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This work presents a thermodynamic analysis of the ballistic heat equation from two viewpoints:
Classical Irreversible Thermodynamics (CIT) and Extended Irreversible Thermodynamics (EIT). A
formula for calculating the entropy within the framework of EIT for the ballistic heat equation is
derived. The entropy is calculated for a sinusoidal initial temperature perturbation by using both
approaches. The results obtained from CIT show that the entropy is a non-monotonic function and
that the entropy production can be negative. The results obtained for EIT show that the entropy is
a monotonic function and that the entropy production is nonnegative. A comparison between the
entropy behaviors predicted for the ballistic, for the ordinary Fourier-based, and for the hyperbolic
heat equation is made. A crucial difference of the asymptotic behavior of the entropy for the ballistic
heat equation is shown. It is argued that mathematical time reversibility of the partial differential
ballistic heat equation is not consistent with its physical irreversibility. The processes described by
the ballistic heat equation are irreversible because of the entropy increase.

I. INTRODUCTION

Classical thermodynamic approaches lead to the
Fourier based parabolic law of heat conduction. The
propagation of heat described by the classical heat con-
duction equation is observed on the macroscale and fre-
quently used in engineering applications. However, con-
sidering the problem of heat conduction from the atom-
istic viewpoint can lead to different results. Various mod-
els of lattices (considering anharmonicity of the inter-
atomic bonds, 2D lattices) are frequently used for the
description of heat transfer [1–15]. Modern technology
allowed to demonstrate experimentally [16] that Fourier’s
law is violated in low-dimensional nanostructures, where
a ballistic type of heat conduction is observed. This mo-
tivates recent interest in properties of structures, such as
graphene and carbon nanotubes [17, 18] and, in particu-
lar, in their thermal properties [19]. From a theoretical
point of view one of the most attractive playgrounds for
the investigation of heat conduction is the harmonic one-
dimensional crystal, since all of its thermodynamic prop-
erties can be obtained analytically from the equations
of lattice dynamics. A pioneering contribution regarding
the the one-dimensional crystal was made by Schrödinger
[20]. He obtained an exact solution for the displacements
with arbitrary initial conditions in terms of Bessel func-
tions. This work became a foundation for a future in-
vestigation of energy transfer in a one-dimensional chain
by Hemmer [21]. A new approach for the description
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of non-equilibrium heat conduction processes in crystals
was developed in [22–24]. A hyperbolic equation called
“ballistic heat equation” was obtained as a mathematical
consequence of the equations of lattice dynamics. From
an experimental point of view such processes can be ob-
served in low dimensional structures exposed to a laser
excitation [25].

The mathematical properties of the ballistic heat equa-
tion were investigated in several papers including [26].
The ballistic heat equation is reversible with respect to
a substitution of t to −t. However, it seems intuitively
probable that processes described by the ballistic heat
equation are irreversible. The calculation of the entropy
production associated with processes described by the
ballistic heat equation will help to reveal its thermody-
namic properties and answer the question of reversibility.
Pioneering ideas considering irreversible thermodynam-
ical processes were mainly developed by Prigogine and
Onsager [27, 28]. Their investigations led to the formu-
lation of Classical Irreversible Thermodynamics (CIT).
However, further research showed that CIT could not de-
scribe a wide class of phenomena including short time and
small space scales, as well as hyperbolic models of heat
conduction (Cattaneo type) allowing entropy production
to be negative in some cases [29]. The phenomenological
investigation [30] of the ballistic heat equation showed
indeed that within the framework of CIT the entropy
production of processes described by the ballistic heat
equation can be negative.

One of the modifications of existing theories was Ex-
tended Irreversible Thermodynamics (EIT) introduced
in [31] and explained in details in [32]. It was shown
in [29, 31, 33, 34] that this theory is applicable for more
complex models of heat conduction, such as the hyper-
bolic heat equation (Cattaneo type).
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The aim of this work is to consider the ballistic heat
equation within the framework of EIT, to obtain gen-
eral formulae, which allow to calculate the entropy for
this model, to consider the particular problem of a sinu-
soidal initial temperature perturbation, and to compare
the results obtained by CIT and EIT for the ballistic
heat equation, hyperbolic and classical heat conduction
equations.

