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Thermal expansion of a classical chain with pair interactions
performing longitudinal and transverse vibrations is investi-
gated. Corresponding equations of state are derived analytically
using series expansions of pressure and thermal energy with re-
spect to deformations of the bonds caused by thermal motion. In
the first approximation the equation of state has Mie–Grüneisen
form. The dependence of Grüneisen parameter on deforma-
tion of the chain is obtained. For Lennard-Jones-like potential
Grüneisen parameter varies with deformation from minus in-
finity (at zero stretching) to plus infinity (at the breakage point).
Necessary and sufficient condition for negative thermal expan-
sion at low thermal energies is formulated. Using this condition
the potential giving rise to negative thermal expansion in the

given range of deformations can be designed. It is shown that at
small deformations and finite thermal energies Mie–Grüneisen
equation of state strongly overestimates the absolute value of
pressure. More accurate nonlinear equation of state is derived
for this case. The equation implies that thermal pressure in the
unstretched chain is proportional to square root of thermal en-
ergy. In the vicinity of the deformation, corresponding to zero
Grüneisen parameter, the chain demonstrates negative thermal
expansion at low temperatures and positive thermal expansion
at higher temperatures. This phenomenon is qualitatively de-
scribed by the nonlinear equation of state derived in the present
paper. The theoretical findings are supported by the results of
molecular dynamics simulations.

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction The majority of materials have
positive thermal expansion coefficient, i.e., expand upon
heating. However, a certain class of materials demonstrates
negative thermal expansion (NTE). For example, ice has
negative thermal expansion at low temperatures [1]. Another
well-known example is graphene [2]. Many other natural and
synthetic materials demonstrating NTE are listed in review
papers [3–6]. Since these materials have a great potential
in a variety of applications, it is important to investigate
physical mechanisms underlining NTE. The mechanisms
include transverse vibrations of atoms [6–8, 16], rigid-unit
modes [5, 9–11] and some others. Intuitively the mecha-
nisms are well-understood. However accurate prediction of
the relation between thermal expansion and microscopic

properties of a material (chemical composition, lattice struc-
ture, interatomic potential, etc.) is still a challenging problem.
This issue is usually addressed by using methods of statistical
physics [12]. Theoretically all thermodynamic properties of a
solid can be obtained if the partition function is known. How-
ever, the calculation of the partition function involves calcula-
tion of complicated integral over N-dimensional phase space.
The integral can be calculated exactly only in the so-called
quasi-harmonic approximation [13] or for very simple one-
dimensional models [14]. In many cases the quasiharmonic
approximation is insufficient. In particular it cannot describe
the dependence of thermal expansion coefficient on tempera-
ture. Many attempts to take into account unharmonic effects
in the framework of statistical physics approach have been
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made in literature (see e.g., recent papers [15–17]). However,
the problem of accounting for anharmonicity is still far from
being solved.

An alternative approach is based on series expansion
of pressure and thermal energy with respect to small pa-
rameter characterizing thermal motion [19, 18, 20]. The ap-
proach was successfully used in one, two, and three di-
mensions for derivation of equations of state describing
thermal expansion in perfect crystals. The expression for
Grüneisen parameter of close-packed crystals with pair in-
teractions was derived [18, 20]. An approximate necessary
and sufficient condition for a pair potential that give rise
to NTE was formulated [21]. In the present paper, this ap-
proach is used for investigation of thermal expansion in a
chain with longitudinal and transverse vibrations. In a re-
cent paper, [16] it is shown using similar model that trans-
verse vibrations are responsible for thermal expansion in a
wide class of ceramic and hybrid materials. Also the chain
can be considered, for example, as the simplest model of a
nanowire [22].

In the present paper, it is shown analytically and numer-
ically that the chain with longitudinal and transverse vibra-
tions demonstrates very reach thermal expansion behavior.
At small thermal energies the chain has positive, zero, or
negative thermal expansion coefficient depending on defor-
mation. At some values of deformation the thermal expansion
coefficient of the chain is infinite. The nonlinear equation of
state describing this and other phenomena is derived. Analyt-
ical findings are supported by results of molecular dynamics
simulations.

