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Abstract—A closed system of differential equations has been derived to describe thermal processes in a one-
dimensional harmonic crystal on an elastic foundation. It is shown that the evolution of thermal perturbation 
in such a crystal is described by a discrete unsteady-state equation, a special case of which is the hyperbolic 
equation of ballistic heat conduction. This equation remains valid with negative stiffness of bonds between 
particles of the crystal in its entire stability range. The thermal perturbation front propagates with the maxi-
mum group velocity of mechanical waves. The propagation of a short-term thermal perturbation in the crystal 
on the elastic foundation is determined by the equation of ballistic thermal conductivity of the same type as in 
the crystal without an elastic foundation. The only parameter of this equation is the maximum group velocity 
(in absolute value), i.e., the maximum rate of energy propagation in the crystal on the elastic foundation. This 
quantity is proportional to the absolute value of the half-difference of the upper and lower cutoff frequencies. 
The rate of heat wave propagation in the crystal on the elastic foundation with positive stiffness is always 
lower than that in the crystal without an elastic foundation. The obtained equation is found to be valid both 
for positive stiffness values and for negative ones, for which the chain stability condition is satisfied. As an 
example, a dynamic problem of heat distribution is solved exactly for a parabolic initial temperature profile 
to model heating of a one-dimensional crystal on a foundation by a short laser pulse. Due to the dispersion of 
mechanical waves in the chain on the foundation, their group velocity depends on the wave number and the 
ratio of bond stiffnesses in the chain and the elastic foundation. The thermal front propagates with the maxi-
mum possible group velocity in the system, which depends only on this ratio. 

Keywords: one-dimensional crystal, thermal conductivity, elastic foundation, negative stiffness coefficient, 
group velocity, covariance 
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1. INTRODUCTION 

Modern technologies give specimens of a one-
dimensional carbon crystal (carbyne), with more than 
6 thousand carbon atoms assembled inside a double-
wall carbon nanotube [1]. One-dimensional crystals 
consisting of atoms of various substances (the so-
called “ionic crystals”) can be grown inside carbon 
nanotubes providing their stability [2]. The develop-
ment of technologies producing one-dimensional 
structures raises the question of physical properties of 
the synthesized objects. The theoretical prediction [3] 
points to their excellent heat conductivity and appli-
cability, for example, to contact heat removal in 
MEMS/NEMS and in molecular electronics when 

natural convection and radiation cooling is difficult or 
impossible. 

To synthesize stable one-dimensional structures, 
which are highly chemically active, it is necessary to 
use a molecular “thermostat”, the role of which is 
played by a double-wall carbon nanotube [2]. The sys-
tem of the carbon nanotube and the one-dimensional 
crystal can be modeled, in linear approximation, as a 
one-dimensional chain of masses with a harmonic  
potential of interaction of particles with each other 
and with the rigid foundation. During linearization of 
the complex interaction potential between material 
particles located in the field of the foundation poten-
tial, the interatomic bond stiffness may be negative [4] 
and, in some cases, asymmetric [5]. The heat transfer  
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equation obtained in this work is applicable to both 
positive and negative bond stiffnesses provided that 
the system is stable. 

The discreteness of the atomic structure of matter 
significantly affects wave processes in it [6, 7], intro-
ducing dispersion into the wave propagation law. The 
presence of free electrons of thermal conduction in the 
conductor lattice gives rise to a photoacoustic effect 
that influences the propagation of mechanical waves 
[8]. Mechanical waves propagating in a system with 
the foundation potential demonstrate the filtering law 
of dispersion characterized by the lower and upper 
cutoff frequencies. Similar effects arise in nanostruc-
tures, in particular, in the array of parallel nanosized 
oscillators. Eremeev et al. [9, 10] found that the law of 
wave dispersion for such an array presents a discon-
tinuous function of frequency. Among the features of 
thermomechanical processes in discrete systems are 
negative thermal expansion [11, 12] and the possibil-
ity of structural transitions [13, 14]. Such a variety of 
thermal phenomena adds complexity to the descrip-
tion of heat transfer in discrete media. 

