
Chapter 24
Discrete Thermomechanics: From
Thermal Echo to Ballistic Resonance
(A Review)

Ekaterina A. Podolskaya, Anton M. Krivtsov, and Vitaly A. Kuzkin

Abstract We present a review of the results in the field of discrete thermomechanics
that have been achieved in the Institute for Problems inMechanical Engineering RAS
over the past decade. The focus is set on the novel approach for analytical description
of non-equilibrium thermomechanical processes in crystalline solids. One, two, and
three-dimensional perfect crystals with arbitrary harmonic and weakly anharmonic
interactions are considered. The discussed topics cover threemajor areas: transition to
thermal equilibrium, ballistic heat transfer, and thermoelasticity. The analysis reveals
and elucidates such phenomena as thermal waves, heat flow from “cold” to “hot”,
the existence of several kinetic temperatures, thermal echo, and ballistic resonance.

Keywords Ballistic heat transport · Ballistic resonance · Transient processes ·
Thermal waves · Kinetic temperature

24.1 Introduction

One of the topical problems of solid mechanics is the calculation of thermoelastic
fields in materials and structures under various external influences. The continuum
linear thermoelasticity theory provides an adequate and consistent description of
the behavior of materials at the macro level. In particular, the problem of deter-
mining the temperature field causing thermoelastic stresses at the macro level is
usually successfully solved using the Fourier law. The law describes the diffusive
transfer of thermal energy, which is typical for macroscopic systems. However, the
recent experiments reported in the works of Zettl [14], Maznev and Huberman [41],
Nelson [49], Rogers [101], etc. indicate that at the micro- and nanoscale levels the
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thermal energy can spread in a wave manner. In particular, it is shown that in many
materials, including nanowires, carbon nanotubes, graphene, silicon membranes,
etc., significant deviations from the Fourier law are observed. Theoretical investiga-
tion of this issue is addressed worldwide by Chen [15], Dhar [18, 19, 50], Gendel-
man and Savin [26, 27, 104, 105], Hemmer [34], Kosevich [58], Lebowitz [12, 50,
78, 100], Lepri, Livi and Politi [81–83], Lukkarinen [33],Mielke [90], Slepyan [108],
Spohn [109], and many other authors. In such context, the development of mechan-
ical models describing the thermoelastic behavior of solids, taking into account the
ballistic transfer of thermal energy, becomes relevant. This goal is essential in con-
nection with the development of microprocessor technology and the problem of heat
removal from processors. In the Institute for Problems in Mechanical Engineering
of the Russian Academy of Sciences (IPME RAS), the comprehensive study in this
field was initiated by our research group in the works of Krivtsov [60, 61], followed
by a series of papers, for example, [8, 23–25, 62–66, 70–77, 80, 85, 86, 91, 96,
111–113].

Anomalous heat transfer is closely connected with more general problems of non-
equilibrium thermomechanical behavior of materials. This topic is considered in the
works of Allen [2], Belyaev and Indeitsev [43, 44], Dmitriev [103], Dudnikova [20],
Fortov [3, 45], Gavrilov [24, 25], Guzev [32], Ivanova [48], Krivtsov [60, 61, 64],
Kukushkin [68, 69], Kuzkin [73, 75], Lurie [87, 88], Muratikov [92], Müller [62,
111], Petrov [45], Prigogine [98], Vilchevskaya [112], etc. At thermal equilibrium,
the kinetic energy is usually equally distributed among the degrees of freedom. This
factmakes it possible to describe the thermal state of an elementary volume of amate-
rial using a single scalar parameter – kinetic temperature proportional to the energy of
chaotic thermal motion of atoms. Far from thermal equilibrium, the kinetic energies
corresponding to the different degrees of freedom can differ significantly. As a result,
it is necessary to introduce several temperatures. In particular, it is known that the
lattice and electron subsystem temperatures in laser exposed solids may vary [43].
Multiple temperatures are also found in molecular dynamics simulations of shock
waves [3, 35] and simulations of heat propagation in polyatomic crystal lattices [74].
It is often necessary to describe the process of energy equilibration, corresponding
to different degrees of freedom. To describe this transient process within multicom-
ponent continuum mechanics models, the construction of appropriate constitutive
equations is required.

Discrete models of solids can be effectively used to simulate the thermomechan-
ical behavior of materials at the micro- and nanoscale and construct continuum
constitutive equations, e.g., referred to in the papers by Abramian et al. [1], Belyaev
et al. [97], Dmitriev [7], Fortov [3, 45], Goldstein and Morozov [28], Golovneva
et al. [29, 30], Ivanova [46, 47], Korobeynikov [56], Krivtsov [59], Norman [67,
93], Psakhie [99], and other authors. In particular, different variations of the particle
method, such as the method of molecular dynamics [2] or the method of movable
cellular automata [99], have become widely used.

The main objective of the present work is to provide a review of methods for
analytical description of thermomechanical processes in crystalline solids that have
been developed at IPME RAS over the past few years. After a brief notation outline
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in Sect. 24.2, the paper is organized as follows. In Sect. 24.3, the so-called “fast”
processes, i.e., energy equilibration and redistribution among the degrees of freedom,
are considered. Next, Sect. 24.4 addresses the “slow” process (ballistic heat transfer).
The paper is concluded by Sect. 24.5, where the conversion of thermal energy into
mechanical energy and vice versa is considered.

24.2 Nomenclature

We use lower-case letters in boldface for vectors, either upper-case letters or Greek
letters in boldface for tensors, and italic for scalars. The following notation is used:

• d = 1, 2, 3 is the space dimension;
• m and C are the particle mass and bond stiffness; C1 is the substrate stiffness;
• ωe = √

C/m is the characteristic frequency, τe = 2π/ωe is the characteristic
period of oscillations, and c = ωea is the characteristic velocity;

• η is damping coefficient, ω̂e = 1/4
√
16ω2

e − η2 is the characteristic frequency for
non-conservative problems;

• r is the position vector of a particle (or a unit cell—see Sects. 24.3.1.3 and 24.4.2);
• aα is the vector connecting this particle (or unit cell—seeSects. 24.3.1.3 and24.4.2)
with neighboring particle/cell number α; aα ≡ |aα|, eα ≡ aα/aα;

• u(r) andv(r) are the displacement andvelocity of a particle (or columns, consisting
of components of displacements and velocities of particles from unit cell—see
Sects. 24.3.1.3 and 24.4.2);

• u0(r) and v0(r) are the initial displacement and velocity of a particle (or the
respective columns—see Sects. 24.3.1.3 and 24.4.2);

• ξ(ri , r j ) = 〈u(ri )u(r j )〉 and κ(ri , r j ) = 〈v(ri )v(r j )〉 are the tensor covariances
of displacements and velocities for a pair of particles i and j ; brackets 〈〉 denote
the mathematical expectation; u(ri )u(r j ) is the tensor product of the respective
displacements;

• D is the tensor difference operator, D is the respective scalar difference operator;
• K, �, and L are generalized (non-local) kinetic energy, potential energy, and
Lagrangian;

• T(r) is the tensor temperature, and T ≡ trT/d is the kinetic temperature;
• Jk(τ ) is the Bessel function of the first kind;
• k is the wave vector, ω(k) is the dispersion relation, and c = dω/dk is the group
velocity vector.

