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Abstract. The work focuses on the analytical description of unsteady thermal processes in 
low-dimensional structures. The object of study is an infinite one-dimensional harmonic 
crystal with interactions up to the third coordination sphere. The paper explains  
how a variation in bond stiffness between particles of different coordination spheres affects 
the behaviour of the system. The fundamental solution to the heat propagation problem  
has been constructed and investigated. It is shown that the initial thermal perturbation  
evolves into several consecutive thermal waves propagating with finite velocities.  
The number, the velocities, and the intensity coefficients of these waves are determined by the 
bond stiffnesses. 
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1 
1. Introduction 
In most macro-scale objects, heat propagation can be described by the Fourier law, in which 
the linear relationship between heat flow and temperature gradient is assumed. However, 
deviations from the law can be observed at the micro/nano-level [1-2] where ballistic and 
anomalous processes of energy transfer take place. Dynamics of the crystal lattice is widely 
used in studies of various processes at micro- and macro-levels including thermal [3-9]. 

The non-diffuse thermal conductivity has been analytically [10-18] and experimentally 
[19-23] investigated during the last years. Extensive research on unsteady ballistic heat 
transfer processes was conducted by our scientific group [24-32]. An area of particular 
interest, where anomalies can be observed the most, is heat transport in harmonic crystals. 
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The behaviour of such systems can be described by statistical characteristics. For some of 
them such as kinetic temperature analytical expression can be obtained [25]. 

An important area of research is heat transport in polyatomic systems or systems  
with non-neighbouring interactions. Considerable progress has been made in the analysis  
of the harmonic diatomic crystals as well as the harmonic crystals with the second 
coordination sphere [33-35]. In this paper, a crystal with interactions up to the third 
coordination sphere is discussed. 

The crystalline model and its equation of motion are analysed to obtain expressions for 
the dispersion relation and group velocities. Based on a previously developed model of 
ballistic heat transfer, a fundamental solution is obtained and the influence of non-
neighbouring interactions is investigated. 

 
2. Statement of the Problem 
A one-dimensional harmonic crystal is a chain of material points linearized along deformation 
by forces. The system studied consists of equal masses 𝑚𝑚 that interact with their neighbours 
up to the third coordination sphere (Fig. 1). Equation of motion 
𝑚𝑚𝑢̈𝑢𝑛𝑛 = 𝑐𝑐1(𝑢𝑢𝑛𝑛+1 − 2𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑛𝑛−1) + 𝑐𝑐2(𝑢𝑢𝑛𝑛+2 − 2𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑛𝑛−2) + 𝑐𝑐3(𝑢𝑢𝑛𝑛+3 − 2𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑛𝑛−3) (1) 
describes the system’s behaviour where 𝑢𝑢𝑛𝑛 is the displacement of the 𝑛𝑛-th particle; 𝑐𝑐1, 𝑐𝑐2, and 
𝑐𝑐3 are the stiffnesses of couplings between the nearest, second nearest, and third nearest 
neighbours respectively. 
 

 
𝑛𝑛 − 3 𝑛𝑛 − 2 𝑛𝑛 − 1 𝑛𝑛 𝑛𝑛 + 1 𝑛𝑛 + 2 𝑛𝑛 + 3 

Fig. 1. One-dimensional harmonic crystal considering the third coordination sphere 
 

In [34] the case 𝑐𝑐3 = 0 was studied. The modified stiffness 
𝑐𝑐12 = 𝑐𝑐1 + 4𝑐𝑐2 (2) 
was introduced to emphasize the second-order difference for the particles of the second 
coordination sphere. To ensure that the model presented in this paper is aligned with previous 
research, the same procedure was followed. Eq. (1) takes the form: 
𝑚𝑚𝑢̈𝑢𝑛𝑛 = 𝑐𝑐12(𝑢𝑢𝑛𝑛+2 − 2𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑛𝑛−2)/4 − 𝑐𝑐1(𝑢𝑢𝑛𝑛+2 − 4u𝑛𝑛+1 + 6𝑢𝑢𝑛𝑛 − 4u𝑛𝑛−1 + 𝑢𝑢𝑛𝑛−2)/4 +
𝑐𝑐3(𝑢𝑢𝑛𝑛+3 − 2𝑢𝑢𝑛𝑛 + 𝑢𝑢𝑛𝑛−3). (3) 