II. MODELS OF HEAT CONDUCTION

If the heat capacity at a constant volume cV does not
depend on time, the energy balance equation reads:

ρcV Ṫ = −h′, (1)

where ρ is the density, T is the temperature and h is the
heat flux, and the dot ()̇ and the dash ()′ denote temporal
and spatial derivatives, respectively. In this paper we are
going to analyze three models of heat conduction.
a. The classical heat equation:

Ṫ = αT ′′, (2)

where α = κ/ρcV is the coefficient of thermal diffusivity,
κ is the coefficient of thermal conductivity. Eqn. (2) is
obtained on the basis of Fourier’s law:

h = −κT ′. (3)

b. Hyperbolic equation (Maxwell-Cattaneo-Vernotte
type):

T̈ +
1

τ
Ṫ =

α

τ
T ′′, (4)

where τ is the relaxation time. It was obtained by intro-
ducing a heat flux relaxation term to (3) [29]:

ḣ+
1

τ
h = −

κ

τ
T ′. (5)

c. The ballistic heat equation [22]:

T̈ +
1

t
Ṫ = c2T ′′, (6)

where c is the speed of sound, t is the time passed from
the moment of the instantaneous heat perturbation. The
corresponding equation for the heat flux reads:

ḣ+
1

t
h = −ρkBc

2T ′. (7)

Eqn. (6) was first derived in [22] from the equations of
lattice dynamics of a one-dimensional crystal with near-
est neighbor linear force interaction:

q̈i = ω2
e(qi−1 − 2qi + qi+1), ωe

def
=

√
C

m
, (8)

where qi is the displacement of the particle with index i,
C is the interatomic bond stiffness, and m is the particle
mass.
The following initial conditions are considered:

qi|t=0 = 0, q̇i|t=0 = σ(x)ρi, (9)

where ρi are independent random variables with zero ex-
pectation and unit variance; σ is the variance of the ini-
tial particle velocity. The variance is a slowly changing
function of the spatial coordinate x = ia, where a is the
initial distance between neighboring particles.
The following definitions of the kinetic temperature

and the heat flux were used for the derivation:

kBT = m〈q̇i〉
2, h =

1

2
C〈(qi − qi+1)(q̇i − q̇i+1)〉, (10)

where 〈〉 denotes the expectation value. According to the
Dulong-Petit law for a one-dimensional system, Boltz-
mann’s coefficient kB at the right hand side of Eqn. (7)
is the specific heat capacity of the one-dimensional crys-
tal at a constant volume cV .
The classical heat equation Eqn. (2) is solved in com-

bination with the following initial condition:

T |t=0 = θ0(x). (11)

Eqns. (4) and (6) are to be solved by using the initial
conditions:

T |t=0 = θ0(x), h|t=0 = 0. (12)

According to (1) the above condition for the heat flux is
equivalent to:

Ṫ |t=0 = 0. (13)

The hyperbolic equation (4) and the ballistic heat
equation (12) have similar forms and a somewhat similar
behavior (e.g., a finite velocity of the heat front propa-
gation). For the ballistic heat equation (6) the speed of
heat propagation is the speed of sound of the medium,
c = ωea [22]. For the hyperbolic heat equation (4) the
speed of heat propagation is c2MCV = α/τ [35].
However, there is a significant difference between these

two equations: the material constant τ is replaced in the
ballistic heat equation by the physical time, t [22].
From the form of Eqn. (6) it seems that it has a sin-

gularity. However, when Eqn. (6) is solved together with
the initial conditions (12), (13) the singularity is absent,
which is confirmed by the general analytical solution [36]:

T (x, t) =
1

2π

∫ 2π

0

T0 (x+ ct cosp) dp (14)

and solutions of the particular initial problems [26].
We would like to note that the exact solution for the

atomic velocities and displacements (see [20, 21]) of the
Eqn. (8) predicts an infinite speed of signal propagation,
while the ballistic equation (6) describes a propagation
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of temperature at a finite speed, c. This difference is due
to the fact that Eqn. (6) is obtained from Eqn. (8) by
using continualization and coarse graining in space [22].

Also note that Eqn. (6) describes ballistic heat con-
duction and does not describe a transition from ballistic
to diffusive regimes. It is known that the ballistic heat
transport occurs when phonons can propagate without
scattering. It happens when the size of the system is
comparable to the mean-free path of the carriers. In this
case the thermal conductivity is size dependent. How-
ever, in a harmonic one-dimensional chain the phonon
mean free path is infinite [29] and no phonon-phonon,
phonon-impurity, or phonon-boundary scattering occurs.
Thus the ballistic heat equation (6) has no size effect and
contains only one parameter — the speed of sound in the
medium c.
In this paper we will consider and compare the en-

tropy for the models described above, namely: Fourier’s
heat equation, a phenomenological model which describes
heat conduction at the macroscale; the hyperbolic heat
equation, a modification of the previous one taking into
account wave properties of the heat propagation; and the
ballistic heat equation, which is obtained as a direct con-
sequence of the lattice dynamics and is fully based on the
wave processes in the crystal lattice.