24.3 Transient Processes

The solution of problems of thermomechanics for materials in a highly non-
equilibrium state is one of the topical questions of solid mechanics. At thermal
equilibrium, the kinetic energy is conventionally accepted to be equally distributed
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among the degrees of freedom. This fact follows from the equipartition theorem [38,
119]. This theorem allows us to describe the thermal state of the system using a single
scalar parameter of kinetic temperature proportional to the energy of chaotic ther-
mal motion of the atoms. As mentioned above, the kinetic energies corresponding to
various degrees of freedom can differ significantly far from thermal equilibrium, so
in many works several temperatures are introduced [11, 31, 44, 45]. For example, in
papers [36, 37, 116] it is shown that the kinetic energies (temperatures) correspond-
ing to the motions of atoms along and across the direction of shock wave propagation
can differ almost by a factor of two near its front. In [50, 51] the heat propagation in
a diatomic one-dimensional harmonic chain placed between two thermal reservoirs
with different temperatures was considered. It was shown that the temperatures of
the sublattices in the non-equilibrium stationary state are different. A similar effect
observed for unsteady heat transfer is demonstrated in Sect. 24.3.1.1 [74].

In the absence of any external influences, the non-equilibrium system tends to
thermal equilibrium. The transition to thermal equilibrium is accompanied by several
processes:

• The velocity distribution function tends to Gaussian [20, 34, 52, 78, 109];
• The total energy is redistributed among kinetic and potential forms [2, 52, 108]
(also described below following [5, 60, 71]);

• The kinetic energy is redistributed among the degrees of freedom (addressed below
following [71, 73]);

• The energy is redistributed among the system’s eigenmodes [98].

These processes, except for the last one, occur both in linear (harmonic) and
nonlinear systems [2, 20, 52, 60, 71, 78, 109]. In harmonic crystals, the energies
of the eigenmodes are constant in time. However, the kinetic temperature field in
infinite harmonic crystals tends to become spatially homogeneous and constant in
time [34, 72, 109]. Therefore, the concept of thermal equilibrium has been widely
applied to harmonic crystals [10, 20, 42, 78, 109, 114].

The transition to thermal equilibrium is considered in many works, and such
aspects of this process as the existence of an equilibrium state [78], ergodicity [114],
the normalization of the distribution function [10, 20, 52], entropy evolution [42,
111], etc. have been investigated. The present section deals with the behavior of the
main experimentally observed value of the kinetic temperature(s), which is propor-
tional to the kinetic energy of chaotic particle motion.

There exist two different approaches to describe the behavior of statistical
characteristics in harmonic crystals. One of them is based on the exact solution of
the lattice dynamics equations to calculate the kinetic temperature as the mathemat-
ical expectation of the kinetic energy [32, 42, 52, 84]. In particular, the pioneering
work of Klein and Prigogine [52] considered the transition to thermal equilibrium in
an infinite harmonic chain with random initial conditions. Using the exact solution
obtained by Schrödinger [106], it was shown that the kinetic and potential energies
of the chain oscillate in time and tend to equal equilibrium values [52].

The present section focuses on the other approach, which uses covariances of
velocities and covariances of particle motions as the main variables (the covariance
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of two centered random variables is the mathematical expectation of their product).
In the case of a harmonic crystal, it is possible to obtain a closed system of equations
for the covariance in the stationary [50, 82, 100] and non-stationary [60, 83] cases.
The solution of this system describes, in particular, the change in kinetic temperature
over time. In Sects. 24.3.1.1–24.3.1.3 this idea is used to describe the transition to
equilibrium in infinite crystals with monoatomic and polyatomic lattice. In particu-
lar, one-dimensional chains [5, 60, 73] and two-dimensional triangular, square, and
hexagonal (graphene) lattices [70–73] are considered. Next, in Sects. 24.3.2–24.3.4
several generalizations are introduced, such as damping [23], weak interaction non-
linearity [71, 75], and account for the lattice finiteness [91]. The latter is concluded
by the effect of thermal echo.

24.3.1 Infinite Harmonic Crystal

We begin with the simplest mathematical model. Consider an infinite simple crystal
lattice in the space of dimension d, which consists of identical particles. The particles
positions are identified by the vectors in the undeformed state, and the nearest neigh-
bors interact via linearized, or harmonic, forces. The Born-von Karman periodic
boundary conditions [4] are used.

First, we formulate the stochastic problem. The equations of motion1 take the
form of the differential-difference equations, equivalent to the infinite2 system of
second-order ODEs [71]:

v̇(r) = D · u(r), D = ω2
e

∑

α

eαeα�2
α,

�2
αu(r) = u(r + aα) − 2u(r) + u(r − aα).

(24.1)

The initial conditions are written as

u(r)
∣∣∣
t=0

= u0(r), v(r)
∣∣∣
t=0

= v0(r), (24.2)

where u0(r) and v0(r) are uncorrelated random vectors with zero mean, i.e.,
〈u0(r)〉 = 0, 〈v0(r)〉 = 0.

The solution of the system (24.1)–(24.2) describes the crystal dynamics com-
pletely. Moreover, these equations can be solved analytically. However, the descrip-
tion of the thermal processes usually requires only the statistical characteristics, such
as covariances of velocities κ(ri , r j ) = 〈v(ri )v(r j )〉 and displacements ξ(ri , r j ) =
〈u(ri )u(r j )〉 of particles i and j . Following [71] and the references therein, we write
down the deterministic system of second-order tensor ODEs:

1 These equations are valid only for the simple, or monoatomic, lattices. The general formulae for
the polyatomic lattices can be found in, e.g., [73], and the results are addressed in Sect. 24.3.1.3.
2 For infinite crystals.
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ξ̈ = D · ξ + ξ · D + 2κ,

κ̈ = D · κ + κ · ξ + 2D · ξ · D.
(24.3)

The system (24.3) yields to a single fourth-order equation which is valid both for
ξ and κ:

....
κ − 2 (D · κ̈ + κ̈ · D) + D2 · κ − 2D · κ · D + κ · D2 = 0. (24.4)

The respective initial conditions will be discussed below for the particular exam-
ples. We note that Eq. (24.4) is also satisfied for harmonic crystals with arbitrary
polyatomic lattice [73].

Another useful yet not inevitable assumption is the uniform initial temperature
distribution. It can be demonstrated that at the time scale at which the transient
processes come out and decay, the change in spatial temperature distribution is neg-
ligible (see Sect. 24.4 and the references therein). Then, the covariances depend only
on the difference between the particles i and j position vectors. In this case, we can
introduce a new variable instead:

(
ri , r j

) −→ (
ri − r j

)
. (24.5)

This assumption leads to the simplification of Eq. (24.4).
Basing on the covariances, we introduce the generalized (or non-local) potential

and kinetic energies, and also the generalized Lagrangian [61, 70]

�(ri , r j ) = −m

4

(
D · ξ(ri , r j ) + ξ(ri , r j ) · D

)
,

K(ri , r j ) = m

2
κ(ri , r j ), L = K − �.

(24.6)

If i = j , the traces of tensors K,�, and L are equal to the respective conventional
energies per particle. Note that K, �, and L satisfy Eq. (24.4). As for the initial
conditions, the use of the conservation laws helps to eliminate the odd derivatives
(see, e.g., [71] for the details).

