
July 16, 2018 13:49 WSPC/303-JMMP 1850004

Journal of Micromechanics and Molecular Physics
Vol. 3, Nos. 1 & 2 (2018) 1850004 (16 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S2424913018500042

Energy transfer to a harmonic chain under kinematic and force
loadings: Exact and asymptotic solutions

V. A. Kuzkin∗ and A. M. Krivtsov

Peter the Great St. Petersburg Polytechnic University
Polytechnicheskaya, 29, St. Petersburg, 195251, Russia

Institute for Problems in Mechanical Engineering RAS
Bolshoy pr. V.O. 61, St. Petersburg, 199178, Russia

∗kuzkinva@gmail.com

Received 5 June 2018
Accepted 19 June 2018
Published 19 July 2018

Abstract We consider dynamics of a one-dimensional harmonic chain with harmonic
on-site potential subjected to kinematic and force loadings. Under kinematic loading,
a particle in the chain is displaced according to sinusoidal law. Under force loading, a
harmonic force is applied to a particle. Dependence of the total energy supplied to the
chain on loading frequency is investigated. Exact and asymptotic expressions for the
energy are derived. For loading frequencies inside the spectrum, the energy grows in
time. The rate of energy growth depends on the group velocity corresponding to loading
frequency. For non-zero group velocities, the energy grows linearly. If the group veloc-
ity vanishes, behavior of the system under kinematic and force loadings is qualitatively
different. Under kinematic loading, the energy is bounded, while under force loading it

grows in time as t
3
2 . Similar problem is solved in continuum formulation for a longi-

tudinally vibrating elastic rod. It is shown that at large times, expressions for energies
of the rod and the chain are identical, provided that sound speed and density are cho-
sen properly. Generalization of results for the case of an arbitrary periodic excitation is
discussed.

Keywords Energy supply; energy transport; chain; harmonic crystal; harmonic loading;
force loading; kinematic loading; asymptotics; dispersion.

1. Introduction

Description of energy transport in crystals under various loadings is a long standing
problem in mechanics and physics of solids. This problem is closely related to heat
transfer in solids, since the heat is usually associated with energy of thermal motion
of atoms. At macroscale, the transport of thermal energy is usually diffusive and well
described by the Fourier law. At nanoscale, the heat propagates ballistically and the
Fourier law is frequently violated [Cahill et al., 2003; Chen et al., 2010; Krivtsov,
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2015; Kuzkin and Krivtsov, 2017b; Pumarol et al., 2012; Cenian and Gabriel, 2001;
Rieder et al., 1967; Kannan et al., 2012; Lepri et al., 2003; Gendelman and Savin,
2010; Xiong et al., 2017]. Therefore, development of models for energy transfer at
nanoscale is of a great interest.

Harmonic crystal is a convenient model for description of ballistic energy
transport and other thermal processes in solids. Thermal processes in harmonic
crystals are investigated in many papers [Datta and Kundut, 1995; Krivtsov, 2014,
2015; Kuzkin and Krivtsov, 2017a,b; Babenkov et al., 2016; Gavrilov et al., 2018;
Mielke, 2006; Dudnikova and Spohn, 2006; Harris et al., 2008]. A complete review is
beyond the scope of the present paper. Therefore, here we only briefly mention sev-
eral results obtained for one-dimensional harmonic crystals (chains). An equation
describing evolution of initial temperature distribution in one-dimensional chain
with nearest neighbor interactions is obtained in Krivtsov [2015]. Generalization of
this result for the case of chains with interactions of an arbitrary number of neigh-
bors and elastic foundation is given in [Kuzkin and Krivtsov, 2017b]. Heat transfer
in a chain subjected to external heat supply is described in Gavrilov et al. [2018].
The heat supply is simulated by Langevin forces acting on particles. In this case,
dynamics of the system is governed by stochastic differential equations. Analysis of
these equations is relatively complicated. Therefore in the present paper we focus on
simple harmonic excitation. Understanding of the system’s response to a harmonic
excitation is a key to description of its behavior under any periodic loading.

