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INTRODUCTION

The problem of the formation of the planetary
Earth–Moon system remains one of the serious ques�
tions of modern cosmochemistry and astrophysics. In
the western literature, the most popular hypothesis is
the Giant Impact Hypothesis proposed in the middle
of the 1970s by a group of American scientists (Hart�
mann and Davis, 1975; Cameron and Ward, 1976) and
according to which at the final stage of the accumula�
tion the Earth collided with a body of planet size. As a
result of the collision, the molten material of the
Earth’s mantle was ejected to the circumterrestrial
orbit, where it quickly accumulated in the form of the
Earth’s satellite, the Moon. Subsequent calculations
showed (Melosh and Sonett, 1986; Canup and
Righter, 2000) that in the giant impact, close to 80% of
the ejected material originated at the expense of an
unknown impactor, and not from the Earth’s material.
It was shown (Galimov, 2004) that a number of
geochemical observations do not agree with the Giant
Impact Hypothesis.

In (Galimov, 1995) an alternative scenario was pro�
posed. According to it, the Moon and Earth originated
as a double system from the collapse of a cloud of
heated dust particles of primary composition. This
scenario is based on the idea of the possibility of
planet–satellite system formation in the process of the
accumulation of gas�dust condensations (Gurevich
and Lebedinskii, 1950; Eneev and Kozlov, 1977). In
(Galimov and Krivtsov, 2005) a new model of the for�
mation of the Moon that took both geochemical and
dynamical aspects of the problem into account was

proposed. According to the model of (Galimov and
Krivtsov, 2005), the process of formation of the
Earth–Moon system can be divided into three stages.

1. The gravitational instability led to the formation
of gas–dust condensations that in time formed a
rather large and dense cloud that began to collapse
under its own gravitation.

2. The formation as a result of the collapse of two
hot bodies—embryos of the present�day Earth and
Moon.

3. The further growth of embryos at the expense of
the material accumulation from interplanetary space.

In (Galimov and Krivtsov, 2005), the second stage
of the system formation—the rotational collapse of
the gas�dust cloud—was considered in detail. How�
ever, for the closure of the model, the third stage—a
slow growth of embryos as a result of the material
accumulation from the interplanetary space—is sig�
nificant. Our given paper deals with the study of this
process and the obtaining of the answer to the main
questions arising—how will the material be distrib�
uted among two embryos, and how will their growth
and change of relative sizes occur? Answers to these
questions are necessary for the further analysis of the
geochemical composition of formed bodies and will
help in the analysis of the presently existing dynamical
and geochemical characteristics of the Earth–Moon
system. The embryo growth process was studied earlier
by analytical methods (Safronov, 2002; Harris, 1978).
In (Harris, 1978), the results for the case when the
mass of one of the planet embryos is much less than the
mass of another were obtained analytically, and they
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are similar to results of our given work. In our paper,
the combined computer analytical model of the dou�
ble�system growth as a result of the accumulation of
the scattered material of the dust condensation is pro�
posed; this model is a continuation of the approach set
forth in (Galimov and Krivtsov, 2005; Vasilyev et al.,
2004).

STATEMENT OF THE PROBLEM

Let us consider the model problem on the develop�
ment of a system of two gravitating bodies (it can be
applied, in particular, to the development of the
Earth–Moon system). Let us assume the initial exist�
ence of a pair of two large cosmic bodies—embryos
rotating around a common center of mass. Assume
that the embryo growth occurs at the expense of the
fall of the material particles from the surrounding
space on them, and the fall of particles occurs in the
gravitational field of the double system. Further, for
definiteness, two large bodies will be called protoplan�
ets, and the material falling on them will be called dust
particles. These names are rather conditional; in the
course of the growth, bodies can turn into a planet and
its satellite, which is not, generally speaking, the
planet; the falling material can both be in the form of
dust particles, and be gas–dust condensations or plan�
etesimals. But for the simplicity of exposition, the
indicated terminology will be kept.

Average densities of the material of protoplanets
and dust particles are assumed to be equal. Indeed,
differences in density can be connected both with the
difference in the composition of the material of pro�
toplanets and dust particles, and with the compression
of protoplanets under their own gravitation. However,
taking these factors into account would greatly com�
plicate the model, and therefore is taken out beyond
the limits of our paper.