The recent experimental studies [15–17] show that 
the Fourier law of thermal conductivity is violated in 
low-dimensional nanostructures. The indicated ano-
malies are most pronounced in the simplest lattice 
models, in particular, in one-dimensional harmonic 
crystals [18–20]. The analytical and computer investi-
gations [21–24] point to significant deviations from 
the classical Fourier thermal conductivity in an ideal 
single crystal. These deviations can be reduced or 
even completely eliminated using special laws of in-
teraction [25–28] or rather complex structures [29, 
30]. 

Compared to the generally accepted models of 
wave transfer of heat at the nano- and microscale lev-
els in continuous media [31–35], thermal processes in 
discrete media occur in a significantly different way. 
In particular, a thermal shock initiates high-frequency 
oscillations in a discrete system [36], associated with 
the equilibration of the potential and kinetic energies 
according to the virial theorem [37]. The exact solu-
tion was obtained to describe such a process in a har-
monic crystal [38, 39]. Guzeev and Dmitriev [40, 41] 
deduced a fundamental solution using Chebyshev 
polynomials and Bessel functions and studied the 
temperature distribution inside a one-dimensional 
harmonic crystal with regard to correlations in particle 
positions. A solution was derived for high-frequency 
energy oscillations in a harmonic crystal on the elastic 
foundation, with the construction of its asymptotics  

for the hard and soft foundations [42]. High-frequency 
thermal processes were investigated in vector lattices 
[43]. A general solution was obtained for the problem 
of heat propagation in the 1D and 2D cases for scalar 
lattices, with emphasis on slow and fast oscillations 
and measurement of the heat pulse front velocity [44]. 

In this paper, we study the slow process of heat 
propagation in a crystal, after the fast transient process 
decays [42, 45, 46]. The crystal is taken as a stochas-
tic system, in which randomness is introduced through 
initial conditions, and deterministic dynamic equa-
tions are obtained for covariances of particle veloci-
ties and displacements. The approach described in this 
paper is based on the previous works [38, 45, 47, 48] 
and provides a rather simple dynamic equation of heat 
transfer in partial derivatives, which contains informa-
tion on dispersion and the pattern of heat wave decay 
in a one-dimensional crystal on the elastic foundation. 

Provided that at the initial moment particles of a 
one-dimensional chain rest on the elastic foundation 
and their velocities are set randomly, a process of 
conversion of kinetic energy into potential energy of 
spring deformation begins in the lattice. High-fre-
quency oscillations of the kinetic and potential ener-
gies characteristic of discrete media arise [36]. This 
process will proceed until the energy is distributed, 
according to the virial theorem [37], equally between 
the kinetic and deformation degrees of freedom. The 
transient process of equalization of potential and ki-
netic energies is of a high-frequency nature and de-
cays for several tens of periods; the stiffer the founda-
tion, the slower the decay [42]. At the end of the tran-
sient process in the crystal, the temperature of the dis-
crete system can be associated with the kinetic energy 
[38]. 

Let us consider a chain consisting of equal masses 
m connected by springs with stiffness C0. The chain is 
on an elastic foundation of stiffness C1. Then the dy-
namic equation of chain particles has the form 

 
2 2
0 1 1 1

0 0 1 1

( 2 ) ,

, ,

n n n n nu u u u u

C m C m

     

   


 (1) 

where un is the displacement of the nth particle, n is 
the subscript taking arbitrary integer values, C0 is the 
stiffness of bonds between masses, and C1 is the stiff-
ness of bonds between masses and the foundation. 

The chain can be stable at negative stiffness values 
subject to the condition [49] C0 > – C1/4. In the case,  

2.  DYNAMIC  EQUATIONS  OF  CHAIN  
OF MASSES 
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an alternative form of Eq. (1) is convenient, which has 
real coefficients in the allowed range of stiffnesses C0 
and C1: 

 

2
2 1 1

2
1 1 1

1 0
2

1
( 2 )

4
1

( 2 ),
4

4
,

n n n n

n n n

u u u u

u u u

C C

m

 

 

   

   


 



 (2) 

where the quantities 1 < 2 are the lower and upper 
cutoff frequencies (for more detail see Section 4), 
which are related to partial frequency 0 as 40

2 = 
2

2 – 1
2.  

