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Stability of 2D triangular lattice under finite arbitrary strain is investigated. The lattice is considered infinite and

consisting of particles which interact by pair force central potential. Dynamic stability criterion is used: frequency

of elastic waves is required to be real for any real wave vector. Two stability regions corresponding to horizontal

and vertical orientations of the lattice are obtained. It means that a structural transition, which is equal to the change

of lattice orientation, is possible.

Keywords: stability, triangular lattice, finite strain, biaxial strain, pair potential, elastic wave, structural transition.

1. Introduction

In work [1] stability of plane triangular lattice under finite biaxial strain was investigated.

Two stability regions, which correspond to vertical and horizontal orientations of the lattice, were

obtained both analytically and using MD simulation. It was shown that taking more than one

coordination sphere into account leads to a new effect: possibility of structural transition, which

is equal to the change of lattice orientation. In this work shear strain is added. Modeling based

on discrete atomistic methods [2] is proposed. The medium is represented by a set of particles

interacting by a pair force central potential, in particular Lennard-Jones and Morse. Direct tensor

calculus [3] is used.

Following [1, 4, 5], let us introduce the following notation to describe the geometry:

ak = rk − r
0
, (1)

where rk is radius vector of a particle k, r
0

is radius vector of reference particle. If a lattice is

simple, then any particle can be named “reference”, each particle k has a pair −k and a
−k = −ak.

Triangular lattice is simple and close-packed: it coincides with its Bravais lattice and possesses

maximum concentration of nods in elementary volume V0 with the given minimum distance

between the nods. Let us refer to the geometry which is described by rk and ak as reference

configuration.

Let
∘

∇ and ∇ be Hamilton’s operators in reference and current configurations [3]:

∘

∇ = ei
∂

∂xi

, ∇ = ei
∂

∂Xi

. (2)

Vectors ei form an orthonormal basis. If vector r has projections xi in reference configuration,

then in current configuration r will turn into R with projections Xi in the same basis.

Suppose that the lattice is subject to strain characterized by
∘

∇R. According to long-wave

approximation [2, 6]

Ak = R (r − ak)−R (r) ≈ ak ⋅
∘

∇R. (3)
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Long-wave approximation takes into account those wave lengths that are much greater than the

interatomic distance. The thermal motion is neglected.

Morse and Lennard-Jones potentials are used in this work to describe the interaction

between particles

�(r) = D
[

e−2�(
r

a
−1) − 2e−�(

r

a
−1)

]

, �LJ(r) = D

[

(a

r

)12

− 2
(a

r

)6
]

. (4)

Here a is equilibrium distance in the system of two particles, D is the depth of potential well, �
characterizes the width of the well. If � = 6, these potentials coincide in the elastic zone. Morse

potential is preferable in this work, because, firstly, it decreases faster, so less particles may be

taken into consideration, secondly, if r → 0 Morse potential remains finite.

Let Fk = F (Ak) = −Π′(Ak) be interaction force and Ck = C(Ak) = Π′′(Ak) be the

bond stiffness, both calculated in current configuration. Then we can introduce

A
k
= AkAk,

4A
k
= AkAkAkAk, a

k
= akak,

4a
k
= akakakak

Φk = −Fk

Ak

, ℬk =
1

A2

k

(Ck − Φk), Φ =
1

2

∑

k

ΦkAk
, 4ℬ =

1

2

∑

k

ℬk
4A

k
.

(5)

2. Stability criterion and deformation of triangular lattice

In the previous works [1, 4, 5] the following stability criterion was applied

Ω > 0, (6)

where Ω is determined from equation

det
[

D − ΩE
]

= 0. (7)

Here

D = 4C ⋅⋅K, 4C = EΦ +4ℬ, K = KK.

K is a real wave vector. This means that frequency of elastic waves is required to be real for

any real wave vector.

Fig. 1. Reference and current configurations

Fig. 1 shows the typical part of triangular lattice before and after deformation. In reference

configuration �1 = �2 = 60∘. It is sufficient to take only 0 ≤ ' ≤ 30∘ in account due to

symmetry and infiniteness of the lattice. It was shown in [1, 5] that at least two coordination

spheres should be considered.