An obvious advantage of harmonic crystal model is that exact solutions
can be obtained. Exact solutions are usually derived using techniques such as
discrete Fourier transform (for periodic boundary conditions) and eigenmode
decomposition (for other boundary conditions). The resulting solutions are rep-
resented in the form of sums or integrals (see e.g., Berinskii and Slepyan [2017],
Gorbushin and Mishuris [2015], Guzev and Dmitriev [2017a,b], Mokole et al.
[1990], Kuzkin and Krivtsov [2017a,b]). Unfortunately, analysis of these integrals
is not always straightforward and therefore advantages of analytical solutions may
be lost. However, exact solutions usually contain some large parameter, i.e., parti-
cle index or physical time. Then asymptotic methods such as the stationary phase
method [Fedoryuk, 1971] can be used. Asymptotic methods allow to derive sim-
ple approximate formulas rapidly converging to exact solutions. This idea has
been employed, for example, in Guzev and Dmitriev [2017b], Tsaplin and Kuzkin
[2017a,b]. In Tsaplin and Kuzkin [2017a], simple expression for the displacement
field around a vacancy in triangular lattice is obtained. Asymptotic behavior of
temperature oscillations in triangular lattice is investigated in Tsaplin and Kuzkin
[2017b]. Similar oscillations in a harmonic one-dimensional chain are described
in Krivtsov [2014] and Guzev and Dmitriev [2017b]. In this study, we use asymp-
totic methods for estimation of energy of a chain at large times.

In the present paper, we consider harmonic one-dimensional chain with inter-
actions of the nearest neighbors and harmonic on-site potential. Since longitudinal
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and transverse vibrations of the chain are described by similar equations, all further
derivations are valid for both types of motion. Kinematic and force loadings are con-
sidered. Under kinematic loading, one particle in the chain is displaced according
to sinusoidal law. Force loading is carried out by applying a harmonic force to some
particle in the chain. Exact solutions describing dynamics of the chain under both
types of loading are obtained. The total energy of the system as a function of time
is calculated using exact solutions. Rate of energy supply to the chain is estimated.
Simple closed-form expressions for the energy at large times are obtained using
asymptotic analysis. The expressions are compared with predictions of the contin-
uum theory. Generalization for the case of an arbitrary periodic loading is discussed.

2. Equations of Motion. Kinematic and Force Loadings

We consider a harmonic one-dimensional chain consisting of equal particles (see
Fig. 1). The nearest neighbors are connected by linear springs of stiffness K >

0. Each particle also has harmonic on-site potential with stiffness k > 0 (linear
elastic foundation). Boundary conditions are periodic. The periodic cell contains N

particles numbered by index n = 0, . . . , N − 1.

Remark. In harmonic approximation, longitudinal and transverse vibrations of
the chain are described by similar equations (provided that the chain is initially
stretched [Kuzkin and Krivtsov, 2015]). Therefore, all further derivations are appli-
cable to both types of motion.

Kinematic and force loadings are considered. Under force loading, a harmonic
force with amplitude Af and frequency ω acts on the particle n = 0. Then equations
of motion of the system have forma:

mün = K(un+1 − 2un + un−1) − kun + Af sin(ωt)δn, (1)

where m is particle mass; δ0 = 1 and δn = 0 for n �= 0.

Fig. 1. Periodic cell containing N = 7 particles.

aFor K < 0, similar equations govern behavior of a system of rigid bodies with fixed centers
connected by Bernoulli-Euler beams (see e.g., Indeitsev and Sergeev [2017]).
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In the case of kinematic loading, particle n = 0 is displaced according to sinu-
soidal law:

u0 = Ad sin(ωt). (2)

Motion of other particles is governed by equation

mün = K(un+1 − 2un + un−1) − kun, n �= 0. (3)

For both loadings, periodic boundary conditions and zero initial conditions are
considered:

un|t=0 = 0, u̇n|t=0 = 0, un = un+N . (4)

Dispersion relation of the system is obtained by making substitution un =
Aei(Ωt+pn) in equations of motion:

Ω2(p) = ω2
min +

(
ω2

max − ω2
min

)
sin2 p

2
, ω2

min =
k

m
, ω2

max =
4K + k

m
. (5)

Corresponding group velocity, cg, is calculated. Taking the derivative of the disper-
sion relation with respect to the wave vector k yields

cg =
∣∣∣∣dΩ
dk

∣∣∣∣ =
a

2Ω

√
(Ω2 − ω2

min) (ω2
max − Ω2), k =

p

a
e, (6)

where e is a unit vector directed along the chain; a is a lattice constant. Formula (6)
shows that group velocity is equal to zero for Ω = ωmin (if ωmin �= 0) and Ω = ωmax.
For example, dependencies of the group velocity on the wave vector for K = 1; m =
1; k = 0, 0.5, 1, 2 are shown in Fig. 2. Further, we focus on frequencies of external
excitation ω inside the spectrum, i.e., ω ∈ [ωmin; ωmax]. For other frequencies, the
energy is not transmitted to the chain.