Let us assume the periodicity condition uk+N + uk, 
where N  1 is the number of independent particles. 
With the second-order difference operator n

2 defined 
as 

 
def2

1 12 ,n n n n nf f f f      (3) 

Eq. (1) can be written as 

 2 2 2
0 1( ) .n n nu u     (4) 

The initial conditions correspond to instantaneous 
thermal perturbation resulted from the exposure of the 
crystal to an ultrashort laser pulse: 

 0 0| 0, | ( ) ,n t n t nu u x      (5) 

where n is the independent random values with zero 
mathematical expectation and unit variance, and σ(x) 
is the deterministic deviation of initial velocities. Of 
practical interest is the case when σ(x) is a slowly 
varying function of x. 

3. DEDUCTION OF EQUATIONS FOR 
COVARIANCE TEMPERATURE  

To deduce heat transfer equations, we use an ap-
proach based on correlation analysis [38, 45, 46, 48]. 
By introducing linear operator L, we rewrite motion 
Eq. (1) as 

 
def 2 2 2

0 1, .n n n n nu L u L      (6) 

Obviously, the particle velocity 
def

n nu v  satisfies the 
same equation. 

We assume that the initial displacements and ve-
locities are random quantities that have zero mathe-
matical expectation. Let us consider displacement and 
velocity covariances of chain particles: 

def def
, ,pq p q pq p qu u       v v  (7) 

where angle brackets stand for mathematical expecta-
tion. Direct differentiation of relations (7) gives 

 
( ) 2 ,

( ) 2 .

pq p q pq pq

pq p q pq p q pq

L L

L L L L

     

     




 (8) 

Elimination of pq from the system results in the 
fourth-order equation: 

 4 2 22( ) ( ) 0.t pq p q t pq p q pqL L L L           (9) 

Velocity covariances pq satisfy the same equation. 
For the operators Lp and Lq, the following relations are 
valid: 

 
2 2 2 2
0 1

2 2 2
0

( ) 2 ,

( ).

p q p q

p q p q

L L

L L

       

    
 (10) 

To turn to long-wave approximation, we introduce a 
spatial coordinate x and covariance subscript n: 

 
def def

, ,
2

p q
x a n q p


    (11) 

where a is the crystal lattice distance. We assume co-
variances (7) to be functions of x and n: 

 ( ), ( ),pq n pq nx x       (12) 

and the dependence on the spatial coordinate to be 
rather smooth so that the functions allow for Taylor 
series expansion. We have 

 

2
1 1

2
1 1

2 ( ) ,
2 2

2 ( ) .
2 2

p pq n n n

q pq n n n

a a
x x x

a a
x x x

 

 

               
   
               
   

 (13) 

An expansion of the covariances in a series in a up to 
the second-order terms gives 

 

2 2
1 1

2

1 1

2 2
1 1

2

1 1

( )
2

( ) ,
8

( )
2

( ) ,
8

p pq n n n n

n n

q pq n n n n

n n

a

a

a

a

 

 

 

 

        

   

        

   

 (14) 

where the stroke designates the derivative with respect 
to x. By summing and subtracting these relations, we 
derive 

 

2
2 2 2 2 2

2 2

2 ( 2) ,
4

( ) ,

p q n n x

p q n n x

a

a

        

      
 (15) 

with the use of 
2

1 1 1 1( 2) , ( ) .n n n n n n n n n                (16) 



KRIVTSOV et al. 

PHYSICAL MESOMECHANICS     Vol. 23     No. 2     2020 

112

The first relation is an apparent identity, and the sec-
ond one can be considered as a designation for sim-
plicity. As a result, operators (10) take the form 

 
2 2 2 2 2 2
0 1

0

1
2( ) ( 2) ,

4
( ) ,

p q n n x

p q n n x

L L c

L L c

        

     
 (17) 

where 
def

0c a   is the sound velocity. A substitution 
of (17) into (9) yields a continuum equation for co-
variances: 

4 2 2 2 2 2 2 2
0 1

1
4( ) ( 2)

