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Abstract The work is devoted to the description of unsteady thermal processes in low-dimensional structures.
To obtain the relationship between the microscopic and macroscopic descriptions of solids, it is necessary
to understand the heat transfer mechanism at the micro-level. At the latter, in contrast to the macro-level,
analytical, numerical, and experimental studies demonstrate significant deviations from the Fourier’s law. The
paper bases on the ballistic heat transfer model, according to which the heat is carried by the thermal waves.
This effect can be applied, for example, to signal transmission and heat removal problems. The influence of non-
nearest neighbors on processes in discrete media, as well as processes in polyatomic lattices, is investigated.
To describe the evolution of the initial thermal perturbation, the dispersion characteristics and group velocities
in one-dimensional crystal are analyzed for (i) a diatomic chain with variable masses or stiffnesses and for
(ii) a monatomic chain with regard for interaction with second neighbors. A fundamental solution to the
heat distribution problem for the corresponding crystal models is obtained and investigated. The fundamental
solution allows to obtain a description of waves traveling from a point source, and can serve as the basis
for constructing all other solutions. In both cases, the solution consists of two thermal fronts moving one
after another with different speeds and intensities. Quantitative estimates of the intensity of the thermal wave
front are given, and the dynamics of changes in the velocities and intensities of the waves depending on
the parameters of the problem is analyzed. Thus, a simple method for estimating the wavefronts intensity is
proposed and tested on two models. These results can be used to identify and analyze those parts of the wave
processes that are of interest in terms of interpretation of the effects observed in the experiments.

Keywords Thermal processes · Kinetic temperature · One-dimensional crystal · Fundamental solution ·
Ballistic heat transfer · Group velocity

1 Introduction

At the macroscopic level, the heat propagation in the majority of the materials is described by the Fourier’s law,
which assumes a linear relationship between the heat flux and the temperature gradient with a proportionality
coefficient, defined as the thermal conductivity coefficient. However, at small temporal and spatial scales,
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there are noticeable deviations from the Fourier’s law [1,2]. To understand the heat transfer mechanism at
the micro-level, it is essential to obtain a connection between the micro- and macroscopic descriptions of
processes in solids. One of the powerful tools for studying mechanical processes at the micro- and macro-
levels is the approach based on crystal lattice dynamics [3–14]. It is known [15–17], that in simple discrete
systems, such as a one-dimensional harmonic crystal, the heat propagation does not obey the Fourier’s law. The
main reason is that ballistic heat transfer dominates at the micro-level, in contrast to the macro-level, where
diffusion (Fourier’s) thermal conductivity prevails. The anomalies associated with ballistic heat transfer are
most noticeable for the harmonic crystal model.

Currently, the problem of unsteady thermal processes at the molecular level has an exact analytical solution
only for a limited class of systems. Significant progress has been achieved for harmonic crystals [17–24]. The
analytical approach to the description of ballistic heat transfer in harmonic lattices is presented in [25–29],
where the kinetic temperature is introduced as a value proportional to the sum of kinetic energies of particles in
a unit cell. For the one-dimensional non-quantum case, the macroscopic heat equation and the corresponding
anomalous heat conductivity law, an alternative to the Fourier’s law, are obtained. This law predicts the
finite velocity of heat fronts and the independence of the heat flux from the crystal length. Using correlation
analysis, the initial stochastic problem for individual particles is reduced to a deterministic problem for the
crystal statistical characteristics. A generalization of this approach to heat distribution in multidimensional
systems is presented in [18,23,24,29]. Note that the temperature definition used in this series of works is not
related to specific wavelengths: the whole spectrum of frequencies contributes to a kinetic temperature.

An important issue is the study of the influence of non-nearest neighbors on processes in discrete media,
as well as on processes in polyatomic lattices. The dynamic features of discrete systems with additional
non-nearest neighbor interactions are studied in [30–32]. The analysis of dispersion characteristics and group
velocities for a diatomic chain with variable masses or stiffnesses and a monatomic chain taking into account
interaction with second neighbors is carried out in [33,34], respectively. It is shown that in such systems, two
thermal waves are generated, which propagate with different velocities and intensities. Initial conditions in
the form of a Heaviside function and a rectangular pulse are considered, and numerical solutions describing
the evolution of the initial thermal perturbation are obtained. In these works, only velocities of thermal wave
propagation are determined.