Fig. 2. Dispersion relation (left) and group velocity (right) for different stiffnesses of the on-site
potential k = 0 (solid line), 0.5 (dotted line), 1 (dashed line), 2 (dash-dotted line).
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Fig. 3. Displacements of particles under kinematic loading at t = 250 for ω = 0.1 (left) and
ω = 1 (right). A half of the chain is shown. Dashed lines x = cgt show propagation of energy with
group velocity.

For illustration, consider numerical solution of Eq. (3) describing dynamics of
the chain under kinematic loading. Numerical integration is carried out using leap-
frog algorithm. The following values of parameters are used: K = 1, k = 0, m = 1,
N = 600. In this case, ωmin = 0, ωmax = 2. The time-step of integration is equal
to 0.01. Two frequencies of external excitation ω = 0.1 and ω = 1 are considered.
Displacements of particles at t = 250 are shown in Fig. 3. For symmetry reasons,
a half of the system is shown. Kinematic loading generates two wave packages
traveling in opposite directions. At low frequencies (ω = 0.1), the influence of
dispersion is weak (for k = 0). The wave profile is nearly sinusoidal. The group
velocity is approximately equal to the phase velocity (difference is around 1%).
For ω = 1, the effect of dispersion is more pronounced. In particular, the difference
between phase and group velocities is approximately 14%. The energy propagates
slower than the wave front. In the case of force loading, similar effects are observed
for deformation waves.

In the following sections, we investigate the rate of energy supply to the system
as a function of excitation frequency ω. The energy of the system is calculated using
exact solutions of equations of motion (1) and (3).

3. Force Loading

3.1. An exact solution

In the case of force loading, an exact solution of equations of motion (1) under
periodic boundary conditions is obtained using the discrete Fourier transform.
Direct and inverse discrete Fourier transforms are defined as

ûj = Φ (un) =
N−1∑
n=0

une−i 2πjn
N , un = Φ−1 (ûj) =

1
N

N−1∑
j=0

ûje
i 2πjn

N . (7)
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We calculate the discrete Fourier transform in both parts of Eq. (1) using the
identity Φ (δn) = 1. The transform yields a system of decoupled differential equation
for Fourier-images ûj :

¨̂uj = −Ω2
j ûj +

Af

m
sin(ωt), Ωj = Ω

(
2πj

N

)
. (8)

Here, function Ω is defined by formula (5). Solving these equations with zero initial
conditions yields

ûj =
Af

m(Ω2
j − ω2)

(
sin(ωt) − ω

Ωj
sin(Ωjt)

)
. (9)

Calculating the inverse discrete Fourier transform, we obtain, in particular, the
displacement of particle n = 0:

u0 =
Af

mN

N−1∑
j=0

Ωj sin(ωt) − ω sin(Ωjt)
Ωj(Ω2

j − ω2)
. (10)

Energy of the system is computed using the law of energy balance. According
to this law, the energy is equal to the work done by the external force on the
displacement of particle n = 0:

U = Af

∫ t

0

sin(ωτ)u̇0(τ)dτ. (11)

Then substitution of exact solution (10) into formula (11) yields

U =
A2

f

mN


sin2(ωt)

2

N−1∑
j=0

1
Ω2

j − ω2

+ ω

N−1∑
j=0

ω − Ωj sin(ωt) sin(Ωjt) − ω cos(ωt) cos(Ωjt)
(Ω2

j − ω2)2


. (12)

Formula (12) is an exact expression for the total energy of the chain under force
loading at any moment in time. In the following section, we investigate asymptotic
behavior of energy at large times.

3.2. Large time asymptotics

In the present section, we investigate the behavior of the energy of a long chain at
large times (N → ∞, t → ∞).