2t n n t n n t nc               

 2 2 2
0 ( ) 0,n n nc        (18) 

where strokes symbolize partial time derivative t. Use 
is also made of the operator representation of Eq. (18) 
n = 0, where the differential difference operator λ is 
defined as follows: 

def 4 2 2 2 2 2 2 2 2
0 1

1
4( ) ( 2)

2t n t n t xc              

 2 2 2 2
0 ( ) .n n xc      (19) 

The derived equation is difficult to analyze as it in-
cludes the fourth time derivative, the second coordi-
nate derivative, and difference operator n

2. Accord-
ing to the previous investigation [36], two types of 
dynamic processes are observed in lattice structures: 
rapidly decaying oscillations without energy transfer 
along coordinate x, that arise immediately after the 
heat application, and heat wave propagation as such. 
The wave front is assumed to form during decaying of 
fast oscillatory processes, necessary for redistribution 
of potential and kinetic energies in the crystal [42]. 
Keeping the same-order terms in operator (19) enables 
a division of (18) into equations for slow and fast mo-
tions. 

3.1. Fast Motion 

For fast motion, the order relation is valid for dif-
ferential operators t ~ , cx ~ , where     ~ 
0 ~1. By keeping only the highest terms of order 
4 in the operator (19), we derive 

 4 2 2 2 2
0 14( ) ,t n t         (20) 

which gives the following equation for n: 

 2 2 2
0 1 1 24( ) .n n n A A t         (21) 

Note that the derived equation has no derivatives with 
respect to x, i.e. fast motion occurs without spatial 
transfer. If the integration constants A1 and A2 are 
zero, Eq. (21) coincides with the earlier derived one 

for energy oscillations for a one-dimensional har-
monic crystal on the elastic foundation [42]. 

3.2. Slow Motion 

For slow motion, t ~ cx ~ , where   
 ~0 ~ 1. By keeping only the highest terms of 
order 22 in operator (19), we derive 

 2 2 2 2 2 2 2 2
0 1 04( ) ( ) ,n t n n xc            (22) 

which gives the following equation for n: 

 2 2 2 2 2 2
0 1 04( ) ( ) .n n n n nc           (23) 

In the absence of elastic foundation (1 = 0), Eq. (23) 
acquires the form 

 2 2
1 2

1
.

4n nc B B n       (24) 

If the integration constants B1 and B2 are zero, 
Eq. (21) coincides with the covariance dynamics 
equation derived earlier for a one-dimensional har-
monic crystal on the elastic foundation [48]. With the 
designation 

def 2 2
1 0 2,      the derived equation of 

slow motion (23) is explicitly written for velocity co-
variance n. As noted above, it has the same form as 
the equation for displacement covariances n: 

 
.. 2

1 1 2 2
1

( ) ( 2 ) .
4n n n n n nc             (25) 

This equation describes completely the macroscopic 
process of heat propagation in a one-dimensional 
harmonic crystal on the elastic foundation. The equa-
tion has two parameters: sound velocity c and dimen-
sionless parameter  defined by the stiffness ratio  = 
C1/C0 + 2, where C1 is the stiffness of the elastic foun-
dation, C0 is the stiffness of bond between crystal par-
ticles. A substitution kB(–1)nn:

def
 mn [49] gives the 

equation for covariance temperature n: 
.. 2

1 1 2 2
1

( ) ( 2 ) .
4n n n n n nc                  (26) 

In the allowed ranges of stiffness –C1/4  C0 <  and 
0  C1 < , the parameter  acquires values from the 
intervals – <  < –2 and 2 <  < +. The initial con-
ditions for covariance temperature has the form 

 
0

0

0

( ), 0,
( , )|

0, 0 ,

( , )| 0.

n t

n t

T x n
x t

n N

x t






    

 
 (27) 

The solution of problem (26) and (27) derived un-
der the Fourier transform [50, 51] in terms of covari-
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ance coordinate n and positional coordinate x is given 
in the (n, k, t) representation: 

0
1ˆ ˆ( , ) ( )n k t T k 


 

0

2
0 0 1

sin
cos cos ( )d ,

(1 4 cos ( 2))

aC kt
n

am C C

     
   

 (28) 

where δ is the integration variable. The condition of 
the real-number root in formula (28) imposes a restric-
tion on an allowed range of stiffness C0  –C1/4 of a 
stable chain [49]. 