To solve equation (3) initial conditions for displacements and velocities should be 
specified. In case of instantaneous temperature perturbation, velocities are set to non-zero 
independent random values: 
𝑢𝑢𝑛𝑛|𝑡𝑡=0 = 0, 𝑢̇𝑢𝑛𝑛|𝑡𝑡=0 = 𝑣𝑣𝑛𝑛. (4) 

Expressions (3) and (4) form the stochastic Cauchy problem which can be solved 
analytically for some crystalline systems. 

The concept of kinetic temperature is an essential tool when describing thermal 
processes at the nanoscale. It depicts the energy transfer taking place through the interactions 
between the particles and is defined as 
𝑘𝑘𝐵𝐵Ti ≝ 𝑚𝑚〈𝑢̇𝑢2𝑖𝑖〉, (5) 
where Ti – kinetic temperature, 𝑘𝑘𝐵𝐵 – Boltzmann constant, 〈… 〉 – covariance. As shown in 
[25], the evolution of the temperature field can be described as a superposition of fast  
and slow processes. The fast processes describe high-frequency oscillations caused  
by the redistribution of energy among potential and kinetic energy components. The slow 
processes correspond to the redistribution of energy between particles. This study focuses on 
the slow processes only. 

Given an initial temperature field 𝑇𝑇0(𝑥𝑥), the temperature at a given time and point is 



𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 1
8𝜋𝜋 ∫ �𝑇𝑇0�𝑥𝑥 + 𝑐𝑐𝑔𝑔𝑔𝑔(𝑎𝑎𝑎𝑎)𝑡𝑡� + 𝑇𝑇0�𝑥𝑥 − 𝑐𝑐𝑔𝑔𝑔𝑔(𝑎𝑎𝑎𝑎)𝑡𝑡��𝜋𝜋

−𝜋𝜋 𝑑𝑑(𝑎𝑎𝑎𝑎), (6) 
where 𝑘𝑘 is the wavenumber, 𝑐𝑐𝑔𝑔𝑔𝑔(𝑎𝑎𝑎𝑎) is the group velocity, and 𝑎𝑎 is the lattice constant 
corresponding to the distance between the nearest particles in the equilibrium state. 
 
3. Dispersion Relation 
The dispersion relation describes the waves that can propagate in the system. It is obtained via 
substitution of the wave function 
𝑢𝑢𝑛𝑛 = 𝐴𝐴𝑒𝑒𝑖𝑖(𝑎𝑎𝑎𝑎𝑎𝑎+𝛺𝛺𝛺𝛺) (7) 
into the equation of motion (3): 
Ω2 = 4 �𝑠𝑠𝑠𝑠𝑠𝑠2 �𝑎𝑎𝑎𝑎

2
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��, (8) 

where Ω is the wave frequency, 𝜔𝜔1, 𝜔𝜔12 and 𝜔𝜔3 are constants introduced as follows: 
𝜔𝜔1 ≝ �𝑐𝑐1/𝑚𝑚, 𝜔𝜔12 ≝ �𝑐𝑐12/𝑚𝑚 = �(𝑐𝑐1 + 4𝑐𝑐2)/𝑚𝑚, 𝜔𝜔3 ≝ �𝑐𝑐3/𝑚𝑚. (9) 

For real values of the wave frequency, constants 𝜔𝜔1
2, 𝜔𝜔12

2  and 𝜔𝜔3
2 should be positive, 

therefore the system will be stable only for stiffnesses: 
𝑐𝑐1 > 0, 𝑐𝑐1 > −4𝑐𝑐2, 𝑐𝑐3 > 0. (10) 