Let us denote masses of protoplanets by  and 
(for the definiteness, we will assume m1 > m2), m =
m1 + m2 is the total mass of the system, a is the dis�
tance between protoplanets, and G is the gravitation
constant. In the paper, only the mutual attraction of
protoplanets and their gravitational influence on dust
particles are taken into account. The gravitational
interaction of dust particles and their effect on pro�
toplanets are not taken into account. Radii of pro�
toplanet orbits, a1, a2, and the angular velocity ω of
their rotation around the center of mass of the system
are considered to be invariable and are defined by for�
mulas

(1)

For simplification, the rotation of the two�body
system around the Sun is not taken into account in the
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given statement of the problem. Since the region
under consideration is located within the Hill sphere
for the largest of bodies, such simplification is justi�
fied. In our paper, comprehensive numerical–analyti�
cal modeling of the process of accumulation of parti�
cles by embryos is carried out. The purpose of the work
is to find out on the basis of computing experiments
and analytical calculations at different variances of the
statement of the problem and its parameters how the
growth of embryos at the expense of particles falling on
them will occur. The problem is considered in the two�
dimensional and three�dimensional statement. In all
numerical experiments, direct calculations of trajec�
tories of each particle were carried out. These trajecto�
ries are rather various and complex: a particle can exe�
cute several revolutions around the center of mass of
the system until it falls on one of the embryo bodies.

DESCRIPTION OF THE COMPUTER MODEL

The system of two protoplanets that rotate in the
plane XY in circular orbits around a common center of
mass is considered. The smaller bodies (particles) that
model a cosmic dust cloud surrounding the planet
embryos fall sequentially on this system. In the three�
dimensional statement, the initial positions of dust
particles are uniformly distributed over the cylindrical
surface CRh with radius R and height 2h. The axis of the
cylindrical surface CRh coincides with the common
center of circular orbits of main bodies. Masses of par�
ticles are equal, and initial velocities are zero. Coordi�
nates of every subsequent particle are chosen ran�
domly on the surface CRh, and then its trajectory in the
gravitational field of the double system before the con�
tact with the surface of one of the bodies is calculated.
The surfaces of protoplanets are modeled by spheres
with radii r1 and r2. The computing is stopped if a par�
ticle flies out beyond the limits of the sphere of the
radius 2R with the center in the center of mass of the
system. Then the next particle is brought on the sur�
face CRh, and the process is repeated. As a result of the
multiple repetition of the calculation, the registration
of the number of particles fallen on the first and sec�
ond body is carried out. In the given statement, this
registration of particles describes the change of masses
of main bodies. The influence of particles on the
motion of main bodies is not taken into account. In
the two�dimensional statement, a single difference is
that particles are brought onto a circle that is the inter�
section of the cylinder CRh with the plane XY (Fig. 1).

ANALYTICAL DESCRIPTION
OF THE GROWTH OF PROTOPLANETS

In the statement of the computer experiment
described above, the change of masses of planet
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embryos is not taken into account, and only the num�
ber of particles, n1 and n2, fallen on the first and second
body, respectively, is determined. However, these data
allow the construction of the analytical model of the
growth of protoplanets. Let us show this. From the
computer calculation, the function f that connects the
mass ratio m2/m1 of protoplanets with the proportion
of particles fallen on them, n2/n1, can be obtained:

(2)

Let us introduce a dimensionless parameter equal to
the mass ratio of protoplanets

(3)

Obviously, the function f(ξ) have to have the following
properties:

(4)

Now let us assume that the fall of particles lasts over a
long period of time, considerably exceeding the com�
puter calculation time. Then masses of protoplanets
will begin rising, and the ratio of mass increase rates of

protoplanets  will be equal to the ratio n2/n1 (on

condition that densities of the material of protoplanets
and dust particles are equal). As a result, the following
system of equations can be written for the growth of
planet embryos

m 1+ m2 = m(t), (5)

where m(t) is the total mass that we will assume to be a
known function of time.