Considering uncorrelated oscillation alone, let us 
assume that n = 0. Then integral (28) can be repre-
sented via Bessel functions (this statement is proved 
in Appendix A): 

 0 0 0 *
ˆ ˆ( , ) ( ) ,k t T k J c kt   (29) 

where c* = a/2|2 – 1| is the maximum group veloc-
ity of mechanical waves in the chain on the founda-
tion. 

If the foundation stiffness is much higher than the 
chain stiffness and positive (C1 C0), then c*  c  

0 1 ,C C  and conversely if C1 C0, then c*  c. For 
equal stiffnesses C1 = C0, the velocity c* = c/2 ( 5 – 
1)  0.62c. At C1 = 0, the solution goes over into the 
earlier derived one [45]. At negative stiffness C0, the 
heat wave velocity c* remains real as long as the con-
dition C0  –C1/4 is valid. 

From representation (29) and the Bessel function 
properties it follows that the distribution of kinetic 
temperature 0

ˆˆ( , ) ( , )T k t k t   in the chain on the 
foundation satisfies the following problem: 

 2 2
0 0 0*

1ˆ ˆ ˆ ˆ ˆ, | ( ), | 0.t tT T c k T T T x T
t        

 (30) 

Fourier transform inverse to (30) with respect to k 
gives the equations [45, 52] 

 2
0 0 0*

1
, | ( ), | 0,t tT T c T T T x T

t         (31) 

where t is the physical time counted from the instant 
of exposure of the chain to a short heat pulse. The heat 
front velocity in the chain c* is equal to the maximum 
(in absolute value) group velocity of mechanical 
waves in the considered system (see Appendix A). A 
conclusion on the heat front velocity can be inferred 
also by analyzing the Green function expansion for 
the chain (formula (26) in [51]) plotted by the station-
ary-phase method.  

Note that Eq. (31) is similar to the Darboux equa-
tion [53, 54] 

 
2

2

( , ) 1 ( , )
( , ),x

T x r T x r
T x r

r rr

   
  


 (32) 

describing the spherical mean solution of the wave 
equation in the space of dimension  + 1 in averaging 
with respect to a sphere of radius r. 

The solution of initial problem (31) can be repre-
sented [53–55] both as a convolution 

2 2

0 * 2 2

1 ( )
( , ) ( ) d

H t
T x t T x c

t





 
   
  
  

 0 *
2 2

( )1
d ,

t

t

T x c

t

 
 
  
  (33) 

and as a sum of direct and reverse waves 

0 0* *
0

1
( , ) sin sin d

2 2 2
T x t T x c t T x c t

                   
  

 0
1

sin d .
2 2

T x t




      
  (34) 

A similar expression was previously deduced [44]. 
The substitution  = t sin (/2) in the last expression 
can lead to the form (34). For illustration of the solu-
tion of heat transfer problem (30), we assume that an 
infinite one-dimensional crystal at the initial time in-
stant is heated by a short laser pulse whose intensity 
decreases with distance from the spot center. Let us 
assume that the initial temperature distribution is 
parabolic: 

 2 2 2 2
00 ( ) ( ),tT T l x H x l     (35) 

where T0 is the temperature in the laser spot center, l is 
the laser beam radius, and H is the Heaviside function. 
Then, a substitution of (35) into (33) yields a function 
describing the time evolution of the temperature pro-
file in a one-dimensional crystal (Fig. 1, solid lines).  
 

 
Fig. 1. Temperature distribution in an infinite one-dimen-
sional crystal: solid lines show the solution of the initial 
Cauchy problem derived by formula (33) and under initial 
conditions (35), dashed lines correspond to the solution 
plotted within the classical Fourier heat conductivity 
model. Dots stand for the numerical solution. Curves 1–3 
illustrate temperature distribution at the time instants t1 < 
t2 < t3. 
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The solution for T(x, t) is represented in Appen-
dix B. The solution of problem (30) under other initial 
conditions is analyzed elsewhere [55]. The problems 
on heat input into the bulk were studied by Gavrilov et 
al. [56]. 