2 Micro- and macro parameters of the model
Consider longitudinal and transverse vibrations of an infi-
nite chain consisting of interacting particles. In the absence
of thermal motion the particles are equally spaced along
the straight line. At finite temperatures the particles vibrate
around their average positions. Compressive deformations
of the chain are not considered. It is assumed that thermal
motion is sufficiently small so that the chain does not break.
Only interactions between the nearest neighbors are taken
into account. The steady state of the system is investigated.
In this case average characteristics associated with all par-
ticles are identical. Therefore only “reference” particle with
the nearest neighbors is considered below. The neighbors are
marked by indexes 1 and −1. Vector connecting the refer-
ence particle with particle 1 is represented as A + Ã, where
A = Ae, A is an average distance between neighbors, e is a
vector collinear with the chain at zero thermal motion, Ã is
a variation of vector connecting particles due to the thermal
motion. By the definition the averaged vector Ã is equal to

zero. The particles interact via pair potential Π
(

(A + Ã)2
)

.

It is assumed that the potential can be expanded into a power
series. The rate of convergence of the series determines the
accuracy and applicability range for equations of state de-
rived below (see Eqs. (5) and (16)). The equation of motion

of the reference particle has the form

mv̇ = F1 + F−1, F1 = 2Π ′
(

(A + Ã)2
) (

A + Ã
)

,

(1)

where F1 and F−1 are the forces acting on the reference parti-
cles due to neighbors 1 and −1, respectively. Here and below
a prime denotes the derivative with respect to argument of
the function.

Macroscopic constitutive parameters of the system are
defined as follows. The total pressure p is equal to the average
force acting on the reference particle in the direction of the
chain given by vector e. It is decomposed into cold p0 and
thermal pT contributions:

p = − 〈F1〉 · e, p0 = −2Π ′(A2)A, pT = p − p0.

(2)

The thermal energy ET is represented as a sum of kinetic KT

and potential UT contributions:

ET = KT + UT , KT = m

2

〈
ṽ2

〉
,

UT =
〈
Π

(
(A + Ã)2

)〉
− Π(A2).

(3)

Formulas (2) and (3) imply that the thermal pressure and ther-
mal potential energy depend on vector Ã. Kinetic energy is
represented in a similar form using Virial transformation (see,
e.g., paper [20]):

KT = 1

2

〈
Ã · F1

(
A + Ã

)〉
. (4)

Thus thermal pressure pT and thermal energy ET depend on
vector Ã. In the following sections |Ã|/A is considered as a
small parameter. Series expansion of pT and ET with respect
to this parameter yields equations of state.

3 Linear negative/positive thermal expansion at
small thermal energies Assume that deformations of the
bonds caused by thermal motion of the particles are small,
i.e., |Ã| � A. Then thermal pressure (2), potential energy (3),
and kinetic energy (4) can be expanded into series with re-
spect to vector Ã. Leaving terms up to the second order yields:

KT = UT = (
Π ′E + 2Π ′′A2ee

) · ·
〈

ÃÃ
〉

,

pT = −2
[
Π ′′A (E + 2ee) + 2Π ′′′A3ee

] · ·
〈

ÃÃ
〉

,

(5)

where e = A/A, E is a two-dimensional unit tensor. Formu-
las (5) show that in the first approximation the thermal energy

and the thermal pressure are proportional to tensor
〈

ÃÃ
〉

www.pss-b.com © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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describing deformations of the bonds caused by thermal mo-
tion. Contributions of longitudinal and transverse deforma-
tions are separated as follows:

Ã = αe + βn,〈
ÃÃ

〉
= 〈

α2
〉

ee + 〈
β2

〉
nn + 〈αβ〉 (en + ne) ,

(6)

where n is a unit normal to the direction of the chain;
〈
α2

〉
,〈

β2
〉

are dispersions of longitudinal and transverse deforma-
tions of the bond respectively; 〈αβ〉 is a correlation between
longitudinal and transverse deformations. From Eqs. (5) and
(6) it follows that the thermal pressure and the thermal energy
depend on parameters

〈
α2

〉
,
〈
β2

〉
describing thermal motion:{

pT = −2
(
3Π ′′ + 2Π ′′′A2

)
A

〈
α2

〉 − 2Π ′′A
〈
β2

〉
,

ET = 2(Π ′ + 2Π ′′A2)
〈
α2

〉 + 2Π ′ 〈β2
〉
.

(7)

In the given approximation correlations between longitudinal
and transverse vibrations 〈αβ〉 do not contribute to pT and ET .