Consider the limit N → ∞ in formula (12). Then sums can be approximated by
integrals with respect to variable p = 2πj/N changing in the interval p ∈ [0; 2π]. It is
shown below that the second sum in formula (12) grows in time for ω ∈ [ωmin; ωmax].
The first sum is bounded and therefore it is neglected. Then the expression for
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energy takes form

U ≈ A2
fω

πm

∫ π

0

ω − Ω sin(ωt) sin(Ωt) − ω cos(ωt) cos(Ωt)
(Ω2 − ω2)2

dp. (13)

In formula (13), integration with respect to the wave-number, p, is replaced by
integration with respect to frequency Ω:

U ≈ A2
fωa

πm

∫ ωmax

ωmin

ω − Ω sin(ωt) sin(Ωt) − ω cos(ωt) cos(Ωt)
cg(Ω)(Ω2 − ω2)2

dΩ, (14)

where the group velocity cg is defined by formula (6).
The main contribution to the integral (14) comes from the vicinity of singular

point Ω = ω. We introduce new variable ε = Ω− ω and represent the numerator of
integrand in formula (14) as

ω − Ω sin(ωt) sin(Ωt) − ω cos(ωt) cos(Ωt)

= 2ω sin2 εt

2
− ε

2
(2 cos(εt) cos2(ωt) − sin(ωt) sin(εt)). (15)

It can be shown that the first term in the right-hand side of formula (15) yields the
main contribution to asymptotics. Therefore, the remaining terms are neglected. In
the vicinity of the point ε = 0, the denominator in formula (14) is represented as

Ω2 − ω2 ≈ 2ωε. (16)

Further, we consider integration over the δ-vicinity of the point ε = 0 in for-
mula (14). Then expression for the energy takes from

U ≈ A2
fa

2πmcg(ω)

∫ +δ

−δ

sin2 εt
2

ε2
dε =

A2
fat

2πmcg(ω)

∫ +δt

−δt

sin2 x
2

x2
dx. (17)

For large t, integral in the right-hand side tends to π
2 . Therefore, formula (17) takes

the final form

U ≈ A2
fat

4mcg(ω)
. (18)

Formula (18) shows that the energy linearly grows in time for ω ∈ (ωmin; ωmax).
The rate of energy growth is inversely proportional to the group velocity.

Remark. Formula (18) is inapplicable, when group velocity is equal to zero (for ω =
ωmin �= 0 and ω = ωmax). In these cases, asymptotic expressions for the total energy
have the forms

U ≈ A2
f

√
ωmin

3m
√

π(ω2
max − ω2

min)
t

3
2 , ω = ωmin,

U ≈ A2
f

√
ωmax

3m
√

π(ω2
max − ω2

min)
t

3
2 , ω = ωmax.

(19)

In order to check the accuracy of asymptotic formula (18), we compare the
results with numerical solution of equations of motion (1). Numerical integration
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Fig. 4. Dependence of rate of energy growth, U/t, on frequency of excitation, ω, under force load-
ing for k = 0, 0.5, 1, 2. The lowest curve corresponds to the case k = 0. Exact solution (12) (solid
line), approximate formula (18) (circles) and numerical solution of equations motion (squares).

is carried out using leap-frog algorithm with time step 0.01 (for K = 1, m = 1).
The dependence of power of the energy source (U/t) on frequency of excitation ω

for K = 1, k = 0, 0.5, 1, 2, m = 1, a = 1, t = 500, N = 2000, Af = 1 is shown in
Fig. 4. Figure 4 shows that formula (18) has high accuracy.

It is seen that U/t tends to infinity at ω = ωmin �= 0 and ω = ωmax. This fact
follows from asymptotic formulas (19).

Therefore, the rate of energy supply to the chain under force loading at large
times can be calculated using simple formulas (18), (19) with high accuracy.

4. Kinematic Loading

4.1. An exact solution

In the present section, we consider dynamics of the chain with prescribed displace-
ment of particle n = 0. The particle moves according to the law u0 = Ad sin(ωt),
where Ad and ω are amplitude and frequency of the displacement. The equation of
motion of the chain is given by formula (3). The exact solution of this problem is
obtained in Saadatmand et al. [2018]. Here, we give slightly more detailed deriva-
tion. Note that in this case discrete Fourier transform is not applicable. Therefore,
the solution is derived using eigenmode decomposition.