Next, we define the tensor temperature T(r) [36, 37] and kinetic temperature T
as

kB
2

T(r) = K(ri , r j )

∣∣∣
i= j

, T = 1

d
trT(r). (24.7)

Here kB is Boltzmann constant. The kinetic temperature is introduced in such a
way that at the equilibrium the equipartition theorem [38] is fulfilled, i.e., kinetic
energy per degree of freedom is equal to kBT/2.

In the following sections, we consider several generalizations, including the influ-
ence of interaction nonlinearity and finiteness of the system. But before that, let us
turn to the examples of harmonic crystals. It is noteworthy that in all examples the
numerical and analytical solutions demonstrate an excellent agreement.
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24.3.1.1 Hooke’s Crystal

Westart with the one-dimensional case (d = 1). Then all the vector and tensor quanti-
ties yield to their scalar equivalents. Consider one of the possible transient processes,
i.e., the evolution of the generalized Lagrangian [60]. Taking the aforementioned for-
mulae and also conservation laws into account, we get for the particle n

L̈n = 4ω2
e�

2
n Ln, �2

n Ln = Ln+1 − 2Ln + Ln−1, 0 < n < N . (24.8)

Here the parameter N � 1 characterizes the length of the period in Born-von
Karman boundary conditions. Assuming that the initial velocities of particles are
uncorrelated and the initial displacements are absent, the initial conditions yield to

Ln

∣∣∣
t=0

= Eδn, L̇n

∣∣∣
t=0

= 0, (24.9)

where E is the initial energy of the instantaneous thermal perturbation, δn = 1 for
n = 0; otherwise δn = 0. For N → ∞ the solution yields to

Ln(t) = E J2n(4ωet) ≈ (−1)n
E√

2πωet
cos

(
4ωet − π

4

)
+ O

(
t−3/2

)
. (24.10)

Recall, that if n = 0, Ln is equal to the conventional Lagrangian. Hence, the
Lagrangian, L , satisfies the differential Bessel equation:

L̈ + 1

t
L̇ + 16ω2

e L = 0. (24.11)

The oscillations occur with frequency 4ωe, and the amplitude decays as the square
root of time (see Fig. 24.1).

Fig. 24.1 Oscillations of the
Lagrangian for the Hooke’s
crystal [60]
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(a) (b)

Fig. 24.2 Oscillations of the Lagrangian for (a) the soft (ε = 0.1) and (b) the hard (ε = 24) elastic
foundations [5]. The dashed lines show the bounding functions

A similar yet essentially different result is obtained for the one-dimensional chain
on the elastic foundation [5]. The introduction of the additional stiffness parameter
C1 leads to the modification of Eq. (24.8)

L̈n = 4ω2
e (Ln+1 − 2(1 + ε)Ln + Ln−1) , ε = C1

C
(24.12)

with the same initial conditions (24.9).
If the elastic foundation is soft (ε < 1), the solution for the Lagrangian takes the

form, which is proved to be valid up to ε = 1

L = E
(
J0

(
2
√
4 + εωet

)
− 1

2

√
ε J1

(
2
√

εωet
))

. (24.13)

The second summand in formula (24.13) gives low-frequency oscillations on
which the first high-frequency summand is superimposed (see Fig. 24.2a).

For the hard elastic foundation (ε > 1) the solution may be approximately repre-
sented as

L ≈ E J0(
2t) cos(
1t), 
1,2 =
(√

4 + ε ± √
ε
)

ωe, (24.14)

which leads to the formations of beats: the low-frequency envelope J0(
2t) restricts
the wave packet with a high-frequency harmonic signal (see Fig. 24.2b).

24.3.1.2 Two- and Three-Dimensional Crystals

Let us pass over to two-dimensional space (d = 2). First, consider the so-called
scalar lattices [33, 90, 104]. In this case, a scalar function of a position vector u(r)
is used to describe the system motion (24.1), i.e., each particle has only one degree
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of freedom, and the temperature (24.7) is also scalar. Note that a one-dimensional
chain with nearest neighbor interaction (see Sect. 24.3.1.1) is also a scalar lattice.

The exact solution for the kinetic temperature is given by [72]

T = T0
2

[
1 +

∫

k
cos (2ω(k)t)dk

]
, (24.15)

where the integration is carried out with respect to components of the wave vector k;∫
k dk = 1. Here another important quantity is introduced: the dispersion relation

ω(k) which is obtained from lattice dynamics Eqs. (24.1).
In 2D, the first example to be considered is the out-of-plane vibrations of square

lattice [72]. In harmonic approximation, in-plane and out-of-plane vibrations of the
lattice are independent. The lattice is prestrained; otherwise the oscillations would
be essentially nonlinear. The kinetic energy oscillations decay, and the characteristic
time of this process is of the order of several characteristic periods τe. The rate of
decay is proportional to 1/t in contrast to the one-dimensional problem for which it
decays as 1/

√
t . The characteristic frequencies for both one-dimensional and two-

dimensional scalar lattices are calculated in [55].
The next step is to consider in-plane vibrations of the square and triangular lat-

tices. In this case, each particle has two degrees of freedom, and the temperature
tensor (24.7) has two eigenvalues. The analytical solution of the respective equa-
tions [70, 71] clearly demonstrates that, in general, T is not isotropic, and the veloc-
ity covariance for neighboring particles κ(ri , r j ) is not equal to zero, i.e., particles’
velocities are not statistically independent (see Fig. 24.3). Thus, we capture another
transient process: temperature redistribution among the degrees of freedom.3 The
characteristic frequencies for this problem are calculated in [113].

(a) (b)

Fig. 24.3 Two transient processes associated with triangular lattice in-plane motion: (a) tempera-
ture redistribution among spatial directions and (b) oscillations of the Lagrangian [70]

3 The rate of decay for triangular lattice is again proportional to 1/t , whereas for square lattice it
decreases as 1/

√
t . Moreover, the spatial redistribution effect doesn’t appear in the square lattice.
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The above derivations are valid not only for d = 2 but also for d = 3. The results
similar to those shown in Fig. 24.3 are obtained in [75] for the face-centered cubic
lattice.

24.3.1.3 Polyatomic Crystals

Next, we consider the effects observed only in polyatomic lattices [73].
The unit cells of polyatomic lattices are identified by their position vectors r,

and each unit cell has M degrees of freedom, corresponding to components of par-
ticles displacements. Hence, instead of tensor temperature (24.7), we introduce the
temperature matrix T(r) [73, 74]. Its components are given by

Tkn = 1

kB

√
mkmn〈vkvn〉, (24.16)

where mk and vk are the masses and velocities corresponding to the kth degree of
freedom. Temperature matrix is related to the kinetic temperature T as

T = 1

M

M∑

k=1

Tkk . (24.17)

The explicit problem statement and derivation of the formulae that describe the
time evolution of the temperature matrix are given in [73]. Here we restrict ourselves
by the graphic results for one-dimensional lattice with alternating masses and stiff-
nesses (Fig. 24.4) and for the out-of-plane vibrations of graphene (Fig. 24.5). The
transient processes associated with in-plane vibrations of graphene are considered
in [8].