To sum everything up, at the micro-level the heat is carried by the thermal waves. This is a novel effect
of high significance, as it can be applied to signal transmission and heat removal, e.g., in nano- and micro-
electromechanical systems [20]. The speed of these waves is determined quite easily [18,26,33,34]. However,
their amplitudes also play an important part, and they can vary dramatically. For example, consider a wave
traveling with a relatively high speed, so this wave seems to be the means of fast signal transfer. But, as shown
below, it may turn out to have such a small amplitude that the share of energy carried by this wave is negligible,
and its practical value vanishes. Thus, a simple method to determine the wavefronts intensities is required.

This work is devoted to the study of the thermal wavefront intensity. In Sect. 3, we propose an analytical
approach that allows to extract its the main part. Namely, in the framework of the previously developed
approach to the ballistic heat conduction description, a fundamental solution to the problem of heat transfer
in dynamic systems with various properties is constructed and analyzed: in Sect. 4, for a diatomic chain with
variable masses or stiffnesses, and in Sect. 6 for a monatomic chain, taking into account interaction with
second neighbors. The fundamental solution allows to describe waves propagating from a point source and can
serve as a basis for all other solutions. Quantitative estimates of the thermal wavefront intensity are presented;
the dynamics of changes in velocities and intensity coefficients of waves depending on the parameters of the
problem is revealed.

2 Statement of the problem

It is shown in [18] that the evolution of the initial temperature field T0(x) in a monatomic chain is described
by the formula

T (x, t) = TF + TS, TF = T0(x)

4π

∫ π

−π

cos(2Ωt)d (Ka) ,

TS = 1

8π

∫ π

−π

(
T0

(
x + cg (Ka) t

) + T0
(
x − cg (Ka) t

))
d (Ka) , (1)
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where K is wavenumber, a is the distance between the neighboring particles, Ω is frequency, cg is the group
velocity of waves in a chain. That is, at large times, when fast processes TF vanish, the temperature field TS is
a superposition of waves moving with group velocities cg , and has the form of the initial heat distribution T0.
Equation (1) is obtained as the initial stochastic problem is reduced to the deterministic one for the statistical
characteristics of the crystal using correlation analysis; it reflects the ballistic nature of heat transfer.

We restrict ourselves further to the consideration of the heat transfer problem, i.e., T (x, t) ≈ TS . For a
chain consisting of atoms of several types, formula (1) can be rewritten [31,33]:

T (x, t) ≈ TS = 1

8πN

∫ π

−π

N∑
j=1

(
T0

(
x + cg j (Ka) t

) + T0
(
x − cg j (Ka) t

))
d (Ka) , (2)

where N is the number of types of atoms, a the distance between the unit cells, cg j are the respective group
velocities ( j = 1 . . . N ). The calculation of temperature using equation (2) requires knowledge of the group
velocity that is determined by the particular problem..

3 Algorithm for constructing an approximate fundamental solution

In this section, we build an approximate fundamental solution to the heat transfer problem. Let the initial
thermal perturbation be given in the form of a delta function

T0(x) = T0δ(x), (3)

where T0 is the amplitude of the initial thermal perturbation. Then, after the kinetic and potential energies
equilibrate, formula (2) takes the form

T (x, t) = T0
8πN

∫ π

−π

N∑
j=1

(
δ
(
x + cg j (Ka) t

) + δ
(
x − cg j (Ka) t

))
d (Ka) . (4)

Given the property of the delta function δ(λx) = δ(x)

|λ| , we obtain

T = T0
8πNt

∫ π

−π

N∑
j=1

(
δ
( x
t

+ cg j (Ka)
)

+ δ
( x
t

− cg j (Ka)
))

d (Ka) . (5)

Besides, the integral of the delta function can be represented as [36]
∫

δ
(
f (z)

) =
∑
j

δ(z − z j )

| f ′(z j )| , f (z j ) = 0, (6)

where the summation is carried out over the real roots of the equation f (z) = 0, so that formula (5) yields to

T = T0
4πNt

∑
j

∑
i

1

|c′
g j

(Kia)| , (7)

where Ki are the solutions to the equations

|cg j (Kia)| = |x |
t

(8)

In order to quantify the intensity of the wavefront, we construct an approximation of function (7) near
its singular points, i.e., the roots of the denominator. For a monatomic chain, the solution has a simple form.
Indeed, let us introduce the variable ζ = x/t and consider a function