Using the obtained equations, let us study how the
mass ratio of protoplanets ξ will change with time.
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With this purpose, let us calculate the derivative

 by using equation (5) and expressing masses

of protoplanets in terms of m and ξ. As a result, we will
obtain

(6)

where the function Φ(ξ) is defined by the relation

(7)

The differential equation (6) is easily reduced to
quadratures

(8)

where ξ0 and m0 are the initial values of corresponding
quantities. After the calculating of integral (8) and the
finding of ξ(t), masses of protoplanets can be calcu�
lated by formulas

(9)

However, the important conclusions on the depen�
dence behavior ξ(t) can be drawn without calculating
the integral (8). Thus, it follows from equations (6),
(7) that the sign of  coincides with the sign of the dif�
ference  (all other multipliers are positive,
since according to the statement of the problem,
masses of protoplanets increase with time). The
dynamic equilibrium  (masses of protoplanets
rise with time, but their ratio remains invariable) cor�
responds to the case . In order to obtain a condi�
tion of stability of some equilibrium position, let us
variate the equation (6) in the neighborhood of 
this gives

(10)

where δξ is the variation (the deviation from the equi�
librium position). It follows from the obtained equa�
tion that at nonzero , the necessary and suffi�
cient condition of stability is the condition

(11)

The second inequality from (11) is obtained using
the identity  For the analysis of the change
of the quantity ξ with time, it is convenient to examine
dependences f = f(ξ) and f = ξ on the one diagram—
Fig. 2. If the curve f = f(ξ) is located above the straight
line f = ξ, then the quantity ξ increases; otherwise, it
decreases. A point on the curve f(ξ) corresponds to a
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Fig. 1. Geometrical model of the system of two rotating
embryos.
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state of the system; with the course of time, the posi�
tion of this point changes in accordance with the
direction of change of ξ. The point of dynamic equi�
librium f = f(ξ) corresponds to the intersection of the
curve f = ξ with the straight line ξ =  It is evident
from Fig. 2 that the equilibrium is stable, when deviat�
ing from it in the direction of the increase of ξ, the
curve f = f(ξ) finds itself below the straight line f = ξ;

.
*
ξ

otherwise, the equilibrium is unstable. Obviously, this
condition is equivalent to the stability criterion
obtained above (11).

Thus, if the function f(ξ) is obtained from the com�
puter modeling, then the evolution of the system can
be described analytically using equations (6)–(8) or
analyzed graphically on the basis of Fig. 2.

RESULTS OF THE COMPUTER MODELING

According to the analytical consideration per�
formed above, the problem of the numerical modeling
is reduced to the determination of the function f(ξ)

that connects the mass ratio  of protoplanets

with the proportion of particles fallen on them, n2 = n1.
The typical form of the dependence f(ξ) obtained

as a result of the computer modeling is presented in
Fig. 3. It is evident from the figure that in almost the
entire range of values, f(ξ) < ξ holds. Consequently, the
mass ratio decreases with time—the smallest body
accumulates considerably less dust particles than the
largest one (not in proportion to their sizes), and, as a
result, its relative mass decreases. However, this pro�
cess cannot last to infinity, at some small value ξ = .
The curve f = f(ξ) intersects the straight line f = ξ, and
the dynamic equilibrium comes—masses increase,
and the proportion between them does not change. At
the same time,  i.e., the situation is analo�
gous to the situation depicted in Fig. 2—the equilib�

2

1

m

m
ξ =

*
ξ

( )' 0
*

f ξ <

0.8

0.6

0.4

0.2

0 1.00.80.60.40.2

1.0

ξ = m2/m1
f(
ξ)

f =
 ξ

f

Fig. 2. Diagrammatic representation of the dependence of
the ratio of the captured particle number on the mass ratio
of protoplanets.
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Fig. 3. Typical form of the dependence obtained from the computer experiment.
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rium is stable. This intersection is shown in greater
detail in Fig. 4; one can see that the equilibrium comes
at  = 0.05.

Thus, under the unlimited supply of mass to the
system of rotating bodies, the ratio of their masses will
tend to a small but still fixed value.

However, the system under consideration contains
three considerable dimensionless parameters; their
values influence on the result

(12)

where a is the distance between bodies, r1 is the radius
of the biggest body, and h and R are the height and
radius of the cylinder CRh, on which the initial posi�
tions of dust particles are specified. The dimensionless
parameter kr characterizes the remoteness of pro�
toplanets from each other, the parameter kR character�
izes the remoteness of the initial position of particles,
and the parameter kz characterizes the relative width of
the coordinate z spread of particles (the thickness of
the dust condensation). At kz = 0, the three�dimen�
sional statement is equivalent to the two�dimensional
one. Results, presented in Fig. 3, correspond to the
following values of parameters

kr = 0.3; kR = 25; kz = 0. (13)

In this and all subsequent computer experiments,
the particle number n = 105 was used. At such particle
number, rather smooth graphs of the dependence f(ξ)
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are obtained, and the further increase of the particle
number has little influence on the result.