Figure24.4a shows that in both cases the difference between temperatures tends to
the value 0.3(T 0

11 − T 0
22), but the shape of the curves differs. Therefore, the process

of redistribution of temperature between sublattices depends on difference in the
initial temperatures of the sublattices. Figure24.4b demonstrates that for any given
mass ratio, the difference between temperatures decreases with decreasing ratio of
stiffnesses and tends to a limiting value corresponding to the case when this ratio
tends to zero.

As for the graphene, Fig. 24.5 shows beats of difference between temperatures of
sublattices. The amplitude of beats decays in time as 1/t , so at large times, temper-
atures of sublattices in graphene equilibrate.

Finally, we note that the equilibrium values of kinetic temperatures in harmonic
polyatomic lattices are generally different and depend on the initial value of the
temperature matrix. In paper [73], the formula relating equilibrium values of kinetic
temperatures with initial conditions is derived. The formula is referred to as the non-
equipartition theorem. The theorem shows, in particular, that the kinetic temperatures
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(a) (b)

Fig. 24.4 (a) Difference between temperatures of sublattices for T 0
11 
= 0, T 0

22 = 0 (solid line) and
T 0
11 = 0, T 0

22 
= 0 (dotted line). (b) Difference between equilibrium temperatures of sublattices for
a diatomic chain with the ratio of stiffnesses equal to 1 (solid line), 1/2 (dotted line), 1/4 (short
dashed line), 1/8 (dashed line), 1/16 (dash-dotted line), and 1/32 (dash-double dotted line) [73]

Fig. 24.5 Redistribution of kinetic temperatures among sublattices in graphene [73]

are equal at thermal equilibrium if their initial values are also equal. If initially the
kinetic temperatures are different then they are usually different at equilibrium, except
for some lattices.

24.3.2 The Influence of Finiteness: Thermal Echo

The account for the finiteness of the one-dimensional harmonic crystal gives rise to
more phenomena and effects [91].

The infinite model predicts that the generalized energy oscillations are described
by Bessel functions (24.10), and only zero-order Bessel function describes the con-
ventional energies. In contrast, if the crystal consists of a finite number of particles, at
a certain time, the amplitude decay, prescribed by the Bessel function, is replaced by
a sharp short-term growth which reoccurs periodically. This phenomenon is referred
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Fig. 24.6 Oscillations of temperature T in the finite Hooke’s crystal [91]

to as thermal echo, and the sequence of its realizations is described by a series of the
Bessel functions of multiple orders. Moreover, a superposition of the temperature
oscillations generated by the sequential thermal echoes results in temperature beats
with each subsequent thermal echo complicating their shape (see callout in Fig. 24.6).

The solution for, e.g., temperature yields to

T = TE + δT

2
J0(4ωet) + δT

p=∞∑

p=1

J2pN (4ωet),

TE = �T

2

(
1 − 1

N − 1

)
, δT = �T

(
1 + 1

N − 1

)
.

(24.18)

Here TE is the so-called equilibrium temperature, �T is the temperature jump
proportional to the initial energy of the instantaneous thermal perturbation E , and N
is the number of particles.

Next, it can be shown that in the thermodynamic limit any thermal echo is
described by the Airy function; thus formula (24.18) can be rewritten as

T = TE + δT

2
J0(4ωet) + δT

p=∞∑

p=1

1
3
√
pN

Ai

(
2pN − 4ωet

3
√
pN

)
. (24.19)

So for sufficiently large N any thermal echo is shaped as an Airy function. Hence,
the time, when echo p occurs, its relative “height” and “width” are estimated by

tp � 1

4ωe

(
2pN + 3

√
pN

)
, h p � √

π A1
6
√
pN , wp ∼ 3

√
pN , (24.20)

where A1 ≈ 0.53 is the first local maximum of Airy function.
The analysis demonstrates that the maximum temperature increase caused by the

thermal echo decreases as 3
√
pN , and the duration of the thermal echo wp increases

with the same rate.Moreover, the amplitude of the temperature oscillations decreases
as 1/

√
t between any two echoes. What is more the larger the crystal is, the more
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noticeable become the temperature peaks h p in comparison with the residual oscil-
lations.

24.3.3 The Influence of Dissipation on the Transition to
Thermal Equilibrium

In this section,we consider the problemof thermal equilibration in a one-dimensional
damped harmonic crystal [23].

The problem statement remains almost the same as in Sect. 24.3.1.1. The
differential-difference operator, acting on, e.g., generalized Lagrangian, takes the
form

∂2

∂t2
+ 2η

∂

∂t
− 4ω2

e�
2
n, (24.21)

which yields to (24.8) if η = 0. The characteristic frequency for this equation is
ω̂e = 1/4

√
16ω2

e − η2. Unlike the conservative case, the solutions of this kind of
equations cannot be evaluated in closed form, so only the asymptotics are estimated.

Omitting a thorough analysis given in [23], we write out the asymptotics for
conventional Lagrangian L0, which would be determined by a waning cosine (24.10)
if there was no damping:

L = L(1) + O
(
t−7/2

) + L(2) + O

(
e−ηt

t

)
,

L(1) = E

(

− t−3/2

8
√
2πηωe

− t−5/2
(
3η2 + 12ω2

e

) √
2

512
√

πη3/2ω3
e

)

,

L(2) = E
e−ηt

2ωe

√
2π t

(
2
√

ω̂e cos
(
4ω̂et − π

4

)
− η

2
√

ω̂e
sin

(
4ω̂et − π

4

))
.

(24.22)
Similar representations can be obtained for the rest of generalized energies. In a

particular case of conservative system, the summands with superscript “(1)” disap-
pear, because the integration is carried out over the zero-length interval. In the case
of high damping η ≥ 4ωe the summands with superscript “(2)” vanish for the same
reason.

If η/ωe < 1 the transient process goes in two phases. Firstly, the kinetic and poten-
tial energies oscillate approaching the asymptote Ee−ηt/2, whereas the Lagrangian
oscillates tending to zero; their amplitudes decay as the square root of time multi-
plied by the respective exponent. Secondly, at very large times, the principal term
of the asymptotic expansion for the kinetic energy (and, consequently, temperature)
becomes proportional to t−5/2, whereas the rest of the energies decay as t−3/2. In the
limiting case of zero dissipation this surprising second phase disappears.
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(a) (b)

Fig. 24.7 The ratios of generalized energies to the initial value E versus dimensionless time ωet
for (a) η/ωe = 0.5 and (b) η/ωe = 0.02: analytical solutions (solid lines), numerical solutions
(crosses), asymptotic solutions (dotted lines), and approximate asymptotic solutions without power-
decaying terms (dashed lines; only on the right-hand side) [23]

Note that if the damping is small, i.e., η/ωe � 1 the asymptotic formulae give
wrong results at finite but not very large times (see Fig. 24.7b), so the valid approxi-
mation may be reached and the summands with superscript “(1)” are omitted.

24.3.4 The Influence of Nonlinearity on Transient Thermal
Processes

In this example we present the computational results of the influence of a weak
nonlinearity on the two transient thermal processes described above: (i) equilibration
of kinetic and potential energies and (ii) redistribution of the kinetic energy among
spatial directions. The account for the process (ii) is possible for both d = 2 [71] and
d = 3 [75].