Φ = 1

ξ
, ξ = |c′(Ka)|, |c(Ka)| = |ζ |. (9)
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Fig. 1 Model of a one-dimensional diatomic harmonic crystal (dotted lines indicate unit cells)

At singular points, given that the front propagates with a maximum group velocity, we have

ξ = 0 ⇒ K = K∗, ζ = ζ∗, c′(K∗a) = 0, c′′(K∗a) < 0 (10)

and in the vicinity of the singular points

ξ �= 0, Ka = K∗a + Z (11)

We restrict ourselves to the positive coordinate x and expand the group velocity and its derivative in a
Taylor series in a neighborhood of K∗a

ξ = |c′(K∗a + Z)| ≈ ∣∣c′(K∗a) + c′′(K∗a)Z
∣∣

ζ = |c(K∗a + Z)| ≈
∣∣∣∣c(K∗a) + c′(K∗a)Z + 1

2
c′′(K∗a)Z2

∣∣∣∣ , (12)

which, taking (9) into account, is rewritten in the form

ξ = |c′′(K∗a)||Z |, ζ = ζ∗ − 1

2
|c′′(K∗a)|Z2 ⇒ |Z | =

√
2(ζ∗ − ζ )

|c′′(K∗a)| , (13)

then in the end

Φ = 1

ξ
= A√

ζ∗ − ζ
, A = 1√

2|c′′(K∗a)| , (14)

where A is the coefficient which characterizes the wavefront intensity; hereinafter we will refer to it as the
intensity coefficient.

In the following parts of the work, such an approximation will be constructed for two systems: a diatomic
chain with variable masses or stiffnesses and amonatomic chain taking into account the interaction with distant
neighbors.

4 Example (i): A chain with variable masses/stiffnesses

Consider a one-dimensional diatomic harmonic crystal with variable masses or stiffnesses Fig. 1 [33].
The equations of lattice dynamics have the form

M1ü p,1 = Cex
(
u p−1,2 − u p,1

) + Cin
(
u p,2 − u p,1

)
,

M2ü p,2 = Cex
(
u p+1,1 − u p,2

) + Cin
(
u p,1 − u p,2

)
, (15)

Here, u p,1,u p,2 are the displacements of the left particle of mass M1 and of the right particle of mass M2
in a unit cell number p, Cin and Cex are the bonds’ stiffnesses between particles in the cell and between
cells, respectively. Following [37], we introduce the equilibrium distances between particles: a inside the cell,
(d − a) between the cells; thus, the “length” of the unit cell is equal to d . Let for definiteness Cin = Cex = C ,
then Eq. (15) can be rewritten as

ü p,1 = ω2
1

(
u p−1,2 − 2u p,1 + u p,2

)
ü p,2 = ω2

2

(
u p,1 − 2u p,2 + u p+1,1

)
,
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where ω1 =
√

C

M1
, ω2 =

√
C

M2
. Note that for symmetry reasons, in this case, d = 2a.

Next, we introduce the parametrization:

M1 = M tan
(π

4
+ β

)
, M2 = M

tan (π/4 + β)
, ω =

√
C

M

ω1 = ω√
tan (π/4 + β)

, ω2 = ω

√
tan

(π

4
+ β

)
,

ω2

ω1
= tan

(π

4
+ β

)
. (16)

The parameter β can vary from −π/4 to π/4. The values β = ±π/4 correspond to the cases when one of
the masses is much larger than the other. It follows from the symmetry of definition (16) that it is sufficient
to consider only one half of the interval β ∈ (−π/4; 0). For ω1 = ω2 = ω, that is for β = 0, we obtain a
monatomic chain with a unit cell “length” equal to a = d/2.

Let’s find the phonon spectrum for one-dimensional diatomic chain [38]. Taking into account the
parametrization (16) we have:

Ω1,2 = Ω0

√
2 cos 2β

√
1 ±

√
1 − 1

2
cos2 2β

(
1 − cos (Kd)

)
, (17)

where Ω0 = 2ω is the maximum frequency value for the corresponding monatomic chain (β = 0). Note that
such a dispersion relation also holds for Cin �= Cex, M1 = M2 = M at the same ratio between frequencies
ω2

ω1
= tan

(π

4
+ β

)
; in this case, d = 2a only for β = 0.