To obtain the equation of state in a closed form additional
relations between parameters

〈
α2

〉
,
〈
β2

〉
are required. The

relations are derived using the equipartition theorem [12].
According to the theorem, kinetic energies of longitudinal
and transverse vibrations are equal. Consider tensor

〈
ṽṽ

〉
using the following generalization of formula (4):

m

2

〈
ṽṽ

〉 = 1

2

〈
ÃF1

〉
≈ Π ′

〈
ÃÃ

〉
+ 2Π ′′AA ·

〈
ÃÃ

〉
.

(8)

For simplicity of further derivations, introduce the func-
tion Π̂:

Π̂(A) = Π(A2), Π ′ = Π̂ ′

2A
, Π ′′ = Π̂ ′′A − Π̂ ′

4A3
,

Π ′′′ = Π̂ ′′′A2 − 3Π̂ ′′A + 3Π̂ ′

8A5
. (9)

Here the prime denotes the derivative with respect to argu-
ment of the function. Then the equipartition theorem yields
the relation between dispersions of longitudinal and trans-
verse vibrations

〈
α2

〉
and

〈
β2

〉
:

m

2

〈
(ṽ · e)2

〉 = m

2

〈
(ṽ · n)2

〉 ⇒ Π̂ ′′ 〈α2
〉 = Π̂ ′

A

〈
β2

〉
.

(10)

Coefficients Π̂ ′′, Π̂ ′/A are equal to longitudinal and trans-
verse stiffnesses of the chain respectively. Note that for small
deformations of the chain Π̂ ′′ > Π̂ ′/A. Therefore in this case
the dispersion of transverse vibrations

〈
β2

〉
is larger than the

dispersion of longitudinal vibrations
〈
α2

〉
. This fact is used

in the following section for derivation of nonlinear equation
of state.

Excluding
〈
α2

〉
and

〈
β2

〉
form the system of equa-

tions (7) using the relations (9) and (10) yields the equation
of state in Mie–Grüneisen form:

p = p0 + Γ (A)

A
ET , Γ = Γl + Γtr

2
,

Γl = −Π̂ ′′′A

2Π̂ ′′ , Γtr = −Π̂ ′′A − Π̂ ′

2Π̂ ′ . (11)

Grüneisen parameter Γ has two contributions Γl, Γtr from
longitudinal and transverse vibrations, respectively. The con-
tribution of longitudinal vibrations Γl is caused by anhar-
monicity of the interatomic potential only. It vanishes in the
case of harmonic potential (Π̂ ′′′ = 0). In contrast, the contri-
bution of transverse vibrations Γtr does not depend on anhar-
monic properties of the potential. It is caused by geometrical
nonlinearity.

Formula (11) yields necessary and sufficient condition
for negative thermal expansion in the chain with longitudinal
and transverse vibration at low thermal energies:

Γ < 0 ⇔ Π̂ ′′′Π̂ ′A + Π̂ ′′ (Π̂ ′′A − Π̂ ′) > 0. (12)

Using formula (12) the potential giving rise to negative ther-
mal expansion in the given range of deformations of the chain
can be designed.

To illustrate the dependence of Grüneisen parameter on
deformation, consider Lennard-Jones potential:

Π̂(A) = ε0

[( a

A

)12

− 2
( a

A

)6
]
, (13)

where ε0 is a bond energy, a is an equilibrium distance.
The dependence of Grüneisen parameter on deformation of
the chain calculated using formula (11) is shown in Fig. 1.
The contribution of longitudinal vibrations to the thermal
pressure is positive and tends to infinity near the breakage
point b = (13/7)1/6a ≈ 1.109a. The latter fact is emphasized
for the one-dimensional chain in paper [19]. The contribu-
tion of transverse vibrations to the pressure is negative almost
everywhere except for the small interval A ∈ [1.098a; b].
Grüneisen parameter of the unstretched chain (A = a) is
equal to minus infinity, since Π̂ ′(a) = 0. Zero thermal ex-
pansion is realized at the point A = A∗:

Γ (A∗) = 0 ⇔ Π̂ ′′′Π̂ ′A∗ + Π̂ ′′ (Π̂ ′′A∗ − Π̂ ′) = 0.

(14)

Here, the derivatives are calculated at A = A∗. For Lennard-
Jones potential A∗ ≈ 1.0286a. In Section 5.3 it is shown that
in the vicinity of the point A = A∗ the thermal expansion of
the chain is negative at small thermal energies and positive
at high thermal energies.