In 2D case (7) takes the form

Ω2 − Ω trD + detD = 0. (8)
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According to (6) roots of equation (8) are positive for stable current configurations. Thus,

stability criterion is

trD > 0, detD > 0, 2 trD2 −
(

trD
)2 ≥ 0. (9)

Inequality 2 trD2 −
(

trD
)2 ≥ 0 is always true in 2D.

Let G = E ⋅⋅4C. The equations (9) yield

trD > 0⇔ G11K
2

1
+G12K1K2 +G22K

2

2
> 0,

detD > 0⇔ AK4

1
+BK2

1
K2

2
+ CK4

2
+DK3

1
K2 + EK1K

3

2
> 0,

(10)

where

G11 = C11 + C21, G12 = C14 + C24, G22 = C12 + C22,

A = C11C21 − C2

41
, B = 4C14C24 + C11C22 + C12C21 − 2C41C42 − 4C2

44
,

C = C12C22 − C2

42
, D = 2C11C24 − 4C41C44 + 2C14C21,

E = 2C12C24 + 2C14C22 − 4C42C44.

(11)

Here Cij are the components of tensor 4C.

The left part of trD > 0 is a quadratic form in the components of the wave vector K1

and K2. It is positive definite, if

G11 > 0, 4G11G22 −G2

12
> 0. (12)

The left part of detD > 0 is a homogeneous polynomial of degree four. In this case, a

general analytical criterion cannot be constructed.

Due to the fact that both K1 and K2 may be equal to zero, two necessary stability

conditions are obtained, which help to narrow down the set of current configurations "1, "2, '

A > 0, C > 0. (13)

Then, there are two ways to obtain sufficient conditions:

(1) For each "1, "2, ' we can construct detD, and check it for a set of K1 and K2 (Monte

Carlo method). The inequality is homogeneous and even, so it is sufficient to consider

only −1 ≤ K1 ≤ 1 and 0 ≤ K2 ≤ 1, which increases the efficiency.

(2) We can divide detD by K4

2
and look into the problem of determining the coefficients so

that a fourth-degree equation has no real roots, again for each "1, "2, '. This method is

much faster, but it causes a problem of distinguishing between complex and real roots,

which leads to inaccurate results at the border.

In Fig. 2 stability regions, obtained by inequalities (12) and (13) and by the second method, are

drawn. Here "1 and "2 are linear parts of Cauchy-Green tensor. There are several points, marked

black, which were added by the first method. The stability regions are symmetric with respect

to the plane tg' = 0. Two major areas correspond to horizontal and vertical orientations of the

lattice [1]. Two additional small stability areas are connected with square lattices at ' ≈ 0∘ and

' ≈ 26∘ (see Fig. 3).

Let us draw a series of stress-strain diagrams, e.g. Fig. 4. According to [2] Cauchy stress

tensor has the form

� =
1

2V

∑

k

AkF k, (14)
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Fig. 2. Stability regions

Fig. 3. Square lattices at ' ≈ 0∘ and ' ≈ 26∘

Fig. 4. Pure shear (�11 = �22 = 0)
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where V =
√
3/2(1 + "1)(1 + "2). Grey zone in Fig. 4 corresponds to stability region, �12 is

diagonal component of Cauchy stress tensor.

In Fig. 4 we can see, that the loss of stability is strongly connected with the sign of the

first derivative.

3. Concluding remarks

Stability analysis of 2D triangular lattice under finite arbitrary strain was carried out. In

addition to [1] shear was taken into account. Two stability regions were obtained, when more

than one coordination sphere were regarded, and a possibility of structural transition, which is

equal to the change of lattice orientation, was noticed. Monte Carlo and analytical methods were

used, and they proved to give practically equal results. Thus, Monte Carlo method can be applied

to more complex cases, where it is impossible to accomplish analytical investigation, e.g. 3D

lattices.
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