We find group velocities as the derivative of (17) with respect to the wavenumber

cg1,2 = dΩ1,2

dK
= ∓sign (Kd)

c0gΩ
0 cos 2β sin (Kd)

4Ω1,2

√
1 − 1

2
cos2 2β

(
1 − cos (Kd)

) ,
(18)

where c0g = ωd/2 is the maximum group velocity for the corresponding monatomic chain (β = 0).
Figure 2 shows the group velocities for different values of the parameter β. If β = 0 we obtain two curves

displayed in black for a monatomic chain with a frequency ω = √
C/M and interatomic distance a = d/2,

the period for which is
2π

a
[37]. The curves are shifted relative to each other by 2π ; the second curve appears

since, in this case, we still solve the system (15) of the two lattice dynamics equations for two neighboring
particles.

Let us determine the dependence of the group velocities extrema on β. The maximum group velocity

corresponding to the acoustic branch is obviously cg2

∣∣∣
K=0

at any value of β. The maximum group velocity

corresponding to the optic branch is reached in the interval Kd/2 ∈
(π

2
;π

)
.

The dependence of cmax
g2 on β is easy to obtain by directing K to zero in formula (18)

cmax
g2 = c0g

√
cos 2β. (19)

We see that for β ∈ (−π/4; 0) the maximum group velocity varies from zero to c0g .
The value cmax

g1 for β = 0 reached at Kd/2 → π/2 is of particular interest. In the case of β = 0, the

function cg1 in the interval Kd/2 ∈
(π

2
;π

)
yields to

cg1

∣∣∣
β=0

= − 2c0g sin (Kd)√
2 + √

2 + 2 cos (Kd)
√
2 + 2 cos (Kd)

(20)

and has a discontinuity at point Kd/2 = π/2. Hence, cmax
g1 for β = 0 is obtained as the limit when Kd/2

tends to π/2 on the right

cmax
g1

∣∣∣
β=0

= lim
Kd/2→π/2+ cg1

∣∣∣
β=0

= c0g√
2

= 1√
2
cmax
g2

∣∣∣
β=0

. (21)
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Fig. 2 Group velocities in a chain of particles with variable masses at various values of β

Thus, we can conclude that as the masses of particles in a chain become close to each other, the velocity of
the heat front corresponding to the optic branch remains finite until exact equality is reached, i.e., two fronts
exist apart from each other at a finite distance.

Let us turn to the case β → −π/4, when one mass is much larger than another. The maximum group
velocity corresponding to the acoustic branch behaves as

cmax
g2 ≈ √

2c0g

√
β + π

4
+ O

((
β + π

4

)5/2)
. (22)

We see that for β → −π/4 the maximum group velocity corresponding to the acoustic branch decreases as√
β + π/4.
The maximum value cmax

g1 for β → −π/4 is reached at Kd/2 = 3π/4

cmax
g1

∣∣Kd/2=3π/4 ≈ c0g√
2

(
β + π

4

)3/2 + O

((
β + π

4

)7/2)
, (23)

so it decreases faster than cmax
g2 .

Referring to Fig. 2, it is easy to see that the only singular point of the group velocity cg2 (acoustic branch)
is K∗d/2 = 0. There are two roots of the equation c′

g1 = 0 in the interval (π/2;π), and these roots are equal
in absolute value. Thus, both singular points related to the optic branch correspond to the same absolute values
of ζ∗ and c′′(K∗d) [see (9)–(14)], therefore, both intensity coefficients will also be the same.

With these considerations in mind, formula (7) for a diatomic chain can be written as

T

T0
≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1√
ζ1∗ − ζ

+ A2√
ζ2∗ − ζ

, 0 < ζ < ζ1∗
A2√

ζ2∗ − ζ
, ζ1∗ < ζ < ζ2∗

0, ζ2∗ < ζ

, (24)
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Fig. 3 Dependence of front propagation velocity on β in a chain of particles with variable masses

Table 1 Velocities and intensity coefficients of thermal wavefronts in extreme cases in a chain of particles with variable masses

β −π

4
0

Acoustic wave speed
(
cmax
g2

)
o

(√
β + π

4

)
c0g

Acoustic wave intensity coefficient (a2) 0 1

Optic wave speed
(
cmax
g1

)
o

((
β + π

4

)3/2) c0g√
2

Optic wave intensity coefficient (a1) 1 0

where

A1 = 1

2π t
√
2|c′′

g1(K1∗d)|
, c′

g1(K1∗d) = 0, x1∗ = |cg1(K1∗d)|

A2 = 1

4π t
√
2|c′′

g2(K2∗d)|
, c′

g2(K2∗d) = 0, x2∗ = |cg2(K2∗d)| (25)