III. ENTROPY INEQUALITY FOR THE
BALLISTIC HEAT EQUATION

The formalism of Classical Irreversible Thermodynam-
ics (CIT) is based on the hypothesis of local equilibrium.
It postulates [29] that a thermodynamic system can be
divided into a number of microscopic cells, each of which
can be treated like a macroscopic system in equilibrium.
In each cell the state variables remain uniform but they
can change from cell to cell [37]. They can also change
with time so that they finally depend continuously on
space and time coordinates, (x, t) [29]. Following [30] we
consider in this work thermal perturbations only without
the presence of mechanical motion. It means that the set
of state variables is narrowed down to the specific inter-
nal energy, u, only. That leads us to the following form
of a Gibbs relation [29],

ds =
1

T
du, (15)

where s is the specific entropy. However, models taking
the independent character of fluxes into account, turn out
to be inconsistent with approaches of CIT [29, 30]. Ex-
tended irreversible thermodynamics (EIT) introduced a
way to avoid contradictions by considering new state vari-
ables among the set of basic independent variables. Let
us demonstrate this approach when applied to the bal-
listic heat equation (6). We assume that the entropy de-
pends not only on the internal energy but also on the heat
flux, h (in particular the entropy depends on h2 because

it is independent of the heat flux direction) [29, 31]:

s = s(u, h2) ⇒ ṡ =
∂s

∂u
u̇+ 2

∂s

∂h2
ḣh. (16)

Let us write the Clausius-Duhem inequality in general
form [29, 30, 38]:

ρ(T ṡ− u̇)−
hT ′

T
≥ 0, (17)

As shown in [30] the substitution of the second relation
in (16) into the inequality (17) yields:

ρ

(
T
∂s

∂u
− 1

)
u̇+ h

(
2ρT

∂s

∂h2
ḣ−

T ′

T

)
≥ 0, (18)

It is assumed in [29, 39] that arbitrary energy supplies
keep the balance of energy satisfied. Thus the balance
law does not impose constraints on u̇. Therefore in (18)
u̇ can take arbitrary independent values. Thus in order
to guarantee that (18) is satisfied it follows that:

∂s

∂u
=

1

T
, h

(
2ρT 2 ∂s

∂h2
ḣ− T ′

)
≥ 0. (19)

The relations (19) were discussed in previous work [30].
Let us now consider the second inequality in (19) in

context with the equation of ballistic thermal conductiv-
ity (6). By expressing T ′ with the first Eqn. from (7)
and then substituting it into the inequality from (19) we
obtain:

ḣh

(
2ρ2kBT

2c2
∂s

∂h2
+ 1

)
+

h2

t
≥ 0. (20)

In order to keep this inequality satisfied for any values of
ḣ, the first term must be zero. Therefore:

∂s

∂h2
= −

1

2ρ2c2cV T 2
. (21)

By substituting the first relation from (19) and the rela-
tion (21) into (16) yields:

ṡ =
1

T
u̇−

1

ρ2c2cV T 2
hḣ = ṡeq(u) + ṡne(h),

ṡeq(u) =
1

T
u̇, ṡne = −

1

ρ2c2cV T 2
hḣ,

(22)

and as a differential, as an analogy to (15):

ds =
1

T
du−

1

ρ2c2cV T 2
hdh, (23)

where seq is the equilibrium part of the entropy change,
which depends only on the specific internal energy, and
sne is the non-equilibrium part, which is dependent on
the heat flux.
Thus by considering additional parameters of state

(heat flow), one can avoid contradictions leading to a
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violation of the second law when using the formulation
of CIT. At the same time, the fact that heat can flow
from cold to hot, which is observed for the ballistic heat
equation (6), is not paradoxical, because it is caused by
the inertia of the process under consideration.
Let us suppose that the temperature deviations are

small. Then the heat capacity at constant volume, cV ,
can be considered to be constant. By postulating further
that the internal energy is a function of temperature we
obtain:

du = cV dT. (24)

By taking into account (24) the relations (15) and (22)
have the following differential form:

ṡCIT = cV
Ṫ

T
, (25)

ṡEIT = cV
Ṫ

T
−

1

ρ2c2cV T 2
hḣ. (26)

The functions describing the temperature T (x, t) and
the heat flux h(x, t) are obtained as solutions of the
Eqns. (2)–(7). Then by integrating (25) and (26) the
corresponding entropies are found.