Frequencies 𝜔𝜔1,𝜔𝜔12,𝜔𝜔3 can be depicted as Cartesian coordinates in the three-
dimensional space of possible configurations and converted to the spherical coordinates: 
ω1 ≝ 𝜔𝜔√2 cos 𝛾𝛾 cos �𝛽𝛽 + π

4
� , ω12 ≝ 𝜔𝜔√2 cos 𝛾𝛾 sin �𝛽𝛽 + π

4
� ,𝜔𝜔3 ≝ 𝜔𝜔√2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾, (11) 

where 𝛽𝛽 ∈ (−𝜋𝜋/4;𝜋𝜋/4), 𝛾𝛾 ∈ (0;𝜋𝜋/2) and 𝜔𝜔 is positive. Parameter 𝛽𝛽 describes the transition 
from interactions between the nearest neighbours to the second coordination sphere, while the 
third coordination sphere is introduced by parameter 𝛾𝛾. 

This parametrization allows for a decrease in the dimensionality of the problem. The 
dispersion relation is rewritten as follows: 
Ω = ±�Ω0/√2��cos2 𝛾𝛾 (1 − cos 𝑎𝑎𝑎𝑎)[1 + cos 𝑎𝑎𝑎𝑎 sin 2𝛽𝛽] + 2 sin2 𝛾𝛾 (1 − cos(3𝑎𝑎𝑎𝑎)), (12) 
where Ω0 = 2𝜔𝜔 is the maximal frequency in the case of a one-dimensional monoatomic 
harmonic chain with nearest interactions only. 

With an increase of the parameter 𝛾𝛾 the number of extrema as well as the frequency 
range increase (Fig 2(a)). For the crystal where the third coordination sphere is dominant, 
three extrema are observed and the maximal frequency is √2 times as high as Ω0. 

 

 
(a) (b) 

Fig. 2. Dispersion relation for different values of (a) parameter 𝛾𝛾 with fixed 𝛽𝛽 = 𝜋𝜋
8
;  

(b) parameter 𝛽𝛽 with fixed 𝛾𝛾 = 𝜋𝜋
8
 

 



For large negative values of parameter 𝛽𝛽, the influence of the third sphere is levelled out 
by negative stiffness 𝑐𝑐2 (Fig. 2(b)). Additionally, the range of possible frequency values is 
inversely dependent on the parameter 𝛽𝛽. 
 
4. Group Velocity 
The heat waves propagate in the crystal with group velocities, which can be obtained as a 
derivative of Eq. (12) with respect to the wavenumber 𝑘𝑘: 
cgr = (Ω0𝑐𝑐𝑔𝑔0/2𝛺𝛺)[cos2 𝛾𝛾 sin(𝑎𝑎𝑎𝑎) [1 + (2 cos(𝑎𝑎𝑎𝑎) − 1) sin(2𝛽𝛽)] + 6 sin2 𝛾𝛾 sin(3𝑎𝑎𝑎𝑎)], (13) 
where 𝑐𝑐𝑔𝑔0 = 𝑎𝑎𝑎𝑎 is maximal group velocity in a one-dimensional monoatomic harmonic 
crystal with nearest interactions only. 

The shape and the value range of group velocity curves depend on parameters 𝛽𝛽 and 𝛾𝛾 
(Fig. 3). For the case of non-zero parameter 𝛾𝛾, group velocity has three extrema, which is also 
true for cases when interactions with the second coordination sphere can be neglected (𝛽𝛽 = 0, 
Fig. 3(b)). One extremum is always observed for 𝑎𝑎𝑎𝑎 = 0, while the second and the third 
extrema are located in the vicinity of 𝑎𝑎𝑎𝑎 = 2𝜋𝜋/3. 
 