Let the particles interact via the Lennard-Jones potential:

�(r) = ε

[(a
r

)12 − 2
(a
r

)6
]

, (24.23)

where ε is the bond energy, and a is the equilibrium distance. In order to quantify
the influence of nonlinearity, the dissociation velocity vd = √

2ε/m is introduced.
In the simulation the initial velocities are randomly distributed in a circle with radius
v0.

Figure24.8 shows the results for both transient processes in the triangular lattice.
The curve (1) corresponds to v0/vd = 0.05, (2) is v0/vd = 0.25, (3) is v0/vd = 0.5,
(4) is analytical solution for harmonic triangular lattice, and (5) is numerical solu-
tion of lattice dynamics equations. It is seen that nonlinearity increases the rate of
equilibration of the system.
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(a) (b)

Fig. 24.8 Two transient effects in triangular lattice with Lennard-Jones interaction: (a) redistribu-
tion of temperature among spatial directions and (b) oscillations of the Lagrangian [71]

The additional analysis for FCC lattice [75] has shown that the thermal equilibra-
tion has two distinct time scales: the period of atomic vibrations τe and anharmonic
τa , which depends on the initial temperature T0. These two scales are connected
empirically by

τe

τa
≈ kBT0

ε
+ 1.496

(
kBT0

ε

)2

− 0.469

(
kBT0

ε

)3

. (24.24)

At low temperatures T0 < 0.05ε/kB the second time scale τa is almost inversely
proportional to the initial temperature.

As far as the first time scale is concerned, the approach to equilibrium is accompa-
nied by decaying high-frequency oscillations of the temperatures at times or order of
several τe. These oscillations are caused by both transient processes, i.e., equilibra-
tion of kinetic and potential energies and redistribution of the kinetic energy among
spatial directions.

At time scale τa , the difference of the kinetic temperatures deviates from the
equilibrium value, predicted by the harmonic approximation, and monotonically
tends to zero (see Fig. 24.8).

Thus, in anharmonic crystals thermal equilibration at different temperatures dif-
fers only by a time scaling. These results suggest, in particular, that, in the weakly
anharmonic case, the characteristic time scales of relaxation and heat transfer may
be of the same order; therefore, there may be some mutual influence between these
processes.

24.4 Heat Transfer

There are several approaches to the description of heat transfer. In continuum theo-
ries, the constitutive equations are usually introduced as part of the phenomenological
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approach. In particular, one of the phenomenological equations describing the wave
properties of heat propagation is theMaxwell–Cattaneo–Vernotte equation [13, 115].
This equation, unlike the Fourier heat conduction equation, gives a finite speed of
heat propagation. However, it still relies on the concept of the thermal conductivity
coefficient, which is not a parameter of the material at the micro level. For example,
it has been shown that in many materials, including nanowires [39], nanotubes [14],
graphene [6, 118], silicone membranes [49], and others, the thermal conductivity
depends significantly on the length of the sample on which measurements were car-
ried out. In addition, the Maxwell–Cattaneo–Vernotte equation predicts an exponen-
tial decay of thermal perturbations, while in the ballistic regime these perturbations
decay according to the power law [61, 74].

Another approach to describing heat propagation at the nanoscale is to use the
kinetic Boltzmann equation [94]. This equation is usually simplified using a number
of approximations for the collision term, in particular, by introducing relaxation times
[9, 53]. This allows the Boltzmann equation to be solved numerically [40, 102], as
well as obtaining heat propagation equations [15, 54]. In both cases, additional
assumptions are often introduced [107]. In particular, the contribution of optical
oscillations to heat transport is often neglected. Comprehensive literature reviews on
the use of the Boltzmann equation to describe heat propagation can be found, for
example, in [81, 107]. The link between the descriptions based on lattice dynamics
and kinetic theory is discussed in [77, 110]. In the present section, the formulae for
the heat transfer are derived either from the covariance dynamics equations or from
the exact solution of the dynamics equations. This approach makes it possible to
take into account all the important features of a discrete system that affect the heat
propagation, in particular, to estimate the contribution of the different branches of
the dispersion relation.

The analysis of heat transfer in discrete systems is usually carried out in the so-
called stationary non-equilibrium state [81, 100]. In this case, the discrete system
is placed between two thermostats with different temperatures. The effective heat
transfer coefficient of the system is calculated for the known temperature difference,
the distance between the thermostats, and the estimated heat flux. This formulation
of the problem is widely used both in analytical studies [82, 100] and in computer
simulations [19, 50, 81] of heat propagation. A detailed review of the results obtained
in the stationary formulation is given, for example, in [18, 81]. Calculation of the
effective thermal conductivity coefficient as a function of the sample length makes it
possible to determine the conditions underwhich the ballistic, anomalous, or diffusive
mode of heat propagation is realized. In the first case, the heat transfer coefficient
increases linearly with length; in the second case it increases nonlinearly; and in the
third case it does not depend on length at all. However, the stationary formulation
does not allow determining the heat transfer law.Moreover, the results obtained in the
stationary formulation may significantly depend on the choice of the thermostat [50].
Therefore, in this paper, we consider the non-stationary formulation of the energy
transfer problem.

One of the problems in the study of non-stationary thermal energy transfer is to
determine how the initial field of kinetic energy changes in time and space. The
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initial field can be set, for example, by giving random initial velocities to particles.
In this case, the use of a thermostat is not required. In the literature, such problems
are usually solved numerically using, for example, the molecular dynamics method
[27, 58, 79, 95]. This method makes it possible to use realistic interaction potentials
and to consider the influence of nonlinearity, defects, interfaces, and other features
of the real system, which are difficult to take into account analytically. However, in
spite of the enormous possibilities of numerical methods, some questions are still
easier to address analytically. In particular, for crystals with several branches of the
dispersion relation, it is difficult to separate the contribution of different branches to
the heat transfer in numerical simulations.

In this section, we continue to use an infinite harmonic crystal as the main model
of a crystal. In this model, harmonic waves do not interact with each other, so the
heat transfer is purely ballistic. The influence of dissipation and energy supply is
regarded in Sect. 24.4.1.2. Once again, note that in all examples the numerical and
analytical solutions demonstrate an excellent agreement.

24.4.1 Scalar Lattices

Let us continue the analysis of Eq. (24.4). In contrast to the previous assump-
tion (24.5), here we carry out continualization with respect to spatial variable r [61,
72], where the following change of variables is employed:

(
ri , r j

) −→ (
r, ri − r j

)
, r = ri + r j

2
. (24.25)

Next, we assume that the covariances are slowly changing functions of r at dis-
tances of order of aα , then the difference operator can be approximated.Moreover, for
the considered type of lattices, all the covariances become scalars (see Sect. 24.3.1.2),
so Eq. (24.4) yields to [72]

...
κ − 4Dκ̈ + 4(R · ∇)2κ = 0, (24.26)

where ∇ is Del operator and the difference operators D and R are calculated basing
on the definition (24.1).

The initial conditions take the form

κ = kB
m

T0(r)δ(ri − r j ), κ̇ = 0, κ̈ = 2kB
m

T0(r)Dδ(ri − r j ),
...
κ = 0,

(24.27)
where δ(ri − r j ) is equal to 1 for i = j , and vanishes otherwise.