IV. SINUSOIDAL INITIAL HEAT
PERTURBATION

We now present an application of the relations for
the entropy in the CIT approach (15) and in the EIT
approach (22). To this end consider a sinusoidal ini-
tial temperature distribution in an infinite adiabatic one-
dimensional system of the form:

θ0(x) = δT cos kx+ T0, (27)

where δT and T0 are positive constants, which have the
dimension of a temperature, and k is a wave number.
Let us suppose that functions describing the temporal
and spatial evolution of temperature and of the heat flux
have the form:

T (t, x) = δT fT (ωt) cos kx+ T0,
h(t, x) = −δT cV ρcfh(ωt) sinkx,

(28)

where fT , fh are dimensionless functions of a dimension-
less quantity, ωt, where ω is a parameter with the di-
mension 1/s. In order to fulfill the initial conditions we
put in (28) fT (0) = 1, fh(0) = 0. Since the perturbation
and the solution are laterally periodic we can consider a
lateral interval of one period. The wave length of the ini-
tial perturbation is L = 2π/k. We consider the interval
x ∈ [−L/2, L/2]. Note that h(t,−L/2) = h(t, L/2) = 0,
thus there is no heat flow into or out of the system.
In the case of an adiabatically closed system as de-

scribed above, there is no entropy flux coming in or out

of the system according to [29]. In this case the rate of
total entropy is equal to the total entropy production in
the system, which should be non-negative. In this paper
we consider an adiabatic system, because in this case a
decrease in the total entropy indicates negative entropy
production.

A. Classical Irreversible Thermodynamics

We substitute the first equation from (28) into (25) and
then perform a series expansion by a small parameter δT

T0

(since the temperature deviations are small and δT <<
T0) up to terms of second order:

ṡ = cV
δT
T0

˙fT (ωt) cos(kx)

−cV

(
δT
T0

)2
˙fT (ωt)fT (ωt) cos

2(kx) +O3
(

δT
T0

)
.

(29)
The total entropy rate for the considered interval is given
by integration over the whole system:

Ṡ(t) =

∫ L/2

−L/2

ρṡ dx = −
1

2
cV ρL ˙fT (ωt)fT (ωt)

(
δT

T0

)2

.

(30)
After integrating over time we obtain:

∆SCIT(t) =
1

4
cV ρL

(
1− f2

T (ωt)
)(δT

T0

)2

, (31)

where ∆S(t) = S(t)−S0 is the change of entropy, S0 de-
notes the initial entropy of the system.

B. Extended Irreversible Thermodynamics

The expression for the entropy change (26) obtained in
EIT consists of two terms. One term is the equilibrium
part, which is dependent only on the internal energy. It
was already calculated above by using the CIT approach.
Due to the linearity of integration we can now calculate
the non-equilibrium part and then add both results to
obtain the full entropy. By substituting the relations (28)
into the relation for sne from (22) and by performing a
series expansion with a small parameter δT

T0
up to terms

of second order we obtain:

ṡne = −cV fh(ωt)ḟh(ωt)

(
δT

T0

)2

cos2(kx) +O3

(
δT

T0

)
.

(32)
The total entropy rate for the considered interval is given
by:

Ṡne(t) =

∫ L/2

−L/2

ρṡ dx = −
1

2
cV ρLḟh(ωt)fh(ωt)

(
δT

T0

)2

.

(33)
After integrating over time we obtain:

Sne(t) = −
1

4
cV ρLf

2
h(ωt)

(
δT

T0

)2

. (34)
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Here the initial non-equillibrium part of the entropy of
the system is zero, since there are no fluxes at the begin-
ning: Sne0 = 0, so ∆Sne = Sne(t) − Sne0 = Sne(t). By
using this result and (31) and (34) we obtain a relation
for the total change of entropy:

∆SEIT =
1

4
cV ρL

(
1− f2

T (ωt)− f2
h(ωt)

)(δT

T0

)2

. (35)

We proceed to specify the functions fT and fh, which
depend on the chosen model of heat conduction.