Consider a reference frame moving with particle n = 0. Displacements of parti-
cles with respect to the reference frame are denoted wn:

wn = un − Ad sin(ωt). (20)
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The variable wn satisfies equation

mẅn = K(wn+1 − 2wn + wn−1) − kwn + Ad(mω2 − k) sin(ωt), w0 = wN = 0

(21)

and initial conditions

wn = 0, ẇn = −Adω, n = 1, . . . , N − 1. (22)

In the moving reference frame, boundary conditions for the chain are fixed. There-
fore, eigenmodes are sine waves sin πjn

2N . Then the solution wn(t) can be represented
using eigenmode decomposition as

wn =
N−1∑
j=1

φj(t) sin
πjn

N
. (23)

Solution (23) is substituted into Eq. (21). Then multiplying both parts of Eq. (21)
by sin πsn

N and making summation with respect to n = 1, . . . , N − 1, we obtain
equations for φj , j = 1, . . . , N − 1:

φ̈j = −Ω2
jφj + Ad(ω2 − ω2

min)
βj

αj
sin(ωt), Ωj = Ω

(
πj

N

)
. (24)

Here, coefficients αj , βj are as follows:

αj =
N−1∑
n=1

sin2 πjn

N
=

N

2
, βj =

N−1∑
n=1

sin
πjn

N
=

1 − (−1)j

2
ctg

πj

2N
. (25)

Derivation of formula (24) is based on orthogonality of the normal
modes

∑N−1
n=1 sin πsn

N sin πjn
N = αsδjs. Applying the same transformation to initial

conditions (22) yields

φj(0) = 0, φ̇j(0) = −βj

αj
Adω. (26)

Then solving Eqs. (24) with initial conditions (26), we obtain

φj =
Adβj

αj(Ω2
j − ω2)

(
(ω2 − ω2

min) sin(ωt) − ω

Ωj
(Ω2

j − ω2
min) sin(Ωjt)

)
. (27)

Substitution of formula (27) into (23) yields the expression for particles
displacements:

wn = Ad

N

∑N−1
j=1 Bj

(
(ω2 − ω2

min) sin(ωt) − ω
Ωj

(Ω2
j − ω2

min) sin(Ωjt)
)

sin πjn
N ,

Bj = (1−(−1)j)ctg πj
2N

Ω2
j−ω2 .

(28)

Formula (28) is an exact solution of Eq. (21) with initial conditions (22).
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Energy of the system is computed using the law of energy balance:

U =
∫ t

0

f(τ)u̇0dτ = Adω

∫ t

0

f(τ) cos(ωτ)dτ, (29)

where f is the unknown external force, responsible for displacement of particle n =0:

f(t) = mü0 − K (u1 − 2u0 + u−1) + ku0

= Ad(k + 2K − mω2) sin(ωt) − 2Ku1. (30)

Here, the identity u−1 = u1 was used. Substituting formulas (28), (30) into
(29) yields

U =
A2

d

2
(k − mω2) sin2(ωt) − KA2

d

N

N−1∑
j=1

Bjgj sin
πj

N
,

gj = (ω2 − ω2
min) sin2(ωt) − 2ω2(Ω2

j − ω2
min)

Ωj(Ω2
j − ω2)

h(Ωj),

h(Ω) = Ω − ω sin(Ωt) sin(ωt) − Ω cos(Ωt) cos(ωt).

(31)

Formula (31) is an exact expression for energy of the chain under kinematic loading
at any moment in time. In the following section, large time asymptotic behavior of
this expression is investigated.

4.2. Large time asymptotics

In the present section, we investigate the behavior of energy of a long chain at large
times (N → ∞, t → ∞).

The main contribution to energy of the chain in formula (31) is given by the
following term:

U

A2
d

≈ 4Kω2

N

N−1∑
j=1

(1 − (−1)j)h (Ωj) cos2 πj
2N (Ω2

j − ω2
min)

Ωj(Ω2
j − ω2)2

. (32)

We change the summation index j = 2s + 1 and calculate the limit N → ∞. Then
formula (32) takes the form

U ≈ 8KA2
dω

2

π

∫ π
2

0

(Ω2(2p) − ω2
min) cos2 p

Ω(2p)(Ω2(2p) − ω2)2
h(Ω(2p))dp. (33)