The use of discrete Fourier transform with respect to the wave vector k allows to
obtain the solution in the following form:
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T = TF + TS, (24.28)

where TF is determined by formula (24.15), and it is responsible for transient pro-
cesses (see Sect. 24.3.1.2). The second summand TS describes the large-time behav-
ior, and it is equal to

TS = 1

2

∫

k
T0

(
r + c(k)t

)
dk, (24.29)

where c(k) = dω/dk is the group velocity.
Thus, formulae (24.15), (24.28), (24.29) fully describe the behavior of the kinetic

temperature at both short and large times. They show, in particular, that at large
times the temperature field is represented as the superposition of waves traveling
with group velocities c(k).

24.4.1.1 Hooke’s Crystal

As discussed before in Sect. 24.3.1.2, one-dimensional lattice is a particular case of
scalar lattices, so the formula (24.29) is applicable for this case.

The solution for an infinite Hooke’s crystal is given by [61, 64]

T (t, x) = 1

π

1∫

−1

T0(x − cts)√
1 − s2

ds = 1

π

π∫

0

T0(x + ct cosϕ)dϕ. (24.30)

This solution is analyzed in [111] for two examples of the localized (−l ≤ x ≤
l) initial temperature distribution and compared with the classical heat conduction
results. The comparison for the rectangular initial perturbation is shown in Fig. 24.9.
The ballistic solution has two strongly pronounced peaks traveling in the positive
and negative directions with speed c, whereas the classical solution demonstrates the
exponential decay of the single peak in the center.

In [65] the asymptotics for the heat wave described by the ballistic heat transfer
Eq. (24.30) is analyzed for several examples of the initial temperature distribution
localized in space. The solution in the vicinity of wavefront takes the simple form

T

(
t,

x − ct

l

)
=

√
2l

π
√
ct

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1−(x−ct)/ l∫

0

T0

(
x − ct

l
+ p2

)
dp, −l ≤ x − ct ≤ l

√
1−(x−ct)/ l∫

√−1−(x−ct)/ l

T0

(
x − ct

l
+ p2

)
dp, x − ct ≤ −l

(24.31)
This formula shows that the main part of the wave is located in a space region of

the same size as the initial localization zone. The thermal wave shrinks vertically as
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the square root of time, whereas in the horizontal direction its shape, characterized
by the integral, remains unchanged. In addition, it can be demonstrated that during
the wave evolution, the wavefront smoothes, e.g., for a power-law dependence, its
degree increases by 1/2.

24.4.1.2 Modifications of the One-Dimensional Crystal Model

The effect of the elastic foundation on the ballistic heat transfer is discussed in [66],
namely, it is shown that in this case the rate of heat transfer is lower than that in the
crystal without substrate.

The influence of damping and energy supply is taken into account in [24]. The
respective temperature profiles are obtained analytically and analyzed, e.g. it is shown
that the steady-state kinetic temperature distribution caused by a point source of
constant intensity is described by the Macdonald function of zero order.

Another modification is the account for the interaction with the second neigh-
bors on the crystal lattice [85, 86]. It is shown that the initial thermal perturbation
evolves into two consecutive thermal waves propagating with finite and essentially
different velocities (see Fig. 24.10a). The velocity of the first front corresponds to
the maximum group velocity of the discrete crystalline model. The velocity of the
second front is determined by the second group velocity extremum, which arises at
a certain ratio between the stiffnesses of the first and second neighbor interaction in
the lattice.

To conclude this section, we move away from the scalar lattices concept and
mention the generalization of formula (24.29) for the case of one-dimensional crystal
with alternating masses or stiffnesses [74, 86, 96] (an arbitrary polyatomic lattice in
considered in Sect. 24.4.2):

(a) (b)

Fig. 24.9 Evolution of the solutions for a rectangular initial perturbation: (a) ballistic and (b)
Fourier heat transfer [111]
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(a) (b)

Fig. 24.10 Evolution of the solutions for a rectangular initial perturbation: (a) with regard for
the second neighbor interaction [85] and (b) with alternating masses/stiffnesses [96] (for certain
parameters)

TS = 1

2M

M∑

j=1

∫

k
T0

(
x + c j (k)t

)
dk, (24.32)

whereM is the number of degrees of freedom in the unit cell, and c j are the respective
group velocities ( j = 1 . . . M). Formula (24.32) is valid for all one-dimensional
harmonic crystals with arbitrary M . In paper [86] it is applied to the diatomic chain.
An analytical approach, that allows to identify the thermal wavefront intensity, is
proposed. It is demonstrated that, for any ratios between the masses/stiffnesses, the
initial thermal perturbation propagates as two successive thermal fronts having finite
speeds and repeating the shape of the initial perturbation (see Fig. 24.10b). The speed
of the first front corresponds to the acoustic branch of the dispersion relation, and the
speed of the second front corresponds to the optical one. In the case when the particle
masses differ slightly, the intensity coefficient of the acoustic front is maximum, and
the optic front decays, continuing to move at non-zero speed.

24.4.1.3 Two-Dimensional Crystal

The analytical solution of the planar heat transport problem for the stretched square
lattice is given in [72].

Figure24.11a clearly shows two thermal waves traveling in the opposite direc-
tions. The peaks of the temperature distribution move with constant speed.
Figure24.11b demonstrates how the heat flows from “cold” (center) to “hot” (peaks).

The influence of the dissipation and heat supply is discussed in [25]. The
differential-difference equation describing non-stationary heat propagation in the
lattice and the analytical formula in the integral form describing the steady-state
kinetic temperature distribution in the lattice caused by a point heat source of a
constant intensity are derived.
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(a) (b)

Fig. 24.11 Scalar square lattice [72]: (a) evolution of rectangular initial temperature distribution
and (b) evolution of a circular initial temperature distribution (initial temperature is uniform inside
a circle with radius 20a, and the scale is normalized to the initial temperature value at the center)

24.4.2 Polyatomic Lattices

This section is concluded by the results on heat transfer in polyatomic lattices. The
explicit problem statement and respective derivation are given in [74]. We write out
the main result, i.e., the approximate formula for the temperature matrix:

T = TF + TS, TF ≈
∫

k
PT̃FP∗Tdk, TS ≈

∫

k
PT̃SP∗Tdk,

{
T̃F

}
i j = 1

2

{
P∗TT0(r)P

}

i j

[
cos

((
ωi + ω j

)
t
)+ (

1 − δi j
)
cos

((
ωi − ω j

)
t
)]

,

{
T̃S

}
i j = 1

4

{
P∗T

(
T0

(
r + c j t

) + T0
(
r − c j t

))
P
}

j j
δi j ,

(24.33)
Here P = P(k) is the polarization matrix which consists of normalized eigenvectors
of the lattice dynamic matrix, c j (k) is the group velocity vector which corresponds
to the j th branch of dispersion relation ω j (k), and T0(r) is the initial temperature
matrix of the unit cell.