V. CALCULATION OF THE ENTROPY FOR
DIFFERENT MODELS OF HEAT CONDUCTION

A. Ballistic heat equation

In the case of the ballistic heat equation (6) the solu-
tions for the temperature and for the heat flux have the
following forms:

T (t, x) = δTJ0(kct) cos kx+ T0,
h(t, x) = δTkBρcJ1(kct) sin kx,

(36)

where Jn(x) is the Bessel function of the first kind of
order n. By applying the formulae (31) and (35) we have
ω = kc, fT = J0, fh = J1:

∆SB
CIT =

1

4
cV ρL

(
1− J2

0 (kct)
)(δT

T0

)2

,

∆SB
EIT =

1

4
cV ρL

(
1− J2

0 (kct)− J2
1 (kct)

)(δT

T0

)2

,

(37)
where the superscript B means that entropies corre-
sponds to the ballistic heat equation (6).

B. Hyperbolic equation
(Maxwell-Cattaneo-Vernotte)

The entropy for the one-dimensional hyperbolic equa-
tion (4), was considered in detail in [33]. Following [33]
we represent the results obtained for the entropy perti-
nent to the hyperbolic heat equation (4) in order to com-
pare them with the ballistic heat equation and the classi-
cal heat equation (2). The solution of Eqns. (4) with the
initial conditions (12) for a sinusoidal initial perturbation
(27) will be the following (see Appendix A):

4ατk2 < 1 :

T (t, x) = δT e−
t

2τ (coshωt+A sinhωt) cos kx+ T0,

h(t, x) = 2cV ραδTAe
− t

2τ sinhωt sinkx,
4ατk2 > 1 :

T (t, x) = δT e−
t

2τ (cosω∗t+A∗ sinω∗t) cos kx+ T0,

h(t, x) = 2cV ραδTA
∗e−

t

2τ sinω∗t sinkx,
(38)

where ω =
√
1−4ατk2

2τ , A = 1√
1−4ατk2

, ω∗ =
√
4ατk2−1

2τ ,

A∗ = 1√
4ατk2−1

, κ = ρcV α is taken into account. The

entropy change reads as follows (from (31) and (35)):

4ατk2 < 1 :

∆SH
CIT = cV ρL

4

(
1− e−

t

τ (coshωt+A sinhωt)2
)(

δT
T0

)2

,

4ατk2 > 1 :

∆SH
CIT = cV ρL

4

(
1− e−

t

τ (cosω∗t+A∗ sinω∗t)
2
)(

δT
T0

)2

,

(39)
where the superscript H means that entropies corre-
sponds to the hyperbolic heat equation (4). Recall that
the formula (22) we use for calculating the entropy based
on EIT was obtained for the ballistic heat equation (6).
In order to calculate the entropy for the hyperbolic heat
equation (4) we use a different formula originally ob-
tained in [29, 31]:

ṡ =
1

T
u̇−

τ

ρ2cV αT 2
hḣ. (40)

This leads to the following relations for entropy:

4αtk2 < 1 :

∆SH
EIT =

1

4
cV ρL

(
1− e−

t

τ

(
(coshωt+A sinhωt)2

−4ατk2A2e−
t

τ sinh2 ωt
))(

δT

T0

)2

,

4αtk2 > 1 :

∆SH
EIT =

1

4
cV ρL

(
1− e

t

τ

(
(cosω∗t+A∗ sinω∗t)

2

−4ατk2A∗2e−
t

τ sin2 ω∗t
))(

δT

T0

)2

.

(41)

C. Fourier heat conduction equation.

Let us now consider an application of Eqn. (31) ob-
tained from CIT to the classical Fourier based heat equa-
tion (2). The solution of Eqn. (2) for a sinusoidal initial
distribution has the form [40]:

T (t, x) = δT e−αk2t cos kx+ T0. (42)

Here we do not consider the heat flux, since CIT does
not take it into account as state variable. By applying

Eqn. (31) we find with ω = −αk2, fT = e−αk2t:

∆SF
CIT =

1

4
cV ρL

(
1− e−2αk2t

)(
δT

T0

)2

, (43)

where the superscript F means that the entropy cor-
responds to the Fourier-based classical heat conduction
equation (2).
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VI. DIMENSIONAL ANALYSIS

The formulae for entropy obtained above, namely (37),
(39), (41), (43) are functions of time with the same di-
mension. Now we introduce a dimensionless entropy:

∆S̃ =
4

ρLcV

(
T0

δT

)2

∆S. (44)