Let us introduce the following notation for the wavefront intensity coefficients

a1 = A1√
A2
1 + A2

2

, a2 = A2√
A2
1 + A2

2

, a1, a2 ∈ (0; 1) (26)

Figure 3 shows the dependence of front propagation velocities on β. The thickness of the lines corresponds
to the coefficients (26) at the same time t . Callouts show the results of a numerical solution for the initial
thermal perturbation in the form of a narrow rectangular pulse [31]. Thus, we see that the fundamental solution
to the problem of the propagation of thermal perturbations in such a chain always consists of two wavefronts
traveling one after another with speeds cmax

g2 and cmax
g1 , respectively.

Let us turn to the limiting cases (see Fig. 3 and Table 1). For β → −π/4, i.e., one mass is much larger
than another, the intensity of the optic front is much higher than the intensity of the acoustic front, whereas the
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front propagation velocities are infinitesimal quantities of different orders. This result can be interpreted on
another time scale as the main “slow” front, propagating with the speed cmax

g1 , and the “fast” front cmax
g2 of low

intensity. With the increase of β, the intensity coefficient of the acoustic front increases, and that of the optic
front decreases, and when β ≈ −π/32, they become equal. In the case when the particle masses differ slightly
(β → 0), the intensity coefficient of the acoustic front is maximum, and the optic front decays, continuing to
travel at nonzero speed.

5 Example (ii): A chain with regard for interaction with second neighbors

Next we consider a chain consisting of the equal masses and take into account the interaction with the second
neighbors [34].

The equations of lattice dynamics have the form

Mü p = C1
(
u p+1 − 2u p + u p−1

) + C2
(
u p+2 − 2u p + u p−2

)
, (27)

where u p is the displacement of a particle number p, C1 is bond stiffness between neighboring particles, C2
is stiffness of the bond between the particles of the second coordination sphere. Note, that C2 can be both
positive and negative.

We introduce the notation,

C0 = C1 + 4C2, (28)

then the equation of particle dynamics is written as

4Mü p = C0
(
u p+2 − 2u p + u p−2

) − C1
(
u p+2 − 4u p+1 + 6u p − 4u p−1 + u p−2

)
(29)

The dispersion relation takes the form

Ω2 = 4 sin2
(
Ka

2

)(
ω2
0 cos

2
(
Ka

2

)
+ ω2

1 sin
2
(
Ka

2

))
, (30)

where

ω0 =
√
C1 + 4C2

M
, ω1 =

√
C1

M
(31)

Next, we introduce a parametrization similar to (16)

ω0 = ω
√
2 sin

(
β + π

4

)
, ω1 = ω

√
2 cos

(
β + π

4

)

tan
(
β + π

4

)
= ω0

ω1
=

√
C1 + 4C2

C1
.

(32)

The parameter β in this problem also varies from −π/4 to π/4, and its sign coincides with the sign of the
stiffness C2. For β = 0 the bond stiffness with the second coordination sphere vanishes, which corresponds to
a one-dimensional harmonic chain with the equal masses and stiffnesses. For β = π/4 bond stiffness with the
first coordination sphere becomes negligible compared to the stiffness with the second coordination sphere:
We obtain a chain with twice the distance between the particles. The value β = −π/4 corresponds to the
limiting value of negative stiffness C2 = −C1/4 for which the chain remains stable.

The dispersion relation finally has the form

Ω = Ω0

√
2

√(
1 + sin 2β cos (Ka)

)(
1 − cos (Ka)

)
, (33)

and we find the group velocity as the derivative of (33) with respect to the wavenumber

cg = dΩ

dK
= c0gΩ

0

2Ω
sin (Ka)

(
1 + (

2 cos (Ka) − 1
)
sin 2β

)
(34)
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Fig. 4 Group velocities in a chain with regard for interaction with second neighbors at various values of β

Fig. 5 Dependence of front propagation velocity on β in a chain with regard for interaction with second neighbors

Again, we use the characteristics of a monatomic chain Ω0 = 2ω and c0g = aω.