After substitution q = 2p, we get

U ≈ mA2
dω

2

π

∫ π

0

(Ω2 − ω2
min)(ω2

max − Ω2)
Ω(Ω2 − ω2)2

hdq. (34)

Here, identity cos2 q
2 = m

4K (ω2
max − Ω2), following from the dispersion relation (5),

was used. We change integration variable q → Ω in integral (34) and use the expres-
sion for group velocity (6). Then

U ≈ 4A2
dmω2

πa

∫ ωmax

ωmin

cg(Ω)hΩ
(Ω2 − ω2)2

dΩ. (35)
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The main contribution to integral (35) comes from the vicinity of singular
point Ω = ω. We introduce variable ε = Ω − ω and use relations

h = 2ω sin2 εt

2
+ ε

(
1 − cos(εt) cos2 (ωt) +

1
2

sin(2ωt) sin(εt)
)

, Ω2 − ω2 ≈ 2ωε.

(36)

Further calculations are similar to the case of force loading. Using formulas (36)
and performing integration in (35) yields

U ≈ A2
dmω2cg(ω)t

a
. (37)

Formula (37) shows that the energy linearly grows in time. However, the dependence
of energy on group velocity differs from the case of force loading. For kinematic load-
ing, the rate of energy growth is proportional to the group velocity. In particular, it
vanishes in the cases ω = ωmin and ω = ωmax corresponding to zero group velocity.

In order to check the accuracy of asymptotic formula (37), we compare the
results with numerical solution of equations of motion (3). The dependence of rate
of energy growth (U/t) on frequency of excitation ω for K = 1, k = 0, 0.5, 1, 2,
m = 1, a = 1, t = 500, N = 2000, Ad = 1 is shown in Fig. 5. It is seen that
approximate formula (37) has high accuracy.

Thus, energy of the chain under kinematic loading at large times can be esti-
mated by simple formula (37).

Fig. 5. Dependence of rate of energy growth, U/t, on frequency of excitation, ω, under kinematic
loading for k = 0, 0.5, 1, 2. Exact solution (31) (solid line), approximate formula (37) (circles) and
numerical solution of equations motion (squares).
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5. Comparison with a Continuum Model

It is shown above that response of a chain to harmonic excitation is relatively com-
plicated. The complexity is caused by dispersion, i.e., dependence of phase and
group velocities on the wave-length. Therefore, suddenly applied harmonic excita-
tion causes propagation of a wave packet consisting of many waves with different
frequencies and velocities (see Fig. 3). In the present section, we replace the disper-
sive discrete system (chain) by a continuum system without dispersion. We consider
longitudinal vibrations of a continuum linearly elastic rod. In this system, a har-
monic excitation causes a single wave with frequency ω. It is shown that the expres-
sions for energy of this continuum system are similar to asymptotic formulas (18),
(37) for the chain. For symmetry reasons, a semi-infinite rod is considered.

Consider a continuum rod with constant cross-section area S, density ρ and
Young’s modulus E. Longitudinal vibrations of the rod are governed by equation

ü(x, t) = c2
su

′′(x, t), c2
s =

E

ρ
, (38)

where prime stands for partial derivative with respect to spatial coordinate x ∈
[0; +∞).

Remark. In continuum model (38), phase and group velocities are equal,
i.e., cs = cg.

Under kinematic loading, the boundary condition at x = 0 has form

u(0, t) = Ad sin(ωt)H(t), (39)

where H is the Heaviside function. We seek the solution of Eq. (38) in the form of
harmonic wave traveling with velocity cs:

u(x, t) = Ad sin(ω(t − ts))H(t − ts), ts =
x

cs
. (40)

Corresponding deformations, ε = u′, of the rod for x �= cst are calculated as

ε = −Ad

cs
ω cos(ω(t − ts))H(t − ts). (41)

Note that according to formula (41), amplitude of the deformation wave is inversely
proportional to wave speed cs.