 
(a) (b) 

Fig. 3. Group velocity for different values of (a) parameter 𝛾𝛾 with fixed 𝛽𝛽 = 𝜋𝜋
8
; (b) parameter 

𝛽𝛽 with fixed 𝛾𝛾 = 𝜋𝜋
8
 

 
5. Fundamental Solution 
The initial perturbation corresponding to the single-point heat source takes the form of the 
delta function 𝑇𝑇0(𝑥𝑥) = 𝑇𝑇0𝛿𝛿(𝑥𝑥), where 𝑇𝑇0 is an amplitude. An approximate fundamental 
solution to the heat transfer problem can hence be written as [35]: 
𝑇𝑇 = 𝑇𝑇0 ∑ 1/�4𝜋𝜋𝜋𝜋�𝑐𝑐𝑔𝑔𝑔𝑔′ �𝑎𝑎𝑘𝑘𝑗𝑗���𝑗𝑗 , (14) 
where 𝑘𝑘𝑗𝑗 are roots of the equation 
�𝑐𝑐𝑔𝑔𝑔𝑔�𝑎𝑎𝑘𝑘𝑗𝑗�� = |x|/𝑡𝑡. (15) 

As time evolves, the initial perturbation is spread across the crystal. The position of the 
heat front can be derived from the singular point of Eq. (14). For the model under study, the 
number of fronts is a function of the parameters 𝛽𝛽 and 𝛾𝛾 and can take integer values from one 
to three. The velocities of the heat waves have been introduced as 𝑐𝑐𝑔𝑔𝑔𝑔

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,1, 𝑐𝑐𝑔𝑔𝑔𝑔
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,2 and 𝑐𝑐𝑔𝑔𝑔𝑔

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,3 
respectively, and are obtained by solving equation: 
�𝑐𝑐𝑔𝑔𝑔𝑔′ �𝑎𝑎𝑘𝑘𝑗𝑗�� = 0. (16) 

To quantify the intensity of the front, an approximation of Eq. (14) near a singular point 
is constructed as shown in [35]: 



𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝑇𝑇0/�4𝜋𝜋𝜋𝜋�2�(𝜁𝜁∗ − 𝜁𝜁)𝑐𝑐𝑔𝑔𝑔𝑔′′ (𝑎𝑎𝑘𝑘∗)��, (17) 

where 𝜁𝜁∗ is group velocity at the singular point, 𝜁𝜁 is group velocity in its vicinity. Eq. (17) has 
a singularity when 𝜁𝜁 = 𝜁𝜁∗. The intensity coefficient for a single wave is then introduced as 
follows: 

𝐴𝐴 = 1/�4𝜋𝜋𝜋𝜋�2�𝑐𝑐𝑔𝑔𝑔𝑔′′ (𝑎𝑎𝑘𝑘∗)��. (18) 

For the case of three waves, normalised intensity coefficients are obtained using the 
following formula: 
𝑎𝑎𝑖𝑖2 = 𝐴𝐴𝑖𝑖2/(𝐴𝐴12 + 𝐴𝐴22 + 𝐴𝐴32), 𝑖𝑖 = 1,2,3, (19) 
where 𝐴𝐴𝑖𝑖 are calculated as shown in Eq. (18). These coefficients allow for comparison of the 
amount of energy stored by different waves. 

Some of the configurations of the system studied are considered in this paper (Table 1). 
For each set of the parameters 𝛽𝛽 and 𝛾𝛾 the corresponding stiffnesses, wave velocities, and 
intensity coefficients have been calculated. 

 
Table 1. Stiffnesses, wave velocities, and wave intensity coefficients 

𝛽𝛽 𝛾𝛾 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐𝑔𝑔𝑟𝑟1/𝑐𝑐𝑔𝑔0 𝑐𝑐𝑔𝑔𝑟𝑟2/𝑐𝑐𝑔𝑔0 
𝑐𝑐𝑔𝑔𝑟𝑟3
/𝑐𝑐𝑔𝑔0 𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 

−𝜋𝜋/8 
𝜋𝜋/32 1.69 −0.35 0.02 0.68 1.15 − 0.65 0.76 − 
𝜋𝜋/8 1.46 −0.30 0.29 1.70 1.06 0.32 0.30 0.69 0.66 

3𝜋𝜋/16 1.18 −0.24 0.62 2.40 1.36 0.42 0.26 0.52 0.82 

3𝜋𝜋/16 
𝜋𝜋/16 0.07 0.44 0.08 1.60 0.62 − 0.35 0.94 − 

3𝜋𝜋/16 0.05 0.32 0.62 2.60 1.26 1.00 0.24 0.72 0.66 
𝜋𝜋/2 0.00 0.00 2.00 4.24 − − 1.00 − − 

 
Wave velocities have been analysed as functions of the parameter 𝛾𝛾 (Figs. 4 and 5).  