The system of discrete dynamics equations (1) for 
the chain with stochastic initial conditions (5), where 

2 2 2 2
0( ) ( ) ( ),x T l x H x l     

is solved numerically by the central-difference method 
at the integration step 5  10–40, where 0 = 2/0. 
The numerical solution is shown by dots in Fig. 1. 
Initial velocities are set by a uniformly distributed 
random number generator. The mathematical expecta-
tion is an average value over the crystal. To derive a 
numerical solution of adequate accuracy, the use is 
made of a chain with 50 realizations of 10 000 parti-
cles each.  

As the only constant in the heat transfer equation is 
group velocity, of interest is its dependence on system 
parameters (1). To do this, the next section is devoted 
to the analysis of dispersion relations, including in the 
negative region of stiffness C0.  

4. DISPERSION RELATIONS 

The dispersion relation for waves propagating in 
the chain on the foundation (1) has the form 

 
2 2 2 2 2

2 1 1

2 2 2
2 0 1

( ) ( )sin ,
2

4 .

ak
k       

 

   

 (36) 

Dispersion relation (36) includes two cutoff fre-
quencies 1 < 2, thus the chain on the foundation 
presents a band-pass filter. Waves with frequencies 
out of the band pass are called exponential (zigzag-
like) and do not propagate [57]. To analyze dispersion 
dependences both at positive and negative stiffnesses 
C0, it is convenient to turn to the parameters  and , 
which are set so that 

 

def def2 2
1 2

2 2 2
1 2

cos , sin ,
4 4

.

              
   

   

 (37) 

The introduced parameter β depends on the foun-
dation stiffness and the stiffness of bond between 
chain particles in the following way: 

 
def 1 02

1 1

4
tan .

4

C C

C

       
 (38) 

At negative stiffness values C0, the parameter  is 
likewise negative. Values of  from the interval –/4   

Consistency of parameters  and  to parameters 1, 2, 0, c* 
and factors C0, C1. The quantity  enters dispersion relations as 
a factor

 –/4 0 /4 

1  2 2  0 

2 0 2 2   

0 –i/2  0 i/2  

c* a/2  0 a/2  

C0 –C1/4 0  

C1 –4C0 – 0 

 
  /4 correspond to frequencies 1 and 2 varying 
in the interval (0, ) or stiffnesses C1 and C2 in the 
intervals – C1/4  C0 <  and 0  C1 < . These values 
are listed in the table. The use of parameter  gives 
symmetrical curves of quantities describing wave 
propagation in system (1) at any allowed stiffness val-
ues C0 and C1. In so doing, the parameter  remains 
real and does not go into infinity in the entire range. 

The dispersion characteristic of waves in the chain 
on the elastic foundation (36) is expressed via parame-
ters ω and β in the following way: 

 ( ) 2 1 sin(2 )cos( ).k ak      (39) 

Figure 2 plots a family of dispersion curves at dif-
ferent values of parameter β. At negative and posi- 

 

 
Fig. 2. Dispersion characteristic of waves in the chain on 
the elastic foundation at the parameter  varying from 0 to 
/4 with the step /16, for positive C0 > 0 (a) and negative 
C0 < 0 stiffnesses (b).  
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Fig. 3. Wave group velocity in the chain on the elastic 
foundation at the parameter β varying from 0 to /4 with 
the step /16, for positive C0 > 0 (a) and negative C0 < 0 
stiffnesses (b).  

 
tive β, the diagrams are seen to be symmetrical. Thus, 
owing to the parameterization method, a clear analogy 
is seen in the behavior of system (1) at negative  
– C1/4  C0 < 0 and positive 0  C0 <  stiffnesses of 
the chain. At  = /4 the foundation is absent, and at 
β = 0 the stiffness vanishes C0 = 0, which corresponds 
to the system of uncorrelated oscillators. The value 
 = –/4 corresponds to the ultimate negative stiffness 
C0 = – C1/4, at which the chain on the foundation re-
tains stability. All dispersion curves in Fig. 2 are 
bounded by the upper and lower cuttoff frequencies: 

 1 2sin , cos .
4 4

              
   

 (40) 