Let us analyze the influence of dimensionless
parameters on results of the calculation. The parame�
ter kR is the remoteness of the initial position of parti�
cles. In Fig. 5, a convergence of results under the
increase of kR is studied. Values of other parameters
are: kr = 0.3, kz = 0. Calculations have shown that the
convergence of the functional dependence occurs
approximately at kR = 25; the further increase of this
parameter has little influence on the result. Thus, this
value is the maximal one, which it makes sense to use
in calculations.

The parameter kr is the remoteness of protoplanets
from each other. In contrast to kR, the parameter kr

characterizes the physical side of the problem, rather
than the computational one. Figure 6 shows results of
the variation by this parameter at kR = 25, kz= 0. One
can see that the smoothest dependence f(ξ) is realized
at kr = 0.45, i.e., when protoplanets are initially at a
short distance from each other. This is possibly con�
nected with the decrease of the probability of flight of
falling particles between protoplanets. As kr decreases,
the dependence f(ξ) becomes less regular, and oscilla�
tions arise. In Fig. 6, the graph of the ratio of the
ejected particle number (n3) to the total number of
fallen particles (n) is shown as an illustration to the
calculation.
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Fig. 4. Case of small ratios of masses of protoplanets.
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The value kr = 0.3 was chosen as the base value for
the majority of further calculations; this allows us to
obtain the rather regular dependence f(ξ) and is in a
good agreement with results of the previous stage of
studies on the modeling of double system formation in
the process of the rotational collapse of the gas–dust
cloud (Galimov and Krivtsov, 2005).

The parameter kz is the relative width of the coordi�
nate z spread of particles (the relative thickness of the
particle cloud). Calculations were carried out at kR = 25,
kr = 0.3. Figure 7 shows the comparison of results
obtained in the two�dimensional statement (kz = 0)
and in the three�dimensional statement (kz > 0).

One can see that at small kz, the functional depen�
dence in the three�dimensional statement differs little
from the functional dependence in the two�dimen�
sional statement. But the more detailed consideration
reveals that in the region of small values, the influence
of the parameter kz is considerable. It is evident from
Fig. 8 that as the parameter kz increases, the point of
intersection of the curve f = f(ξ) with the straight line
f = ξ moves to the left along the axis. In other words,
the equilibrium state in the relative increase of masses
of protoplanets is reached at smaller ratios m2/m1 than
in the two�dimensional modeling. When the parame�
ter kz increases further, this intersection is no longer
observed. In this case, the ratio of the mass of the
smallest body to the mass of the biggest one will tend

to zero under the unlimited supply of mass to the sys�
tem of rotating protoplanets.

Figure 9 shows the change of the dependence f(ξ)
under the considerable increase of the parameter kz. It
follows from the figure that as the cloud thickness
increases, the functional dependence keeps its general
form, but becomes more monotonic, and knees disap�
pear; this allows approximating it by a power function.

As a whole, the numerical experiment has shown
that under the variation of dimensionless parameters
in the wide range, the dependence f = f(ξ) remains
smooth and lies below the straight line f = ξ, at least for
not too small values. Hence, as the accumulation of
dust particles goes on, the nonuniform growth of pro�
toplanets occurs—the ratio of their masses ξ = m2/m1

decreases. When a sufficiently small value is reached,
the dynamic equilibrium—the proportional growth of
protoplanets—can come.

ANALYTICAL APPROXIMATION
OF NUMERICAL RESULTS

The consideration of results of the numerical
experiment shows that in many cases (see Figs. 7, 10)
the function f(ξ) can be sufficiently well approximated
by a power law

f = ξk + 1; k > 0. (14)
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Fig. 7. Comparison of results of the two�dimensional and three�dimensional modeling.
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Then the first equation of system (5) is easily inte�
grated, and this leads to the following system of alge�
braic equations:

m1 = m2 = m(t), (15)

where c is the integration constant that has the dimen�
sion of mass. The obtained system implicitly specifies
the desired functions m1(t) and m2(t). If the supply of
mass is unlimited, then m(t)  ∞, and consequently the
mass of the biggest body tends to infinity: m1(t)  ∞.
But then we obtain from the first equation of system (15)
that the smallest mass tends toward a constant as fol�
lows:

(16)

where m10 and m20 are masses of protoplanets at the
initial time. Thus, under the unlimited supply of mass,
the biggest body accumulates almost all mass of the
cloud, whereas sizes of the smallest body remain to be
limited. The same conclusions can be obtained by cal�
culating the integral in equation (8); this leads to the
following implicit dependence on t:

(17)

Under the unlimited supply of mass, the equation (17)
gives

(18)

which agrees with the conclusions obtained above.
The obtained formulas get an especially simple

form at k = 1 that corresponds to the quadratic func�
tion f(ξ) = ξ2. In this case the equation (17) can be
solved explicitly:

(19)

After finding ξ(t), masses of protoplanets m1(t) and
m2(t) are calculated by formulas (9).

Figures 4 and 7 show how much the quadratic
function agrees with numerical results. The power
approximation of the function f(ξ) used in this section
holds true, as a rule, for not too small values of ξ. At
small ξ, the dependence f = f(ξ) can deviate from the
power dependence and intersect the straight line f = ξ
(according to results of computer experiments pre�
sented above). As the system approaches this point,
the ratio m2 = m1 stops changing, and later masses m1

and m2 go on growing proportionally to each other.

COMPARISON

An analogous problem of the protoplanet growth
was considered by V.S. Safronov in (Safronov, 2002),
where results similar to results of our paper were
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obtained as a result of purely analytical study. For�
mally, another problem was considered in Safronov’s
paper: planets rotate around the Sun within a feeding
cloud, but in our problem they rotate around the com�
mon center of mass in a feeding cloud. However, in
both problems the rotation of the system occurs within
a feeding medium around the center of a feeding
cloud, and this allows us to compare them.

In (Safronov, 2002) it was shown that as two bodies
grow in the feeding medium, the mass difference will
increase with time, i.e., the biggest body becomes still
bigger, and the biggest body grows faster both abso�
lutely and relatively; i.e., the ratio m2/m1 rises. Accord�
ing to (Safronov, 2002), this ratio can rise only up to
the value 10–3. Computer experiments carried out in
our paper show that in the two�dimensional statement
(Fig. 5) the equilibrium comes at m1/m2 = 50 × 10–3.
But in the three�dimensional statement, this value
decreases down to magnitudes on the order of 10–3

with an increase of the thickness of the feeding dust
cloud. Thus, both the qualitative and the quantitative
coincidence of results is seen.

CONCLUSIONS

In our paper, the problem of growth of the system
of two planet embryos that rotate around the common
center of mass and accumulate the material from the
dust cloud surrounding these embryos is studied. The
problem was considered in the two�dimensional and
three�dimensional statement, and it is shown that at
sufficiently small thickness of the dust cloud, results of
the two�dimensional and three�dimensional modeling
are almost identical. It is discovered that in the two�
dimensional statement the following scenario of the
protoplanet growth is realized under unlimited supply
of mass to the system: both embryos grow boundlessly,
and the ratio of their masses tends toward the value at
which the smallest body is about 5% of the mass of the
biggest body. In the three�dimensional statement, this
scenario is also realized at the small thickness of the
dust cloud, but the equilibrium ratio of masses of pro�
toplanets decreases with an increase of the cloud
thickness. If the ratio of the cloud thickness to its
diameter exceeds the critical value approximately
equal to 0.1, then the scenario changes; the biggest
body grows boundlessly, the smallest one grows up to
some limit, and the mass ratio of protoplanets tends to
zero. The analytical approximation for the numerical
dependence of the ratio of protoplanet growth rates on
the ratio of their masses is proposed, which allowed us
to obtain the analytical solution of the problem.

Our paper allows us to draw a conclusion that
within limits of the scenario with the unlimited growth
of both planet embryos, the present�day mass relation
in the Earth–Moon system can be explained by the



SOLAR SYSTEM RESEARCH  Vol. 45  No. 5  2011

STUDY OF THE PLANET–SATELLITE SYSTEM GROWTH PROCESS 419

fact that the supply of mass has stopped for some rea�
son. For other planets of the Solar System that have
considerably smaller ratios of masses of satellites to the
mass of the planet, the situation can be explained by
the longer supply of mass to the system of rotating
embryos of these planetary systems.
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