ± sin y cos x is used for derivation.
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square lattice, we calculate the Jacobian G using formulas 
(36) and (56):

G = −
c2
∗(cos p1 sin

4 p2
2 + cos p2 sin

4 p1
2 )

4(sin2 p1
2 + sin2 p2

2 )
2

.� (73)

We make two consecutive substitutions in formulas (36) and 
(73): s1 = sin2 p1

2 , s2 = sin2 p2
2  and w = s1s2, q = s1 + s2. 

Then excluding w we obtain:

TS = A
2(πc∗t)2

∑
j

qj

|q2
j −r̃2(qj+1)| ,

q3
j − 2(r̃2 + 1)q2

j +
(
(r̃2 + 1)2 − 4x̃2ỹ2 + 1

)
qj − 2r̃2 = 0,

� (74)

where r̃2 = 1 − x̃2 − ỹ2, x̃ = x
c∗t , ỹ = y

c∗t . Summation is car-
ried out with respect to all real roots qj of the given cubic 
equation  such that qj ∈ [0; 2]. Formula (74) shows that the 
function Tc2

∗t2/A is self-similar.
Formula (74) gives closed-form fundamental solution for 

harmonic scalar square lattice. According to formula (74), the 
temperature is nonzero inside the circle x̃2 + ỹ2 � 1. It has 
singularity along the line determined by the following system 
of equations:

x̃2 + ỹ2 = 1 − q2

q + 1
, x̃2ỹ2 =

2 − q2

4(q + 1)2 .� (75)

The line (75) is shown in figure 6. It intersects x̃-axis at the 
points ±(

√
2 − 1).

Fundamental solution (74) is symmetrical with respect to 
axes x̃ and ỹ. Solution for positive x̃, ỹ is shown in figure 7.

We check the accuracy of fundamental solution (74) as 
follows. Problems described in sections  9.3.1 and 9.3.2 are 
solved using the convolution of the fundamental solution with 
corresponding initial conditions. It is shown that the resulting 
temperature distribution coincides with results obtained in 
sections 9.3.1 and 9.3.2.

Thus the closed-form fundamental solution of unsteady 
heat transfer problem for scalar square lattice is given by 

formula (74). We note the analogy between our result (74) and 
results obtained in papers [42, 45]. In papers [42, 45], spatial 
distribution of energy corresponding to the fundamental solu-
tion of equations of motion (2) is obtained using the Wigner 
transform. The energy distribution is similar to temperature 
distribution shown in figure 7. Therefore there is an analogy 
between deterministic lattice dynamics problem [42] and the 
unsteady heat transfer problem discussed above.

10.  Conclusions

An equation exactly describing the evolution of temperature 
field in any scalar lattice was derived. Using this equation, we 
have shown that the temperature field in a lattice with random 
initial velocities and zero initial displacements is represented 
as a sum of two terms (see formulas (24)–(26)).

The first term describes the short time behavior of temper
ature. At short times, temperature performs decaying oscilla-
tions caused by redistribution of energy among kinetic and 
potential forms. These oscillations in different spatial point 
are independent. Characteristic time of decay is of order of ten 
periods of atomic vibrations.

The second term describes large time behavior of kinetic 
temperature associated with unsteady ballistic heat transfer. 
At large times, the temperature field is represented as a 
superposition of waves having a shape of initial temperature 
distribution and traveling with the group velocity. The heat 
front propagates with constant speed equal to the maximum 
group velocity. These observations are consistent with results 
obtained in papers [42–46] by completely different means. 
Closed-form fundamental solutions of the unsteady heat 
transfer problem for one- and two-dimensional scalar lattices 
were derived.

The expression for the temperature field has the same 
property as the equations  of motions: it is invariant to the 
substitution t → −t . However thermal processes in scalar lat-
tices are irreversible. In order to illustrate this fact, an ana-
lytical solution for problem with sinusoidal distributions of 
initial temperature in scalar square lattice was derived. The 
solution shows that the amplitude of sinusoidal distribution 
decays inversely proportional to time. Therefore the process is 

Figure 6.  Heat front (circle) and line with infinite temperature 
(equation (75)) corresponding to the fundamental solution (74).

Figure 7.  Fundamental solution (74) of the unsteady heat transfer 
problem for scalar square lattice.
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irreversible, while it is described by the equation invariant to 
the substitution t → −t .