The dependence of the group velocity on the wave 
number has the form  

 
def

gr
d sin(2 )sin( )

.
d 2 2 1 sin(2 )cos( )

a ak
C

k ak

  
 

 
 (41) 

The wave group velocity in the chain on founda-
tion is always lower than that in the chain without 
foundation, which is plotted at  = /4 in Fig. 3a. At 
positive and negative stiffnesses, the group velocity 
curves are antisymmetrical. At C0 > 0 the group velo-
city is positive, and at C0 < 0 it is negative and is op-
posed to the phase one. The maximum (in absolute 
value) group velocity in the chain on the foundation  
 

 
Fig. 4. Maximum (in absolute value) group velocity as a 
function of parameter . 

 
determines the maximum velocity of energy propaga-
tion in the system, which amounts to c* = a/2|2 – 1|. 

The value of c* is proportional to the difference be-
tween the upper and lower cuttoff frequencies. Going 
to the parameters β and ω, the velocity can be ex-
pressed as 

 * 2 | sin | .c a    (42) 
 

In the case of no foundation at 1 = 0 and consequ-
ently  = /4, the velocity c* takes on the value c = 

a0. 
The parameter ω at the allowed stiffness values  

– C1/4  C0 <  and 0  C1 <  varies within –14C1/m  
 <  and enters the expressions for dispersion (39), 
group velocity (41), and maximum (in absolute value) 
wave group velocity (42) merely as the scale factor. 
Thus, our concern is solely with the dependence of the 
mentioned quantities on the parameter . 

Figure 4 plots the dependence of the maximum (in 
absolute value) group velocity (42) on the parameter 
. At negative parameter –/4    0 corresponding 
to negative stiffness – C1/4  C0 < 0, the curve be-
haves symmetrically to that in the interval 0    /4 
corresponding to positive stiffness 0  C0 < . It is 
seen that at the end points of the diagram  = –/4, /4 
(i.e. at C0 = – C1/4 and C0/C1  , respectively) the 
velocity c* takes on the maximum value equal to the 
long-wave velocity in the chain without foundation 
c = a0. In the case  = 0 corresponding to c0 = 0, no 
waves propagate in the chain c* = 0. 

The used method of parameterization of dispersion 
relations distinguishes two quantities: ω entering the 
dispersion relations as a multiplier and presenting a 
scale factor, and β determining the qualitative beha-
vior of the diagrams (k, ), Cgr(k, ), and c*(). Both 
quantities are uniquely determined from model pa-
rameters (1), maintaining consistency with each other 
and with the rest designations (see the table). 
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5. CONCLUSIONS 

The work discloses that the propagation of a short-
term thermal perturbation in the crystal on the elastic 
foundation is determined by the ballistic heat conduc-
tivity equation of the same form as in the crystal with-
out elastic foundation [45]: 

 2
0 0 0*1 , | ( ), | 0.t tT tT c T T T x T         

The only parameter in the equation is the maximum 
(in absolute value) group velocity c* = a|1 – 2|/2, i.e. 
the maximum velocity of energy propagation in the 
crystal on the elastic foundation. This quantity is pro-
portional to the absolute value of the semidifference 
of the upper 2 and lower 1 cuttoff frequencies. If 
the foundation stiffness is much higher than the chain 
stiffness (C1  C0), then 0 1* ,c c C C  and con-
versely if C1 C0, then c*  c. The heat wave velocity 
c* in the crystal on the elastic foundation with positive 
stiffness C0 is always lower than the heat wave veloc-
ity c in the crystal without foundation c* < c. 

It is found that Eq. (31) is valid both for positive 
chain stiffness and for negative one subject to C0 > 
– C1/4. If the chain stiffness is negative and the condi-
tion C0 > – C1/4 is satisfied, the heat wave velocity re-
mains real and can be expressed by formula (42). 

For illustration an exact solution of Eq. (31) is de-
rived for a parabolic initial temperature profile, which 
models short-pulse laser heating of a one-dimensional 
crystal on the foundation. 