However, dimensionless time can be chosen differently
depending on the model of heat conduction. It is well
known that the description of physical processes does not
depend on the choice of dimensions. Thus it is very useful
to describe the process in dimensionless form. The de-
scription of heat conduction on different scales leads to
different models of heat conduction. However, we would
like to compare different properties of these models. Fol-
lowing [41], where the application of Buckingham’s π-
theorem was demonstrated in context with a problem
coupling hydrodynamics and electrodynamics, we will
apply this theorem to obtain dimensionless parameters,
which describe the system above. We will construct and
analyze a dimensional matrix A as follows: The basic
dimensions of the problem are time - [T ], length - [L],
mass - [M ], temperature - [Θ]. The brackets [·] shows
the dimension of a quantity. Then the dimension matrix
reads:

T x t α τ c
[L] 0 1 0 2 0 1
[T ] 0 0 1 -1 1 -1
[Θ] 1 0 0 0 0 0

=⇒ Aij =



0 1 0 2 0 1
0 0 1 −1 1 −1
1 0 0 0 0 0




ij

.

(45)
The components of this matrix are exponents of the di-
mensions. Each column gives the exponents for one con-
sidered physical quantity, i.e., [t] = [L]0[T ]1[Θ]0[M ]0 The
number p of dimensionless quantities Πi, which is re-
quired to describe the system is the number n of phys-
ical quantities minus the rank r of the matrix A . In
the considered problem we have n = 6, r = 3. This
means that the number p of dimensions is p = n− r = 3.
They are expressed as a product of physical quantities.

Πi = T li1xli2tl
i

3αli4τ l
i

5cl
i

6 . As Πi are dimensionless the fol-
lowing system of linear equations is obtained:

6∑

j=1

Aij l
i
j = 0, i = 1, 2, 3. (46)

The exponents lij are the components of the vectors from
null space of the matrix A (the null space can be found by
solving a system of linear equations (46)). Three linearly
independent vectors are given by:

l
1 = [0 − 2 1 1 0 0]; l

2 = [0 0 − 1 0 1 0];
l
3 = [0 − 1 1 0 0 1].

(47)

These vectors are needed to construct the following di-
mensionless quantities:

Π1 =
tα

x2
, Π2 =

τ

t
, Π3 =

ct

x
. (48)

By substituting dimensional coordinates x = xref x̃, t =

tref t̃, T = Tref T̃ where tildes indicate dimensionless quan-
tities. Then Πi are redefined by means of reference scales:

Π1 =
trefα

x2
ref

, Π2 =
τ

tref
, Π3 =

ctref
xref

. (49)

By using these dimensionless quantities our equations can
be rewritten in the dimensionless form (see Table I).

TABLE I: Dimensionless form of heat equations

Ballistic Hyperbolic Classical
∂
2
T̃

∂t̃2
+ 1

t̃

∂T̃

∂t̃
= Π2

3

∂
2
T̃

∂x̃2 Π2
∂
2
T̃

∂t̃2
+ ∂T̃

∂t̃
= Π1

∂
2
T̃

∂x̃2

T̃

∂t̃
= Π1

∂
2
T̃

∂x̃2

The reference length scale xref of our problem is the
wavelength of initial periodic perturbation, or we can
choose the quantity inverse to wavenumber k: xref = 1/k.
Hence our parameters will be the following ones:

Π1 = trefαk
2, Π2 =

τ

tref
, Π3 = cktref . (50)

Now an appropriate time scale tref should be chosen. The
reference time scale can be obtained in three different
ways: tref = 1/αk2 will be interpreted as the time scale
of thermal diffusivity leading to Π1 = 1 and leaving Π2

and Π3 free; tref = τ will be interpreted as the time scale
of relaxation time leading to Π2 = 1 and leaving Π1 and
Π3 free; tref = 1/ck will be interpreted as the time which
a heat wave described by the ballistic heat equation (6)
needs to travel along one period of initial perturbation
leading to Π3 = 1 and leaving Π1 and Π2 free.

VII. RESULTS

In this work three heat equations are considered: clas-
sical (2), hyperbolic (4), and the ballistic heat equation
(6). By using Buckingham’s-π theorem, the system of
these three equations can be rewritten in dimensionless
form, see Table I. By using the formulae (37), (39), (41),
(43) and the results obtained in the previous section we
can obtain relations for dimensionless entropy. A com-
parison of the three models is presented in Table II, where
ω̃ = ωτ , ω̃∗ = ω∗τ . Plots based on all three formu-
lae with the time scale tref = 1/ck and the parameters
Π1 = 4, Π2 = 1 are shown in Fig. 1. Figures, similar to
Fig. 1 can be found in [33]. They contained the plots for
the entropy, which was calculated with CIT and EIT for
the hyperbolic heat equation (4). In Fig. 1 we add new
results for the ballistic heat equation (6). It is seen that
all three equations, the classic (2), the hyperbolic (4),
and the ballistic (6) one, lead to same value of dimen-
sionless entropy change at initial time and infinite time,
no matter which approach we use, CIT or EIT.
Let us now consider the asymptotic behavior of

the obtained entropies. An approximation for-
mula for the Bessel function Jn(t) at large times t,
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TABLE II: Entropy change for sinusoidal initial temperature perturbation.