The first term, TF , in formula (24.33) describes short-time behavior of the tem-
perature matrix (fast process). At short times, the temperature matrix oscillates. The
oscillations are caused by redistribution of energy among kinetic and potential forms
and redistribution of energy among degrees of freedom of the unit cell. These oscilla-
tions at different spatial points are independent. At large time scale TF tends to zero.
The second term, TS , in formula (24.33) describes the large time behavior of the
temperature matrix (slow process). At large time scale, changes in the temperature
profile are caused by ballistic heat transport. The temperature matrix is represented
as a superposition of waves traveling with group velocities. Shapes of the waves are
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Fig. 24.12 Contributions of acoustic (left) and optical (right) vibrations to temperature profile
in graphene at large time. The initial temperature is distributed inside a circle with a radius 10a.
Plus signs mean that the resulting temperature profile is equal to a sum of acoustic and optical
contributions. Color bars show the ratio between current and initial temperatures [74]

determined by initial temperature profile T0. Note that according to formula (24.33),
accurate description of ballistic heat transport requires knowledge of the dispersion
relation and corresponding group velocities. It is noteworthy that the local values
of temperatures, corresponding to the degrees of freedom of the unit cell, at large
times are generally neither equal to each other nor equal to their equilibrium val-
ues (temperature matrix is generally not isotropic). Therefore, the thermal state of
unit cells reached by thermal waves is strongly non-equilibrium. In [74] this fact is
demonstrated for the chain with alternating masses.

As in Sect. 24.3.1.3, we again restrict ourselves by the graphic results for one-
dimensional lattice with alternating masses and stiffnesses (Fig. 24.10) and for the
out-of-plane vibrations of graphene (Fig. 24.12).

Consider the evolution of circular initial temperature profile in graphene [74]. Cor-
responding temperature field at t = 20τe is shown in Fig. 24.12. The figure shows,
in particular, that the heat front is a circle as predicted by the derived formulae and
the Huygens principle. At the same time, the temperature field has a symmetry of
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the lattice, i.e., the heat transport is strongly anisotropic. Moreover, the temperature
field has contributions from acoustic and optical branches of the dispersion relation.
Acoustic waves have larger group velocities than optical waves; therefore, the tem-
perature front on the left-hand side propagates faster than that on the right-hand side.
We note that the temperature has a local minimum at the center. Therefore, the heat
flows from “cold” to “hot”.

24.4.3 The Influence of Nonlinearity

Weconclude this section by investigating the effect of anharmonicity on heat transfer.
As an example, we consider equilibration of a sinusoidal modulation of temperature
in the β–Fermi–Pasta–Ulam–Tsingou (FPUT) chain [57]. In this system, the par-
ticles are connected to their nearest neighbors by the potential, which includes the
quadratic term with the harmonic constant C and the quartic term with the anhar-
monic constant β.

The results for different values of the anharmonicity parameter β and for different
wavelengths of temperature modulation were obtained numerically and compared to
the analytical solution available for the linear case, i.e., β = 0 (see formula 24.30).
Also, the applicability of the linear theory to a weakly nonlinear chain was assessed
for different wavelengths of temperature modulation. The initial conditions of two
types were used: (i) at t = 0, the energy of the system is in the form of kinetic energy
with zero potential energy and (ii) the other major part of the energy is initially shared
between kinetic and potential energies.

Firstly, for the linear chain (β = 0), the numerical results averaged over an increas-
ing number of realizations converged to the analytical solution. This solution predicts
that equilibration of a sinusoidal modulation of temperature demonstrates oscilla-
tions with a decrease in time amplitude, following the Bessel function of the first
kind. This was true for the initial conditions of both types, though convergence
with an increasing number of realizations was faster for the initial conditions with
nearly equal kinetic and potential energies. Convergence was also faster for a larger
wavelength of temperature modulation. The kinetics of temperature equilibration,
for increasing number of realizations, converges not only for the harmonic chain but
also for β > 0.

Secondly, with an increase in the degree of anharmonicity, the oscillatory equili-
bration of temperature gradually transforms into a monotonic one. For a given tem-
perature wavelength modulation, there exists a value of the anharmonicity parameter
when the temperature equilibration occurs most rapidly. For smaller values of β,
oscillations of temperature decay slowly, and for larger β, the monotonic decay is
slow (see Fig. 24.13).

Thirdly, the linear theory remains informative forweakly anharmonic chainswhen
β is smaller than a certain critical value, which decreases with increasing temper-
ature modulation wavelength. This means that temperature modulation with short
wavelength is less affected by the anharmonicity or, in other words, the linear theory
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Fig. 24.13 Normalized
difference between the
averaged temperatures of the
left and right halves of the
chain, δT , as a function of
normalized time for different
values of the nonlinearity
parameter β; the chain
consists of N = 32768
particles [57]

remains valid for larger values of β, as compared to the long-wavelength temperature
modulation.

Overall, these results have confirmed that (i) the continuum equation derived
in [61] accurately describes the temperature flow in linear chains, (ii) linear the-
ory remains informative for weakly anharmonic chains, and (iii) short-wavelength
modulations of temperature are less affected by the anharmonicity and linear theory
remains valid for larger values of β, as compared to the long-wavelengthmodulations
of temperature.

In this regard, the results presented in previous works, e.g., [27] have found
their explanation. Oscillations of the short-wavelength sinusoidal temperature mod-
ulation, observed by the authors of those works, can be well explained by the
linear theory [61]. The oscillations were not observed by the authors for long-
wavelength temperaturemodulation because, in this case, the effect of anharmonicity
is much stronger. The oscillations of long-wavelength temperature modulation can
be observed for smaller values of the anharmonicity parameter.

24.5 Thermoelasticity: Ballistic Resonance in FPUT Chain

The previous sections dealt mostly with crystalline solids with linear interactions
between the particles. The considered linearmodels allow an analytical description of
elasticity, transient thermal processes, and heat energy transfer (thermal conduction)
in crystalline solids.However, they are unsuitable for describing thermoelastic effects
such as thermal expansion or the conversion of mechanical energy into thermal
energy. In this section, we address some effects caused by nonlinearity of interatomic
interaction.
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In [63] one-dimensional chains with pair force interactions are considered. Using
the approach proposed in [59], the continualization of the dynamics and energy bal-
ance equations is carried out. As a result, the coupled thermoelasticity equations
for a chain are obtained. As an example, we consider the well-known α–Fermi–
Pasta–Ulam–Tsingou (FPUT) model [21], a one-dimensional chain with quadratic
nonlinearity. All of the aforementioned thermomechanical processes can be quali-
tatively described by this model. Despite the apparent simplicity of the model, the
analytical description of the macroscopic thermoelastic processes, thermal conduc-
tivity, and the transition of mechanical energy into thermal energy seems to be a very
difficult and yet unsolved problem. The FPUT chain demonstrates anomalous ther-
momechanical properties. It is shown in [16, 17, 27, 117] that the heat conduction
in the FPUT chain is represented neither by the Fourier law nor by the Maxwell–
Cattaneo equation. In the limiting case of large times and infinitely long chain, the
heat conduction is described by the equation with fractional derivatives [89]. How-
ever, this model does not capture the quasi-ballistic heat transfer typical for small
times and chains of finite length. Therefore, the results obtained in Sect. 24.4 are
used to describe the quasi-ballistic heat conduction regime.

An evenmore complicated problem is the description of the transition ofmechani-
cal energy into thermal energy. This process is in charge, in particular, of the damping
ofmacroscopicmechanical vibrations of the chain. The study of the decay ofmechan-
ical vibrations of the FPUT chain has a long history, beginning with the pioneering
work of Fermi, Past, and Ulam [21]. In [21], the initial conditions corresponding
to the excitation of the first eigenmode of the chain were considered. It was shown
numerically that the oscillations damping occurs non-monotonically: the decay and
growth of the energy of mechanical oscillations alternate. In the literature, this effect
is often referred to as Fermi–Pasta–Ulam–Tsingou recurrence paradox (see, for
example, [22] for the review of the works aimed at explaining this paradox). Note
that in the formulation proposed in the original paper [21], the oscillations were con-
sidered at zero initial temperature. In what follows, it is shown that the introduction
of a finite temperature (random particle velocities) allows us to provide a monotonic
damping of mechanical energy [76].