The total energy of the rod at time t is computed as follows:

U =
ρ

2

∫
V

u̇2dV +
E

2

∫
V

ε2dV = ES

∫ cst

0

ε2dx, (42)

where the identity u̇ = −csu
′ was used. Note that kinetic and potential energies

are equal [Slepyan, 2015]. Substituting the expression for deformation (41) into
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formula (42) and integrating yields

U =
ESA2

dω
2

2cs

(
t +

sin(2ωt)
2ω

)
. (43)

At large times, oscillating term in formula (43) can be neglected

U ≈ 1
2
ρSA2

dω
2cst. (44)

Energy of the rod linearly grows in time. The rate of energy growth is proportional
to wave speed cs. Note that formula (44) is identical to asymptotic formula (37) for
the chain, provided that cs = cg and the following substitution is made

ρS → m/a. (45)

Consider force loading of the rod. In this case, the equation of motion (38) is
rewritten in terms of strains:

ε̈ = c2
sε

′′. (46)

The rod is subjected to action of the force f = Af

2 sin(ωt)H(t) at x = 0. Corre-
sponding boundary condition has form:

ε(0, t) =
Af

2ES
sin(ωt)H(t). (47)

We seek the solution in the form of a harmonic wave traveling with speed cs and
satisfying boundary condition (47):

ε(x, t) =
Af

2ρSc2
s

sin(ω(t − ts))H(t − ts), ts =
x

cs
. (48)

Note that amplitude of the deformation wave is inversely proportional to square of
the wave speed cs. Substituting deformations (48) into expression for energy (42),
we obtain

U =
A2

f

8ρScs

(
t − sin(2ωt)

2ω

)
. (49)

Energy of the infinite rod is twice larger than the energy of the semi-infinite rod (49).
Then multiplying formula (49) by 2 and neglecting the oscillating term, we obtain
the expression for the energy of the infinite rod:

U ≈ A2
f t

4ρScs
. (50)

It is seen that energy is inversely proportional to the wave speed cs. Formula (50) is
identical to asymptotic formula (18) for the chain, provided that substitution (45)
is made.

Thus, expressions for energy of the rod (formulas (44) and (50)) under kinematic
and force loadings are identical to asymptotic expressions (18), (37) for the chain,
provided that sound speed and mass density are chosen properly (see formula (45)).
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Additionally, continuum derivations yield simple explanation for different depen-
dencies of energy on the wave speed for two types of loading. In both cases, a sin-
gle deformation wave of frequency ω traveling with speed cs is excited. However,
amplitude of this wave depends on the type of loading. Under kinematic loading,
the amplitude is proportional to 1/cs (see formula (41)), while under force loading
it is proportional to 1/c2

s (see formula (48)). Therefore, the dependencies of energy
of the system on the wave speed for two loadings are different.

Remark. The continuum model, presented above, is inapplicable in the case cs =
cg = 0. Therefore, the rate of energy supply to the chain under force loading
at ω = ωmin �= 0 and ω = ωmax cannot be estimated using the continuum model.
In these cases, asymptotic formulas (19) should be used.

6. Conclusions

A harmonic chain under kinematic and force loadings was considered. Exact expres-
sions and large time asymptotics for the total energy of the chain were derived. For
loading frequencies inside the spectrum, the total energy of the chain grows in time.
The rate of energy growth depends on the group velocity corresponding to load-
ing frequency. For non-zero group velocities, the energy grows linearly in time. If
the group velocity vanishes, the behavior of the system under kinematic and force
loadings is qualitatively different. Under kinematic loading, the energy is bounded,
while under force loading it grows in time as t

3
2 .

Similar problem was solved for continuum rod model without dispersion. Com-
parison of discrete and continuum solutions suggests simple approach for estimation
of energy of the chain under harmonic excitation. It can be assumed that harmonic
excitation causes generation of a single continuum wave having frequency of the
external excitation and propagating with the group velocity.b Energy of the chain
at large times is close to energy of this single wave.

Presented results can be extended to the case of an arbitrary periodic loading as
follows. A periodic load is expanded into Fourier series. Contribution of each term
to energy of the chain is computed using formulas (18) and (37). Then, according
to the superposition principle, the total energy is calculated as a sum of these
contributions.

Similar idea can be used for simulation of external heating of the chain. The
external force, heating the system, can be represented as a Fourier series with
random coefficients.c Then formula (18) allows to calculate contribution of each
harmonics to the total energy. Comparison of this approach with other methods for
simulations of external heat supply (e.g., method by Gavrilov et al. [2018] based on

bNote that the continuum model is inapplicable in the case when the group velocity is equal to
zero.
cThis approach is also used in simulation of random vibrations of continuum bodies (see book
by Palmov [1998]).
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stochastic differential equations) could be an interesting extension of the present
work.
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