Equation Ballistic Hyperbolic Classical

Formula T̈ + 1

t
Ṫ = cT ′′ τ T̈ + Ṫ = αT ′′ Ṫ = αT ′′

∆S̃
CIT

1− J2

0 (t̃)

4ατk2 < 1 :

1− e−t̃
(
A sinh ω̃t̃+ cosh ω̃t̃

)2
,

4ατk2 > 1 :

1− e−t̃
(
A∗ sin ω̃∗t̃+ cos ω̃∗t̃

)2
1− e−2t̃

∆S̃
EIT

1− J2

0 (t̃)− J2

1 (t̃)

4ατk2 < 1 :

1− e−t̃
(
A sinh ω̃t̃+ cosh ω̃t̃

)2
− 4ατk2C2 sinh2 ω̃t̃,

4ατk2 > 1 :

1− e−t̃
(
A∗ sin ω̃∗ t̃+ cos ω̃∗t̃

)2
− 4ατk2C∗2 sin2 ω̃∗ t̃,

—

Time scale t̃ = kct t̃ = t

τ
t̃ = αk2t

Asymptotics 1/t̃ e−t̃ e−t̃

FIG. 1: Plots of the entropy for ballistic heat equation
calculated using CIT for hyperbolic (dashed red line),
CIT for ballistic heat equation (dashed black line), EIT
for hyperbolic (solid red line), EIT for ballistic equation
(solid black line) and CIT for classical heat equation

(solid blue line).

is given by the following expression [42]:

Jn(t) ≈

√
2

πt
cos

(
t−

nπ

2
−

π

4

)
+O

(
1

t

)
. (51)

According to (51) the relations for the entropy for the
ballistic heat equation from (37) reach the asymptotic
value as a power law. The formulae (41) and (43) indicate
that the entropy for the hyperbolic (4) and classical (2)
heat conduction will asymptotically be exponential. Also
note that entropy values at initial time 0 and at large
times t → ∞ are given by 0 and 1 as seen from Fig. 1.

VIII. CONCLUSIONS

In this work three equations of heat conduction were
investigated, the classical (2), the hyperbolic (4), and
the ballistic one (6). The ballistic equation (6) of heat
conduction was not considered from a phenomenological
thermodynamics point of view before. This paper shows
that the CIT approach can lead to a negative entropy
production for the ballistic heat equation (6). Therefore
the ballistic heat equation (6) is considered within the
framework of EIT. A general formula (22) is obtained for
calculating the entropy for Eqn.(6) with an arbitrary ini-
tial temperature perturbation. The example of an adi-
abatically closed system with an initial sinusoidal tem-
perature perturbation is considered. For such a system
a non-monotonic increase of the total entropy indicates
negative entropy production. This example shows that
the CIT approach is not applicable for the ballistic equa-
tion (6) and causes a negative entropy production and a
non-monotonic “wavy” increase of the entropy. The en-
tropy calculated with formula (35) obtained for EIT in-
creases monotonically, and the entropy production stays
non-negative.
We would like to note that in the case of CIT only

the temperature (as a function of x and t) is needed to
calculate the entropy (see Eqn. (25)). The expression
for the temperature for a wide class of scalar lattices was
obtained in [24]. Thus the results obtained in the current
work within the framework of CIT can be extended to the
case of scalar lattices.
Regarding the asymptotic behavior of entropy the fol-

lowing can be said: There are papers showing that a
harmonic system consisting of an infinite number of par-
ticles will approach spatial equilibrium for large times,
see for example [43]. It is seen that at time t → ∞,
i.e., when the system tends to equilibrium, the value of
entropy is equal for all three models, no matter which
approach is used, EIT or CIT. The change of dimension-

less entropy ∆S̃ tends to one at large times. However,
the asymptotic behavior of the entropy is significantly
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different. The entropy calculated for hyperbolic and for
classical Fourier equations tends exponentially, e−t, to an
asymptotic value, whereas the entropy for ballistic heat
equation (6) behaves according to a power law, 1/t.
If we now consider the problem from a discrete point of

view, which in full generality is beyond the scope of this
paper, then it can be said that the harmonic crystal can
be decomposed into a system of independent modes and
there will be no energy exchange between them. But in
this system the irreversibility and the entropy rise is as-
sociated with the phases of oscillations, which distribute
independently for long times — the details can be found
in the pioneering work by P.C. Hemmer [21].
We want to conclude by mentioning a frequently ac-

cepted concept of reversibility: Obviously the equation
of ballistic heat conduction (6)