Due to dispersion of mechanical waves in the chain 
on the foundation, their group velocity depends on the 
wave number k and the chain-to-foundation stiffness 
ratio . The heat front propagates with the maximum 
possible group velocity in the system, which depends 
only on . Thus, heat and acoustic waves can have 
different velocities at the fixed . The heat transfer 
velocity can exceed the acoustic wave velocity if the 
mass bond stiffness in the chain is positive C0 > 0, and 
conversely it can be less than the acoustic wave veloc-
ity at C0 < 0 (Fig. 3). 
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APPENDIX A. SOLUTION OF THE KINETIC 
ENERGY TRANSFER EQUATION VIA BESSEL 

FUNCTIONS  

Let us prove that the following equality is valid: 

0

2
0 0 1

sin1
cos d

(1 4 cos 2)

aC kt

am C C

    
    
  

 0 *( ).J c kt  (A1) 

Using an integral representation of the Bessel function 
[58], we transform the right-hand side: 

0

2
0 0 1

sin
cos d

(1 4 cos ( 2))

aC kt

am C C

    
   

  

 *
0

cos( sin( 2))d .c kt


    (A2) 

The Laplace integral transform of the right- and left-
hand sides of equality (A2) is applied with respect to 
time t    

12
0

2
0 0 1

( sin )
d

(1 4 cos ( 2))

a C k

m C C

 
     

  

 
2 2 2 2

0 *

d .
sin ( 2)c k

 
 

   (A3) 

A definite integral over  is found for the left- and 
right-hand sides of (A3). Under the assumption that 
c* = a/2|2 – 1|, the derived expression is reduced to 
an algebraic identity, which is transformed to the sim-
ple form: 

 

2 4 4 2 4

2 2 2 2

2 4 4 2 4

2 2

2 2

2( 2 ) 2 4

2 2 ,

.

c k

c k

c k

c k

     

      

      

  

 (A4) 

At positive stiffness C0 > 0 and the parameters c, k, 
 > 0,  > 2, the validity of this statement is proved 
by successive identity transformations. At negative 
stiffness – C1/4 < C0 < 0 and the parameter –  <   –2, 
the proof is the same. At C0 = 0 or, what is the same, 
at  = 2, heat and acoustic disturbances do not propa-
gate in system (1). Thus, the left- and right-hand sides 
of equality (A1) have the same Laplace image, and 
consequently their originals also coincide, as was to 
be proved. 

The authors are grateful to A.K. Belyaev, O.V. Gen-
delman, and V.A. Kuzkin for comprehensive discus-
sion of the work.  
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APPENDIX B. SOLUTION OF THE PROBLEM OF 
EVOLUTION OF A HEAT PULSE WITH THE 

INITIAL PARABOLIC PROFILE  

We introduce dimensionless variables x* and t*, 
such that 

 * * *, ,x c x t t     (B1) 

where c* is the maximum (in absolute value) group 
velocity, and τ is the scale along the time axis. With 
the new variables and under initial conditions (35), 
problem (31) takes the form 

*

2 2 2 2
0 0* * * * *1 , | ( ) ( ),tT t T T T T l x H x l       

 
* 0| 0,tT    (B2) 

where l* = l/(c*). An integration of (33) gives the fol-
lowing expression for temperature (for brevity, the 
subscripts are omitted in the notation) 

1 1 2 3( , ) ( , ) ( , ) ( , ) ( , ),T x t T x t T x t T x t T x t     (B3) 
where the quantities T1, T2, and T3 are set by the ex-
pressions 

1

2 2

2

2 2

2 2
3

2 2 2 2

1
( , ) ( ) 2arcsin 2 ( )

4

( ( ) ),

1
( , ) ( ) 2arcsin arcsin

2

( ) ( ) (( ) ),

1
( , ) ( ) (( ) ) ( ),

2

( ) ( 3 ) ( ) , ( ) 2 2

l x
T x t p x q x

t

H l t x

l x l x
T x t p x

t t

q x q x H t l x

T x t p x H t l x H l t

q x l x t l x p x l t

          

  

       
   


   

       2.x

 

The solution exhibits wave diffusion: there is only a 
leading front and no trailing front. The functions 
T2(x, t) and T3(x, t) determine the internal part of a 
propagating wave at different time periods; T1(x, t) 
and T1(–x, t) determine its external part at any time 
values. 
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