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 1 Dependence of longitudinal, transverse, and total
Grüneisen parameters on deformation of the Lennard-Jones chain
calculated using formulas (11). Vertical line at (A∗ − a)/a separates
regions of positive and negative thermal expansion. A∗ is calculated
using Eq. (14).

Thus at small thermal energies the chain demonstrate
negative, zero or positive thermal expansion depending on
deformation. There are two values of deformation cor-
responding to infinite Grüneisen parameter, and one de-
formation corresponding to zero Grüneisen parameter. In
these cases quasi-harmonic approximation and correspond-
ing Mie–Grüneisen equation of state are insufficient. There-
fore in the following section more accurate equation of state
accounting for anharmonic effects is derived.

4 Nonlinear, nonmonotonic thermal expansion
at small deformations Consider thermal expansion at
small deformations of the chain. In this case the transverse
deformations of bonds are larger than the longitudinal, i.e.,〈
α2

〉 � 〈
β2

〉
(see formula (10)). The relation between these

parameters is given by the equipartition theorem. Series ex-
pansion of Eq. (8) up to the forth order yields(

Π ′+2Π ′′A2
)〈

α2
〉=Π ′〈β2

〉+Π ′′A
〈
αβ2

〉+Π ′′〈β4
〉
.

(15)

Here
〈
α3

〉
,
〈
α2β2

〉
,
〈
α4

〉
are neglected, because longitudi-

nal deformations are smaller than transverse. Note that in
the given approximation the correlation between longitudi-
nal and transverse deformations

〈
αβ2

〉
is important. Similar

series expansions are carried out for the thermal pressure pT

and the thermal energy ET :

pT = −2
(
3Π ′′ + 2Π ′′′A2

)
A

〈
α2

〉 − 2Π ′′A
〈
β2

〉
− 2

(
Π ′′ + 2Π ′′′A2

) 〈
αβ2

〉 − Π ′′′A
〈
β4

〉
,

ET = 2
(
Π ′ + 2Π ′′A2

) 〈
α2

〉 + 2Π ′ 〈β2
〉

+ 5Π ′′A
〈
αβ2

〉 + 3

2
Π ′′ 〈β4

〉
. (16)

Formula (16) implies that thermal pressure and thermal en-
ergy depend on parameters

〈
α2

〉
,
〈
β2

〉
,
〈
αβ2

〉
,
〈
β4

〉
. The only

relation between these parameters is given by the Eq. (15).
Therefore, two additional equations are required in order to
obtain the equation of state in a closed form. The following
relations are used〈

β4
〉 = λ

〈
β2

〉2
, A

〈
αβ2

〉 = μ
〈
β2

〉2
. (17)

Parameter λ is estimated as follows. Assume that β is nor-
mally distributed quantity with dispersion

〈
β2

〉
. Then

〈
β4

〉
is calculated as

〈
β4

〉 = 1√
2π 〈β2〉

∫ ∞

−∞
β4exp

(
− β2

2 〈β2〉
)

= 3
〈
β2

〉2
.

(18)

Therefore in the case of normal distribution λ = 3. In all
simulations carried out in the present paper 1 λ ∈ [2.89; 3],
μ ∈ [−1; −0.92]. Therefore the dependence of λ and μ on
deformation of the chain and thermal energy is neglected.

Substituting the expressions (17) into the system (16)
and excluding

〈
β2

〉
yields the equation of state in the explicit

form:

pT = B2

B4

ET + (B2B3 − B1B4)(B3 −
√

B2
3 + 4B4ET )

2B2
4

,

(19)

where

B1 = − 2

A

(
Π ′′A2−ΓlΠ

′), B3 =4Π ′, B4 = 7

2
(λ+2μ)Π ′′,

B2 = − 2

A
(μ − Γl(λ + μ))Π ′′ − (λ + 4μ)Π ′′′A. (20)

In contrast to Mie–Grüneisen equation of state, the depen-
dence of pressure on thermal energy given by Eq. (19) is non-
linear. To show the significance of the nonlinearity, expand
the Eq. (19) into series with respect to the thermal energy ET .
The expansions for the cases of (i) stretched chain (A > a),
(ii) unstretched chain (A = a), and (iii) zero Grüneisen pa-
rameter A = A∗ are as follows:

pT ≈ Γ (A)

A
ET + B2A − Γ (A)B4

16Π ′2A
E2

T
, A > a, (21)

pT ≈ −2

(
2Π ′′(a)a2

7(λ + 2μ)

