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In order to ensure the operability of the material
and to predict the limit states, it is necessary to intro�
duce models of fracture at different scale, which take
into account the internal structure of the material
[1, 2]. Herewith, both from scientific and practical
points of view, it is particularly important to study the
behavior of materials with perfect geometric structure,
due to the fact that crystal structure is typical for met�
als, which are widely used as structural materials. Fur�
thermore, in connection with the advance in nano�
technology single crystals are becoming more and
more demanded, and their strength is close to theoret�
ical, or ideal. One of the possible causes of fracture is
the loss of stability of the material’s internal structure,
thus in the experimental measurement of the ideal
strength it is necessary to check the stability with
respect to any additional small distortion at each stress
or strain increment [2].

In this paper discrete�continuum approach is
applied to stability investigation of crystal structures.
Long�wave approximation is used for homogeniza�
tion, and then continuum analysis is carried out.
Cauchy–Born rule [3] is employed to relate macro�
scopic deformation of crystals with the changes in lat�
tice vectors. If the lattice is simple, i.e., coincides with
its Bravais lattice, the change in the position of each
particle is described by the same strain gradient as the
macroscopic deformation. Further stability investiga�
tion for simple lattices is done, e.g., in [7, 8]. For
multi�lattices this rule is to be modified because of the
internal degrees of freedom. One of the variants,
which is used in the present work, is introduced in [5].

The review on modifications of Cauchy–Born rule is
done in [6].

In order to describe the material in the reference
configuration, let us introduce a coordinate system
and draw particles radius�vectors. Following [4], let an
arbitrary particle have number 0, others will then have
numbers k = 1, 2, …, N. HCP structure is character�
ized by diatomic lattice, for which the relation
between bond lengths and directions has the form [5]:

(1)

where ak and ek are bond length and direction in cur�

rent configuration,  and  are bond length and

direction in reference configuration, r = ( r)T is
strain gradient [9], νk = 0, if zero and kth particles
belong to one sublattice, νk = 1, if zero and kth parti�
cles belong to different sublattices, ξ is sublattice shift
vector.

In this work let us confine ourselves to pair force
interaction hypothesis. Strain energy (Cauchy–Born
energy) for this material model is [4, 10]:

(2)

where V0 is unit cell volume in reference configura�
tion, Π = Π(r) is pair force potential, which depends
only on the distance between particles.

Equilibrium equations in reference configuration
for the equivalent continuum have the form:

(3)

Normally the second equation holds identically,
and the first one is used to determine so�called com�

akek ak
0ek

0 ∇r⋅ νkξ,+=
°

ak
0 ek

0

∇° ∇°

W 1
2V0

������� Πk, Πk

k

∑ Π ak( ),= =

∂W

∂ ∇r( )
������������ 0 Π' ak

0

⎝ ⎠
⎛ ⎞ ak

0ek
0ek

0

k

∑⇒ 0,= =

∂W
∂ξ
������� 0 νkΠ' ak

0

⎝ ⎠
⎛ ⎞ ek

0

k

∑⇒ 0.= =

°

MECHANICS

Equilibrium and Stability of HCP Crystal Structures
under Finite Strain1

E. A. Podolskaya
Presented by Academician N.F. Morozov February 17, 2014

Received February 25, 2014

DOI: 10.1134/S1028335814080060

Institute for Problems in Mechanical Engineering RAS, 
St. Petersburg, Russia
St. Petersburg State Polytechnical University 
St. Petersburg, Russia
e�mail: katepodolskaya@gmail.com

1 The article was translated by the author.



DOKLADY PHYSICS  Vol. 59  No. 8  2014

EQUILIBRIUM AND STABILITY OF HCP CRYSTAL STRUCTURES 373

pression of bonds [4]: when more than one coordina�
tion sphere is taken into account, equilibrium distance
between nearest neighbors is smaller than the equilib�
rium distance of the potential.

After a uniform strain is imposed, the second equa�
tion determines the shift of the sublattices:

(4)

As the deformation of the sublattices themselves is
homogeneous, no additional equilibrium condition is
required.

Further, energy stability criterion (5) is used, i.e.
second variation of strain energy is required to be pos�
itive [11]. It can be shown that for simple lattices it is
equivalent to the condition of strong ellipticity of the
equilibrium equations, which is necessary condition
for uniformly deformed material [9]. In addition, for
simple lattices strong ellipticity condition is also suffi�
cient in current assumptions [7, 8].

(5)
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Here, E =  is unit tensor, in are basis vectors,

n = 1, 2, 3 is space dimension.

Shift vector ξ components, which enter the condi�
tion (5), are determined from (4) for each current con�
figuration. For the HCP structure’s symmetry reasons,

if one of the strain gradient r  eigenvectors coincides
with the axis of transverse isotropy, and the other two
lie in the plane of isotropy, then ξ also lies in the plane
of isotropy.

Let us further restrict ourselves to such r , whose
eigenvectors are shown in Fig. 1. Lennard�Jones
potential is used as an example of pair force interac�
tion potential:

(7)
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Fig. 1. Typical parts of HCP and FCC structures and
eigenvectors of strain gradient.
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Fig. 2. HCP structure stability regions, Lennard�Jones
potential. Left region corresponds to stress�free HCP
structure, right region corresponds to stress�free FCC
structure.
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where D is the depth of the potential well, a is equilib�
rium distance.

Figure 2 shows the stability region of HCP struc�
ture, ε1 and ε2 describe the deformation in the plane of
isotropy, ε3 describe the deformation along the axis of
transverse isotropy. (1 + ε1, 1 + ε2, 1 + ε3 are the prin�
cipal values of the strain gradient). Stability region
consists of two domains containing two stress�free
states: the first one with coordinates ε1 = ε2 = ε3 = 0
corresponds to HCP structure, the second one with
coordinates

and sublattice shift vector

which ensures equilibrium (4), corresponds to FCC
structure. Analogously to the triangular lattice [7], the
presence of two stability domains does not depend on
the specific form of the interaction potential (Len�
nard�Jones, Morse, Mie).

Continuous straining path from cubic to hexagonal
lattice was first described in [12]. Subsequently,
another transitions were proposed, e.g., [13]. The
technique, which is used in the present work, allows us
to study all possible straining paths which connect two
stress�free states. Figure 3 shows stress�free HCP and
FCC structures from Fig. 2, projected onto the
plane 1–2. Grey color marks zero particle and its
twelve closest neighbors in HCP structure.

The obtained stability conditions are valid in the
space of any dimension for any diatomic lattice within
pair force interaction, and they can be extended to the
cases of multi�lattices and more sophisticated interac�

tion laws. The present technique allows to obtain sta�
bility region in strain space for the material with
microstructure. The possibility to describe various
straining paths, which connect stress�free states, is
illustrated by the analysis of two stability domains con�
taining stress�free HCP and FCC structures.
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Fig. 3. Example of HCP (a)–FCC (b) transition.