In this section, we describe thermomechanical phenomena observed in the α–
FPUT chain with a spatially sinusoidal profile of initial temperature [76]. Firstly,
it is shown analytically that temperature oscillations, caused by quasiballistic heat
transport, and thermal expansion give rise to mechanical vibrations with growing
amplitude. This new phenomenon is referred to as ballistic resonance [76]. Secondly,
it is demonstrated numerically that mechanical vibrations, excited by the ballistic
resonance, decay monotonically in time. Therefore at finite temperatures the FPUT
recurrence paradox is eliminated.

Consider the equations of motion of α−FPUT chain under periodic boundary
conditions

mün = C(un+1 − 2un + un−1) + α
(
(un+1 − un)

2 − (un − un−1)
2
)
, (24.34)
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where the parameter α characterizes nonlinearity. We consider initial conditions,
corresponding to spatially sinusoidal kinetic temperature profile, zero initial fluxes,
and no macroscopic mechanical motions

un = 0, u̇n = σn

√
2kB
m

(
Tb + �T sin

2πn

N

)
,

〈σn〉 = 0, 〈σ 2
n 〉 = 1,

(24.35)

where σn are uncorrelated random numbers with zero mean and unit variance; Tb is
the average (background) temperature;�T is an amplitude of the initial temperature
profile.

Next, we separate the motions [63]. Mechanical motion is associated with the
time evolution of the mathematical expectation of particle displacement, whereas
the thermal motion is defined as the difference between the total displacement and
the mechanical one. Note that, in contrast to mechanical displacements, the thermal
displacements are random.

We assume that the macroscopic mechanical motion of the chain is described
by the equation of linear thermoelasticity, as shown in [63], while the behavior of
temperature (heat transfer) is described by the ballistic heat Eq. (24.11) [61, 64].
Conversion of mechanical energy to thermal energy is neglected, then the macro-
scopic behavior of the chain in the continuum limit is described by the system of
equations

ü = c2S
(
u′′ − βT ′) , T̈ + 1

t
Ṫ = c2ST

′′, (24.36)

where cS is the speed of sound and β is the thermal expansion coefficient. Note
that both macroscopic equations are derived from the equations of motion (24.34).
Anharmonic effects are taken into account only in the equation for the displace-
ments, whereas the second one is derived using harmonic approximation, therefore
it corresponds to the purely ballistic heat transport regime.

Substituting the solution of the ballistic heat equation with initial conditions,
corresponding to sinusoidal initial perturbation [61], into the dynamics Eq. (24.36),
we obtain

ü = c2Su
′′ − λc2Sβ�T J0(ωt) cos λx, (24.37)

where λ = 2π/L , L is the the chain length, ω = λcS .
It can be seen that the temperature acts as an external force, exciting the first

normal mode of mechanical vibrations. From the properties of Bessel function it
follows that the external force oscillates with frequency ω and decays as 1/

√
t . Note

that the frequency coincides with the first eigenfrequency of mechanical vibrations.
The solution of (24.37) yields an exact expression for displacements

u(x, t) = z(t) cos λx, z(t) = −β�Tωt

λ
J1(ωt). (24.38)
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(a) (b)

Fig. 24.14 a Growth of mechanical vibrations amplitude due to ballistic resonance: analytical
solution (solid line) and numerical results for αa/C = −0.25 (circles) and αa/C = −1 (squares);
b decay of mechanical vibrations amplitude for large times (numerical results, αa/C = −1) [76]

At large times, the amplitude of displacement grows as a square root of time

z(t) � −
√

2

π

β�T

λ

√
ωt cos

(
ωt − 3π

4

)
. (24.39)

The time dependence of the amplitude of mechanical vibrations z(t) is presented
in Fig. 24.14a. It can be seen that the amplitude grows in time, as described by the
analytical solution (24.38). Thus the coincidence of a frequency of temperature oscil-
lations with the first eigenfrequency of the chain leads to excitation of mechanical
vibrations with growing amplitude. This phenomenon is referred to as ballistic res-
onance [76]. Note that, in contrast to the conventional mechanical resonance, the
ballistic resonance occurs in the closed system without any external excitation. It is
caused by conversion of thermal energy to mechanical energy.

Numerical simulations show that mechanical vibrations, excited by the ballistic
resonance, decay in time (see Fig. 24.14b). The decay is caused by thermalization,
i.e., conversion of mechanical energy to thermal energy. This process is not covered
by our continuum model (24.36). The simulation results show that the mechanical
oscillations arising at resonance decay monotonically. Therefore, the classical FPUT
paradox is not observed at the finite temperature. In our calculations, the mechanical
energy of the system is significantly lower than the thermal energy. It seems that
this condition is necessary for monotonic decay. However, a rigorous proof of this
statement requires further investigations.



528 E. A. Podolskaya et al.

24.6 Concluding Remarks

This paper summarizes the current status of research on discrete thermomechanics
carried out in the Institute for Problems in Mechanical Engineering of the Rus-
sian Academy of Sciences. The main achievement is an approach for the analytical
description of unsteady thermomechanical processes in perfect crystals in continuum
approximation. The approach allows to describe the transition to thermal equilibrium,
ballistic heat transfer, heat supply, propagation of thermoelasticwaves, and other non-
equilibrium processes in perfect crystals. One, two, and three-dimensional perfect
crystals with arbitrary harmonic and weakly anharmonic interactions are considered.
The approach predicts the existence of many peculiar thermomechanical phenom-
ena, including but not limited to thermal waves, heat flow from cold to hot, several
kinetic temperatures, thermal echo, and ballistic resonance. Still, we believe that
many phenomena are yet to be discovered.

However, despite the significant progress in describing and understanding ther-
momechanical processes, many questions remain open. Let us briefly mention some
aspects of the approach that require additional investigation.

• The relation between the kinetic temperature, defined above, and other definitions
of temperature available in the literature is not straightforward. Which of these
temperatures is the best parameter for the description of the thermal state of a
non-equilibrium system? This question requires a separate discussion.

• Some of the presented results (e.g., heat flowing from cold to hot) seem to contra-
dict the second law of thermodynamics. We refer to papers [62, 112] for further
discussion of this important issue.

• Many of the results have been obtained for one particular type of initial conditions,
namely random initial velocities and zero displacements. These initial conditions
are the simplest model of a heat impact on a system. How well does this model
describe the crystal heating, e.g., by a short laser pulse?

• The results have been mostly obtained in the harmonic approximation. What is
the range of applicability of this approximation for real materials? To what extent
can quantum effects be ignored inside this range?

• Kinetic theory is a powerful tool for the description of the thermomechanical
processes in discrete systems. In some cases, the kinetic approach can be derived
from the dynamical description [77]. However, in general, the establishment of
this link is still connected with a number of open questions.

We are planning to address these fundamental questions in our future work.
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