The values 𝛽𝛽 = −𝜋𝜋
8
 (Fig. 4) and 𝛽𝛽 = 3𝜋𝜋

16
 (Fig. 5) have been considered. The colour of  

the curves represents the wave intensity coefficient. The numerical solution of Eq. (6) is 
depicted in footnotes. 

For 𝛾𝛾 equal or close to zero, two waves (1 and 2) are observed. This corresponds to the 
crystal considering the second coordination sphere studied in [34,35]. When the parameter 𝛾𝛾 
reaches a certain value in the vicinity of 𝜋𝜋/16 a third wave appears. For 𝛾𝛾 = 𝜋𝜋/2 three waves 
propagate with equal velocity and only one heat front is observed. 

As 𝛾𝛾 increases, so do the velocities of the waves. Observations establish the inverse 
dependency between the intensity coefficient and the velocity: the fastest wave 1 stores the 
lowest amount of energy. 

In the first case considered (Fig. 4) wave 3 propagates in the opposite direction unless 
the bond with the third coordination sphere begins to prevail. The observed behaviour is a 
result of the negative stiffness 𝑐𝑐2. Therefore, the velocity of the third wave is a non-
monotonous function with a global minimum around 𝛾𝛾 = 5𝜋𝜋/32. 

In the second case (Fig. 5), all the waves propagate in the same direction for all values 
of 𝛾𝛾. As in the first case, the velocity of the second wave is also a non-monotonous function.  

In two cases, the third wave appears differently. In the first case (Fig. 4), wave 1 splits 
up into waves 1 and 3 propagating close together with finite non-zero velocity. In the second 
case (Fig. 5), the third wave appears in the vicinity of the initial perturbation. For large 𝛾𝛾, 
both cases exhibit similar behaviour. Hence, the conclusion can be made that for parameter 𝛾𝛾 
equal to or larger than 𝜋𝜋/4, the influence of the third coordination sphere starts to prevail. 



 
Fig. 4. Velocity and intensity of heat waves as a function of the parameter 𝛾𝛾 with fixed 

𝛽𝛽 = −𝜋𝜋
8
 

 
Fig. 5. Velocity and intensity of heat waves as a function of the parameter 𝛾𝛾 with fixed 

𝛽𝛽 = 3𝜋𝜋
16

 
 

6. Conclusion 
Heat propagation in a model of a one-dimensional harmonic crystal considering interactions  
up to the third coordination sphere has been investigated in this study. After the 
parametrization the system has been described by a function of two dimensionless parameters  
𝛽𝛽 ∈ (−𝜋𝜋/4;𝜋𝜋/4) and 𝛾𝛾 ∈ (0;𝜋𝜋/2). The parameter 𝛽𝛽 characterizes the relative difference in 
bond stiffnesses of the first and the second coordination spheres. The parameter 𝛾𝛾 extends the 
interactions to the third coordination sphere. 

The temperature field has been represented as a superposition of several consecutive 
heat waves propagating with group velocities. There is at least one wave for all stable 
configurations of the system. When the second coordination sphere is considered, the 
propagation of two waves with different velocities and intensities is possible. When three 
coordination spheres are taken into account, up to three heat waves can be observed in the 
crystal. The second and the third waves occur at certain values of parameters 𝛽𝛽 and 𝛾𝛾. In most 
cases, there is one fast wave accompanied by two slow almost equal velocities waves. The 
fastest wave as a rule has the lowest intensity coefficient. The deviations can be observed for 
the border cases when one wave separates into two. 

The results can be used for the correct interpretation of experiments on nonstationary 
ballistic heat transfer in crystals and for further research on crystals with non-neighbouring 
interactions. 
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