Figure 4 shows the group velocities for the considered chain at various values of the parameter β. If β = 0
we obtain a curve displayed in black for a monatomic chain with a frequency ω0 = ω1 = ω and interatomic
distance a.

Figure 5 shows the dependence of the extrema of the group velocity on the parameter β. The solid line
corresponds to themaximumpropagation velocity of the primary thermalwave, and the dashed line corresponds
to that of the second thermal wave. The thickness of the lines corresponds to the coefficients (26) at the same
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Table 2 Velocities and intensity coefficients of thermal wavefronts in extreme cases in a chain with regard for interaction with
second neighbors

β −π

4
0

π

4

Primary wave speed
(
cmax
g1

) √
2c0g c0g

√
2c0g

Primary wave intensity coefficient (a1) 1 1

√
2

2
Second wave speed

(
cmax
g2

)
0 –

√
2c0g

Second wave intensity coefficient (a2) 0 0

√
2

2

time t . Callouts show the result of a numerical solution for the initial thermal perturbation in the form of a
narrow rectangular pulse [34].

As in the previous section, the fundamental solution of the problem of the propagation of thermal pertur-
bation in the chain, taking into account the second neighbors, consists of two fronts moving one after another
with speeds cmax

g1 and cmax
g2 , respectively. In the case of positive β, the second thermal front arises at a particular

value of the parameter with the intensity coefficient exceeding that of the primary wave, but with a lower
velocity. For β = π/4, the intensity coefficients and velocities of the two fronts coincide (see Table 2). In
the case of negative β, the second thermal front arises at a certain value of the parameter with the intensity
coefficient equal to that of the primary wave. For β = −π/4, both the intensity coefficient and velocity of the
second wave go to zero.

6 Concluding remarks

This work is devoted to the theoretical basis of prospective practical application of ballistic heat transfer
phenomenon. The fact that at the micro-level the heat is carried by thermal waves can be widely used in
many areas: from coatings that provide effective heat removal in space systems to signal transmission in
NEMS/MEMS. The existing approach [18,26] allows to determine the velocities of these waves, but their
intensities are also important. For example, the left callout in Fig. 3 shows a wave that, at certain parameters,
travels with a high speed but has such a low intensity that makes it useless in terms of heat transfer, and the
main share of energy is carried with a low speed.

In this work, an analytical approach, that bases on the fundamental solution of the heat transfer problem
and allows to identify the thermal wavefront intensity, is proposed. Then, the process of heat propagation in
the models of (i) a one-dimensional diatomic crystal with variable masses or stiffnesses and (ii) a monoatomic
harmonic crystal taking into account interaction with second neighbors is considered. In both cases, we
introduce one-dimensionless parameter β ∈ (−π/4;π/4) the change of which covers the entire class of
systems. The value β = 0 corresponds to a one-dimensional harmonic chain with the equal masses and
stiffnesses.

To describe the evolution of the initial thermal perturbation (2), the dispersion characteristics and group
velocities are analyzed for the corresponding crystal models. The fundamental solution to the problem of heat
propagation in the considered crystals is constructed and analyzed.

In both cases, the solution consists of two fronts moving one after another with different speeds and
intensities:

– Problem (i) is symmetric concerning the replacement of β to −β; therefore, the range β ∈ (−π/4; 0)
is considered. There are always two fronts corresponding to the acoustic and optic branches. With the
increase of β, the intensity coefficient of the acoustic front increases, and that of the optic front decreases,
and when β ≈ −π/32 they become equal. In the case when the particle masses differ slightly (β → 0),
the intensity coefficient of the acoustic front is maximum, and the optic front decays, continuing to move
at nonzero speed.

– In problem (ii), the system behaves in different ways for positive and negative β. In the case of positive β,
the second thermal front arises at a particular value of the parameter with an intensity coefficient exceeding
that of the primary wave, but with a slower speed. For β = π/4, intensity coefficients and velocities of two
fronts coincide. In the case of negative β, the second thermal front arises at a certain value of the parameter
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with the intensity coefficient equal to that of the primarywave. For β = −π/4, both the intensity coefficient
and velocity of the second wave go to zero.

Thus, twomechanisms of the evolution of the thermal wavefronts in one-dimensional systems are revealed.
The results can be used to extract those parts of the wave processes that are of interest in terms of interpretation
of the effects observed in the experiments.
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