Comparison of analytical results with numerical simulations 
shows that presented theory describes the behavior of temper
ature field at both short and large time scales with high accuracy.
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Appendix A.  Equations for covariances

In the present appendix, we derive equation (9) for velocity 
covariances. Note that particle velocities satisfy equation of 
motion (2):

v̈(x) = Lv(x).� (A.1)
We introduce covariance of accelerations

ζ =
〈

v̇(x)v̇(y)
〉

.
�

(A.2)

Differentiating covariances of velocities κ and covariances of 
accelerations ζ with respect to time and taking into account 
equations of motion (2) and (A.1), yields:

κ̈ = (Lx + Ly)κ+ 2ζ, ζ̈ = (Lx + Ly)ζ + 2LxLyκ.� (A.3)
Excluding ζ from system (A.3) yields closed equation (9) for 
velocity covariances.

Appendix B.  Approximation of difference operators

In the present appendix, we describe series expansion of 
difference operators Lx , Ly. We represent the covariance of 
particle velocities in the form κ(r, x − y) (see formula (12)). 
Consider the following expression

Lxκ(r, x − y) = ω2
∗
∑
α

bακ
(
r + 1

2 aα, x − y + aα
)

.� (B.1)

Assume that function κ slowly changes with the first argu-
ment at distances of order of |aα|. Then series expansion in the 
right side of formula (B.1) with respect to aα yields

Lxκ ≈ ω2
∗
∑
α

bαSακ+
ω2

∗
2

∑
α

bαSαaα · ∇κ = (L+R · ∇)κ,

R =
ω2

∗
2

∑
α

bαSαaα, L = ω2
∗
∑
α

bαSα, Sακ = κ(r, x − y + aα),

� (B.2)

where ∇ = ∂
∂r is nabla-operator. Formulas (B.2) yield 

Lx ≈ L+R · ∇. Analogously we show that Ly ≈ L−R · ∇. 
Then

Lx − Ly ≈ 2R · ∇, Lx + Ly ≈ 2L.� (B.3)

Substitution of the expressions (B.3) into equation (9), yields 
formula (14).

Appendix C.  Group velocity

In this appendix, we prove that c, defined by formula (20), 
coincides with the group velocity for the lattice.

The discrete Fourier transform, Φ, in d-dimensional space 
for an infinite lattice is defined as follows

κ̂(k) = Φ(κ) =
d∑

j=1

+∞∑
zj=−∞

κ(z)e−ik·z, κ(z) = 1
(2π)d

∫ π

−π
κ̂(k)eik·zdp1...dpd,

k = 1
a

d∑
j=1

pjẽj, z = x − y = a
d∑

j=1
zjej, ej · ẽk = δjk.

� (C.1)
Here a is equilibrium distance, i is the imaginary unit, ej are 
basis vectors for the lattice, ẽk are vectors of the reciprocal 
basis, δjk is the Kronecker delta. The discrete Fourier trans-
form has the following property:

Φ(κ(z + aα)) = Φ(κ(z))eik·aα .� (C.2)

Using the identity (C.2), we show that

Φ(Lκ) = L̂κ̂, L̂ = ω2
∗
∑
α

bαeik·aα , Φ(Rκ) = R̂κ̂,

R̂ =
ω2

∗
2

∑
α

bαaαeik·aα .

�

(C.3)

Consider the discrete Fourier transform of equation (14). 
Calculating the transform using identities (C.3), we obtain

····
κ̂ −4L̂¨̂κ+ 4(R̂ · ∇)2κ̂ = 0.� (C.4)

Then vector c is introduced as

c =
ImR̂√
−L̂

.� (C.5)

It can be shown that L̂ and R̂ are related by the following 
formula:

R̂ = − i
2

dL̂
dk

.� (C.6)

Substituting formula (C.6) into formula (C.5), we obtain

c =
d
√
−L̂

dk
.� (C.7)

Consider the dispersion relation for the lattice. Substituting 
u(x) = A exp(i(ωt + k · x)) into the equation of motion (2), 
yields:

ω2 = −ω2
∗

∑
α

bαeik·aα = −L̂.� (C.8)

Combining the dispersion relation (C.8) with formulas (C.3) 
and (C.7), yields

c =
dω
dk

.� (C.9)

Therefore, c is equal to the group velocity.
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