) 1
2 √

ET , A = a, (22)

pT ≈ B2

16Π ′2 E2
T
, A = A∗. (23)

1Deformations up to 4% are considered. At higher deformations Mie–
Grüneisen equation is sufficient (see Section 5.3)

www.pss-b.com © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Formulas (22) and (23) show that thermal expansion of
the chain at A = a and A = A∗ is strongly nonlinear. In
these cases linear approximation of the dependence pT (ET )
given by Mie–Grüneisen equation is inaccurate. The Eq. (22)
also answers the question why Grüneisen parameter of
the unstretched chain is infinite. In this case the depen-
dence pT (ET ) has square root asymptotic at small ET . There-
fore Grüneisen parameter characterizing the slope of this de-
pendence at ET = 0 is infinite. Note that the right-hand side
of Eq. (22) does not depend on anharmonic properties of
the potential Π. Therefore, the effect of strongly nonlinear
thermal expansion of the unstretched chain is caused by ge-
ometrical nonlinearity of transverse vibrations rather than
anharmonicity of the potential.

According to formula (21) the nonlinearity of the depen-
dence pT (ET ) is also significant at small deformations, be-
cause the quadratic term in Eq. (21), proportional to 1/Π ′2, is
large. Moreover at some values of A ∈ (a; A∗) the quadratic
term leads to nonmonotonic thermal expansion, negative at
small thermal energies and positive at large thermal ener-
gies (see Fig. 4).

5 Comparison with results of molecular dynam-
ics simulations

5.1 Simulation details In the present section the pre-
dictions of the nonlinear equation of state (19) are compared
with the results of molecular dynamics simulations. Dynam-
ics of the Lennard-Jones chain consisting of 103 particles
in two space dimensions is simulated in NVE ensemble.
Periodic boundary conditions in the direction of the chain
are used. 2 Only interactions of the nearest neighbors are
taken into account. Initially the particles are equally spaced
and have random velocities uniformly distributed in a circle.
Equations of motion of the particles are solved numerically
using symplectic leap-frog integration scheme [24] with the
time step 0.02T∗, where T∗ is a period corresponding to the
Einstein frequency. During the simulation the pressure and
thermal energy are calculated by the definitions (2) and (3),
where averaging is carried out over 106 time steps. For each
deformation and thermal energy 15 simulations with differ-
ent initial conditions are performed.

5.2 Nonlinear thermal expansion at small defor-
mations Dependencies of thermal pressure on the ther-
mal energy for the undeformed chain calculated using (i)
molecular dynamics simulations and (ii) nonlinear equation
of state (19) (for λ = 2.99, μ = −0.93) are shown in Fig. 2.
Here and below every point on the plot corresponds to the
average over 15 molecular dynamics simulations with dif-
ferent initial conditions. The thermal energy and the ther-
mal pressure are divided by ε0 and ε0/a, respectively. The
maximum value of the thermal energy shown in Fig. 2 cor-
responds to breakage of the chain. Evidently the dependence
of thermal pressure on thermal energy is strongly nonlin-
ear and therefore cannot be described using Mie–Grüneisen

2Periodic boundary conditions allow to avoid the finite size effects.

Figure 2 Dependence of thermal pressure on thermal energy for
undeformed Lennard-Jones chain. The dispersion of the results of
molecular dynamics simulations is of order of the size of the points.

equation of state (11). In contrast, the nonlinear equation of
state (19) correctly predicts square root asymptotic of the
dependence pT (ET ) at small thermal energies.

The dependence of the thermal pressure on the thermal
energy for the chain stretched by 0.1% and 1% is shown
in Fig. 3. Mie–Grüneisen equation of state (11) gives cor-
rect slope of the dependence pT (ET ) at ET = 0. However at
finite thermal energies it is inaccurate, since the quadratic
term in the expansion (21) is large. For example, maximum
error of Mie–Grüneisen equation for A = 1.01a is more than
200%. For A = 1.001a the error is even larger. At the same
time the nonlinear equation of state (19) reproduces the re-
sults of molecular dynamics simulations in the entire range
of thermal energies. Maximum error at high thermal energies
is about 30%.