T̈ +
1

t
Ṫ = c2T ′′ (52)

is invariant with respect to time reversion: t → −t. How-
ever, the results presented above show the irreversible na-
ture of the ballistic heat conduction (6) process, because
of the increase of the total entropy of the system. Thus
the mathematical time reversibility of the ballistic PDE
(6) is not correlated with its physical irreversibility.
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Appendix A: Solution for hyperbolic heat equation
with sinusoidal initial temperature perturbation

In this section we present the solution of the hyperbolic
heat equation (4) with the initial conditions (27). We find
the solution in the form

T (t, x) = δT f(t) coskx+ T0. (A1)

Substitution of (A1) leads us to the following ODE for
f(t),

τ f̈ + ḟ + αk2f = 0, (A2)

with the following initial conditions:

f(0) = 1, ḟ(0) = 0. (A3)

The solution is found in the form ept. The corresponding
characteristic equation for the Eqn. (A2) is:

τp2 + p+ αk2 = 0. (A4)

Depending on the ratio of the parameters α, k, τ this
equation has real or complex roots:

4ατk2 < 1 : p1,2 = −1±
√
1−4ατk2

2τ ,

4ατk2 > 1 : p1,2 = −1±i
√
4ατk2−1
2τ .

(A5)

It leads us to the following fundamental solutions for Eqn.
(A2):

4ατk2 < 1 :

f(t) = A1e
−1+

√
1−4ατk2

2τ
t +A2e

−1−

√
1−4ατk2

2τ
t,

4ατk2 > 1 :

f(t) = e−
t

2τ

(
B1 cos

√
−1+4ατk2

2τ t+B2 sin
√
−1+4ατk2

2τ t
)
.

(A6)
The coefficients A1, A2, B1, B2 are found by substitution
of Eqns. (A6) into the initial conditions (A3):

A1 = 1+
√
1−4ατk2√

1−4ατk2
, A2 = −1+

√
1−4ατk2√

1−4ατk2
,

B1 = 1, B2 = 1√
−1+4ατk2

.
(A7)

α is the coefficient of thermal diffusivity. By using repre-
sentations of hyperbolic trigonometric functions the so-
lution for the temperature is:

4ατk2 < 1 :

T (t, x) = δT e−
t

2τ (coshωt+A sinhωt) cos kx+ T0,
4ατk2 > 1 :

T (t, x) = δT e−
t

2τ (cosω∗t+A∗ sinω∗t) cos kx+ T0.
(A8)

The solutions for the heat flux are obtained by substitu-
tion of Eqns. (A8) into the second Eqn. from (4):

4ατk2 < 1 :

τḣ+ h =αρcV kδT e
− t

2τ (coshωt+A sinhωt) sin kx,
4ατk2 > 1 :

τḣ+ h = αρcV kδT e
− t

2τ (cosω∗t+A∗ sinω∗t) sin kx.
(A9)

The solution for the Eqns. (A9) is found in the form:

h(t) = αρcV kδTfh(t) sin kx. (A10)

This leads us to the following inhomogeneous ODE’s:

4ατk2 < 1 : τ ḟh + fh = e−
t

2τ (coshωt+A sinhωt) ,

4ατk2 > 1 : τ ḟh + fh = e−
t

2τ (cosω∗t+A∗ sinω∗t) ,
(A11)

with the initial condition

fh(0) = 0. (A12)

The fundamental solutions for Eqns. (A11) are:

4ατk2 < 1 : fh = D1e
− t

τ + 2Ae−
t

2τ sinhωt,

4ατk2 > 1 : fh = D2e
− t

τ + 2A∗e−
t

2τ sinω∗t.
(A13)

By substituting Eqns. (A11) into the initial conditions
(A12) we obtain:

D1 = 0, D2 = 0. (A14)
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The solution for the heat flux is then:

4ατk2 < 1 : h(t, x) = 2cV ραδTAe
− t

2τ sinhωt sinkx,

4ατk2 > 1 : h(t, x) = 2cV ραδTA
∗e−

t

2τ sinω∗t sinkx.
(A15)
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