5.3 Nonmonotonic thermal expansion. Large
deformations Formula (14) implies that Grüneisen pa-
rameter of the Lennard-Jones chain is equal to zero for A∗ ≈
1.0286a. Consider the behavior of the chain in the vicinity
of this point in more details. Dependencies of thermal pres-
sure on thermal energy for A = 1.028a and A = 1.0286a

are shown in Fig. 4. For A = 1.0286a the thermal expansion
is zero at ET → 0 and positive for higher thermal energies.
Asymptotic behavior at small thermal energies is described
by Eq. (23), i.e., thermal pressure is proportional to the square
of the thermal energy. Therefore thermal expansion coeffi-
cient tends to zero as thermal energy tends to zero. Note that
similar phenomenon is usually observed in quantum systems.

For A = 1.028a the dependence pT (ET ) is nonmono-
tonic. Therefore thermal expansion of the chain is negative at
low thermal energies and positive at high thermal energies.
In contrast to Mie–Grüneisen equation of state (11), the

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 3 Dependence of thermal pressure on thermal energy for Lennard-Jones chain stretched by 0.1% (left) and 1% (right). The
dispersion of the results of molecular dynamics simulations is of order of the size of the points.

nonlinear equation of state (19) qualitatively describes this
phenomenon. Quantitative discrepancy is cased by the fact
that Eq. (19) is derived for the case of small deformations.

Further increase of the deformation leads to decrease of
the maximum thermal energy corresponding to breakage of
the chain. In this case the dependence of the thermal pressure
on thermal energy is almost linear (see Fig. 5). Therefore, at
large deformations the behavior of the chain can be accurately
described by Mie–Grüneisen equation of state.

Finally let us note that at all deformations the second co-
efficient in the expansion (21) of pT (ET ) with respect to ET is
positive. Therefore Mie–Grüneisen equation of state under-
estimates the pressure (see Figs. 3, 4, and 5). Three dimen-
sional crystals with pair interactions demonstrate opposite
behavior [20]. In three dimensions Mie–Grüneisen equation
overestimates the pressure. At the same time the nonlinearity
of the dependence pT (ET ) in three dimensions is significantly
weaker [20].

Figure 4 Dependence of thermal pressure on thermal energy for Lennard-Jones chain stretched by 2.8% (left) and 2.86% (right). The
bars show standard error of the results of molecular dynamics simulations.

www.pss-b.com © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 5 Dependence of thermal pressure on thermal energy for
Lennard-Jones chain stretched by 4%. The bars show the dispersion
of the results of molecular dynamics simulations.

6 Conclusions Thermal expansion of a chain with lon-
gitudinal and transverse vibrations was investigated analyti-
cally and numerically. Corresponding equations of state were
derived using series expansion of pressure and thermal en-
ergy with respect to deformations of the bonds caused by
thermal motion. The slope of the dependence of thermal
pressure on the thermal energy at zero thermal energy is
described by Grüneisen parameter. For Lennard-Jones-like
potential Grüneisen parameter smoothly changes from −∞
to +∞ as deformation of the chain changes from 0 to the crit-
ical value. It was demonstrated analytically and numerically
that the dependence of thermal pressure on the thermal en-
ergy is strongly nonlinear at small deformations of the chain.
In particular, at some deformations the dependence is non-
monotonic. In this case quasi-harmonic approximation and
linear Mie–Grüneisen equation of state are inapplicable.

The nonlinear equation of state (19) was derived. In con-
trast to Mie–Grüneisen equation, the nonlinear equation of
state qualitatively describes the behavior of the chain at all
deformations and thermal energies. In particular, the equation
implies that the dependence of thermal pressure on thermal
energy for the unstretched chain has square root asymptotic
at small thermal energies.

At deformation corresponding to zero Grüneisen param-
eter the thermal pressure is proportional to square of thermal
energy. Therefore thermal expansion coefficient tends to zero
at low temperatures. Similar behavior is usually observed in
quantum systems. Classical systems usually have non-zero
thermal expansion coefficient at zero temperature.

The nonlinear equation of state also predicts that at some
deformations the thermal expansion of the chain is nonmono-
tonic, i.e., it is negative at low thermal energies and positive
at high thermal energies. Similar phenomenon was observed

in computer simulations of graphene [23] and hybrid mate-
rials [16].

Additionally, the analysis presented in the paper sug-
gests that the thermal expansion is strongly nonlinear in the
vicinity of instability. 3 Therefore strongly nonlinear ther-
mal expansion is expected in nanowires and graphene under
compression close to buckling. This theoretical prediction
is awaiting confirmation by computer simulations and real
experiments.
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